• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 2
  • Tagged with
  • 27
  • 27
  • 12
  • 12
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Multilevel Voltage Space Vector Generation For Induction Motor Drives Using Conventional Two-Level Inverters And H-Bridge Cells

Siva Kumar, K 01 1900 (has links) (PDF)
Multilevel voltage source inverters have been receiving more and more attention from the industry and academia as a choice for high voltage and high power applications. The high voltage multilevel inverters can be constructed with existing low voltage semiconductor switches, which already have a mature technology for handling low voltages, thus improving the reliability of the overall inverter system. These multilevel inverters generate the output voltage in the form of multi-stepped waveform with smaller amplitude. This will result in less dv/dt at the motor inputs and electromagnetic interference (EMI) caused by switching is considerably less. Because of the multi-stepped waveform, the instantaneous error in the output voltage will be always less compared to the conventional two-level inverter output voltage. It will reduce the unwanted harmonic content in the output voltage, which will enable to switch the inverter at lower frequencies. Many interesting multi level inverter topologies are proposed by various research groups across the world from industry and academic institutions. But apart from the conventional 3-level NPC and H-bridge topology, others are not yet highly preferred for general high power drives applications. In this respect, two different five-level inverter topologies and one three-level inverter topology for high power induction motor drive applications are proposed in this work. Existing knowledge from published literature shows that, the three-level voltage space vector diagram can be generated for an open-end winding induction motor by feeding the motor phase windings with two two-level inverters from both sides. In such a configuration, each inverter is capable of assuming 8 switching states independent of the other. Therefore a total of 64 switching combinations are possible, whereas the conventional NPC inverter have 27 possible switching combinations. The main drawback for this configuration is that, it requires a harmonic filter or isolated voltage source to suppress the common mode currents through the motor phase winding. In general, the harmonic filters are not desirable because, it is expensive and bulky in nature. Some topologies have been presented, in the past, to suppress the common mode voltage on the motor phase windings when the both inverters are fed with a single voltage source. But these schemes under utilize the dc-link voltage or use the extra power circuit. The scheme presented in chapter-3 eliminates the requirement of harmonic filter or isolated voltage source to block the common mode current in the motor phase windings. Both the two-level inverters, in this scheme, are fed with the same voltage source with a magnitude of Vdc/2 where Vdc is the voltage magnitude requires for the NPC three-level inverter. In this scheme, the identical voltage profile winding coils (pole pair winding coils), in the four pole induction motor, are disconnected electrically and reconnected in two star groups. The isolated neutrals, provided by the two star groups, will not allow the triplen currents to flow in the motor phase windings. To apply identical fundamental voltage on disconnected pole pair winding, decoupled space vector PWM is used. This PWM technique eliminates the first center band harmonics thereby it will allow the inverters to operate at lower switching frequency. This scheme doesn’t require any additional power circuit to block the triplen currents and also it will not underutilize the dc-bus voltage. A five-level inverter topology for four pole induction motor is presented in chapter-3. In this topology, the disconnected pole pair winding coils are effectively utilized to generate a five-level voltage space vector diagram for a four pole induction motor. The disconnected pole pair winding coils are fed from both sides with conventional two-level inverters. Thereby the problems like capacitor voltage balancing issues are completely eliminated. Three isolated voltage sources, with a voltage magnitude of Vdc/4, are used to block the triplen current in the motor phase windings. This scheme is also capable of generating 61 space vector locations similar to conventional NPC five-level inverter. However, this scheme has 1000 switching combinations to realize 61 space vector locations whereas the NPC five-level inverter has 125 switching combinations. In case of any switch failure, using the switching state redundancy, the proposed topology can be operated as a three-level inverter in lower modulation index. But this topology requires six additional bi-directional switches with a maximum voltage blocking capacity of Vdc/8. However, it doesn’t require any complicated control algorithm to generate the gating pulses for bidirectional switches. The above presented two schemes don’t require any special design modification for the induction machine. Although the schemes are presented for four pole induction motor, this technique can be easily extend to the induction motor with more than four poles and thereby the number of voltage levels on the phase winding can be further increased. An alternate five-level inverter topology for an open-end winding induction motor is presented in chapter-4. This topology doesn’t require to disconnect the pole pair winding coils like in the previous propositions. The open-end winding induction motor is fed from one end with a two-level inverter in series with a capacitor fed H-bridge cell, while the other end is connected to a conventional two-level inverter to get a five voltage levels on the motor phase windings. This scheme is also capable of generating a voltage space vector diagram identical to that of a conventional five-level inverter. A total of 2744 switching combinations are possible to generate the 61 space vector locations. With such huge number switching state redundancies, it is possible to balance the H-bridge capacitor voltage for full modulation range. In addition to that, the proposed topology eliminates eighteen clamping diode having different voltage ratings compared to the NPC inverter. The proposed topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor fed H-bridge cell. All the proposed topologies are experimentally verified on a 5 h.p. four pole induction motor using V/f control. The PWM signals for the inverters are generated using the TMS320F2812 and GAL22V10B/SPARTAN XC3S200 FPGA platforms. Though the proposed inverter topologies are suggested for high-voltage and high-power industrial IM drive applications, due to laboratory constraints the experimental results are taken on the 5h.p prototypes. But all the proposed schemes are general in nature and can be easily implemented for high-voltage high-power drive applications with appropriate device ratings.
22

Five-level inverter employing WRPWM switching scheme

Chaing, Chia-Tsung 10 July 2008 (has links)
Multilevel Random Pulse Width Modulation (RPWM) schemes have drawn increasing attention in the past few years. Multilevel topologies provide high voltage and high power capabilities and random PWM schemes offer reduction in discrete harmonics spectral. This dissertation provides a generalized theory and analysis methods of the standard five-level Weighted RPWM (WRPWM). Equations have been derived to analyze the spectral performance and average switching frequency of the WRPWM output waveform using statistical approach. A modified WRPWM scheme has been proposed. The modified WRPWM scheme is then analyzed with the equations derived from the same approach. The analyzed theoretical spectrum of the standard five-level WRPWM is then compared with the three-level WRPWM scheme and the conventional carrier based PWM scheme. A scaled laboratory prototype diode clamping five-level inverter has been built for verification of the standard and the proposed modified WRPWM schemes. It can be seen that the experimental measurements and the theoretical analyzed results are all in good agreement. Results show the two five-level WRPWM schemes offers significant improvements on the spectrum content than the conventional carrier based PWM scheme. It was found that the five-level WRPWM schemes have successfully suppress the magnitude of third harmonic below 5% of the magnitude of fundamental component and even less for the higher order harmonic components. Research contributions made by the dissertation are: - The proposed modified multilevel WRPWM scheme which utilizing the switching decision redundancy of multilevel inverter to manipulate the harmonic content of the output signal. - The derived mathematical equations of the standard and modified five-level WRPWM scheme for analytical purposes. / Dissertation (MEng (Electrical Engineering))--University of Pretoria, 2005. / Electrical, Electronic and Computer Engineering / unrestricted
23

Investigations on Hybrid Multilevel Inverters with a Single DC Supply for Zero and Reduced Common Mode Voltage Operation and Extended Linear Modulation Range Operation for Induction Motor Drives

Arun Rahul, S January 2016 (has links) (PDF)
Multilevel inverters play a major role in the modern day medium and high power energy conversion processes. The classic two level voltage source inverter generates PWM pole voltage output having two levels with strong fundamental component and harmonics centered around the switching frequency and its multiples. With higher switching frequency, its components can be easily filtered and results in better Total harmonic distortion (THD) output voltage and current. But with higher switching frequency, switching loss of power devices increases and electromagnetic interferences also increases. Also in two level inverter, pole voltage switches between zero and DC bus volt-age Vdc. This switching results in high dv=dt and causes EMI and increased stress on the motor winding insulation. The attractive features of multilevel inverters compared to a two level inverter are reduced switching frequency, reduced switching loss, improved volt-age and current THD, reduced dv=dt, etc. Because of these reasons, multilevel invertersultilevelinvertersplayamajorroleinthemoderndaymediumandhighpower find application in electric motor drives, transmission and distribution of power, transportation, traction, distributed generation, renewable energy systems like photo voltaic, hydel power, energy management, power quality, electric vehicle applications, etc. AC motor driven applications are consuming the significant part of the generated electrical energy (more than 60%) around the world. The multilevel inverters are ideal for such applications, since the switching frequency of the devices can be kept low with lower out-put voltage dv=dt. Also by using multilevel inverters, the common mode voltage (CMV) switching can be made zero and associated motor bearing failure can be mitigated. For multilevel inverter topologies, as the number of level increases, the power circuit becomes more complex by the increase in the number of DC power supplies, capacitors, switching devices and associated control circuitry. The main focus of development in multilevel inverter for medium and high power applications is to obtain an optimized number of voltage levels with reduced number of switching devices, capacitors and DC power sources. In this thesis, a new hybrid seven level inverter topology with a single DC supply is proposed with reduced switch count. The inverter is realized by cascading two three level flying capacitor inverters with a half bridge module. Compared to the conventional seven level inverter topologies, the proposed inverter topology uses lesser number of semiconductor devices, capacitors and DC power supplies for its operation. For this topology, capacitor voltage balancing is possible for entire modulation range irrespective of the load power factor. Also capacitor voltage can be controlled over a switching cycle and this result in lowering the capacitor sizing for the proposed topology. A simple hysteresis band based capacitor voltage balancing scheme is implemented for the inverter topology. For a voltage source inverter fed induction motor drive system, the inverter pole voltage is the sum of motor phase voltage and common mode voltage. In induction motors, there exists a parasitic capacitance between stator winding and stator iron, and between stator winding and rotor iron. Common mode voltage with significant magnitude and high frequency switching causes leakage current through these parasitic capacitances and motor bearings. This leakage current can cause ash over of bearing lubricant and corrosion of ball bearings, resulting in an early mechanical failure of the drive system. In this thesis, analysis of extending the linear modulation range of a general n-level inverter by allowing reduced magnitude of common mode voltage (CMV) switching (only Vdc/18) is presented. A new hybrid seven level inverter topology, with a single DC supply and with reduced common mode voltage (CMV) switching is presented in this thesis for the first time. Inverter is operated with zero CMV for modulation index less than 86% and is operated with a CMV magnitude of Vdc/18 to extend the linear modulation range up to 96%. Experimental results are presented for zero CMV operation and for reduced common voltage operation to extend the linear modulation range. A capacitor voltage balancing algorithm is designed utilizing the pole voltage redundancies of the inverter, which works for every sampling instant to correct the capacitor voltage irrespective of load power factor and modulation index. The capacitor voltage balancing algorithm is tested for different modulation indices and for various transient conditions, to validate the proposed topology. In recent years, model predictive control (MPC) using the system model has proved to be a good choice for the control of power converter and motor drive applications. MPC predicts system behavior using a system model and current system state. For cascaded multilevel inverter topologies with a single DC supply, closed loop capacitor voltage control is necessary for proper operation. This thesis presents zero and reduced common mode voltage (CMV) operation of a hybrid cascaded multilevel inverter with predictive capacitor voltage control. For the presented inverter topology, there are redundant switching states for each inverter voltage levels. By using these switching state redundancies, for every sampling instant, a cost function is evaluated based on the predicted capacitor voltages for each phase. The switching state which minimizes cost function is treated as the best and is switched for that sampling instant. The inverter operates with zero CMV for a modulation index upto 86%. For modulation indices from 86% to 96% the inverter can operate with reduced CMV magnitude ( Vdc/18) and reduced CMV switching frequency using the new space-vector PWM (SVPWM) presented herein. As a result, the linear modulation range is increased to 96% as compared to 86% for zero CMV operation. Simulation and experimental results are presented for the inverter topology for various steady state and transient operating conditions by running an induction motor drive with open loop V/f control scheme. The operation of a two level inverter in the over-modulation region (maximum peak phase fundamental output of inverter is greater than 0:577Vdc) results in lower order harmonics in the inverter output voltage. This lower order harmonics (mainly 5th, 7th, 11th, and 13th) causes electromagnetic torque ripple in motor drive applications. Also these harmonics causes extra losses and adversely affects the efficiency of the drive system. Also inverter control becomes non linear and special control algorithms are required for inverter operation in the over modulation region. In conventional schemes, maximum fundamental output voltage possible is 0:637Vdc. In that case inverter is operated in a square wave mode, also called six-step mode. This operation results in high dv=dt for the inverter output voltage. With multilevel inverters also, the inverter operation with peak phase fundamental output voltage above 0:577Vdc results in lower order harmonics in the inverter output voltage and results in electromagnetic torque pulsation. In this thesis, a new space vector PWM (SVPWM) method to extend the linear modulation range of a cascaded five level inverter topology with a single DC supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage of the inverter can be increased from 0:577Vdc to 0:637Vdc without increasing the DC bus voltage and without exceeding the induction motor voltage rating. This new technique makes use of cascaded inverter pole voltage redundancy and property of the space vector structure for its operation. Using this, the induction motor drive can be operated till the full speed range (0 Hz to 50 Hz) with the elimination of lower order harmonics in the phase voltage and phase current. The ve level topology presented in this thesis is realized by cascading a two level inverter and two full bridge modules with floating capacitors. The inverter topology and its operation for extending the modulation range is analyzed extensively. Simulation and experimental results for both steady state and dynamic operating conditions are presented. Zero common mode voltage (CMV) operation of multilevel inverters results in reduced DC bus utilization and reduced linear modulation range. In this thesis two reduced CMV SVPWM schemes are presented to extend the linear modulation range by allowing reduced CMV switching. But using these SVPWM schemes the peak phase fundamental output voltage possible is only 0:55Vdc in the linear region. In this thesis, a method to extend the linear modulation range of a CMV eliminated hybrid cascaded multilevel inverter with a single DC supply is presented. Using this method peak fundamental voltage can be increased from 0 to 0:637Vdc with zero CMV switching inside the linear modulation range. Also inverter can be controlled linearly for the entire modulation range. Also, various PWM switching sequences are analyzed in this thesis and the PWM sequence which gives minimum current ripple is used for the zero CMV operation of the inverter. The inverter topology with single DC supply is realized by cascading a two level inverter with two floating capacitor fed full bridge modules. Simulation and experimental results for steady state and dynamic operating conditions are presented to validate the proposed method. A three phase, 400 V, 3.7 kW, 50 Hz, two-pole induction motor drive with the open-loop V/f control scheme is implemented in the hardware for testing proposed inverter topology and proposed SVPWM algorithms experimentally. The semiconductor switches that were used to realize the power circuit for the experiment were 75 A, 1200 V IGBT half-bridge modules (SKM-75GB-12T4). Optoisolated gate drivers with de-saturation protection (M57962L) were used to drive the IGBTs. For the speed control and PWM timing computation, TMS320F28335 DSP is used as the main controller and Xilinx SPARTAN-3 XC3S200 FPGA as the PWM signal generator with dead time of 2.5 s. Level shifted carrier-based PWM algorithm is implemented for the normal inverter operation and zero CMV operation. From the PWM algorithm, information about the pole voltage levels to be switched can be obtained for each phase. In the sampling period, for capacitor voltage balancing of each phase, the DSP selects a switching state using the capacitor voltage information, current direction and pole voltage data for each phase. This switching state information along with the PWM timing data is sent to an FPGA module. The FPGA module generates the gating signals with a dead time of 2.5 s for the gate driver module for all the three phases by processing the switching state information and PWM signals for the given sampling period. For fundamental frequencies above 10Hz, synchronous PWM technique was used for testing the inverter topology. For modulation frequencies 10Hz and below, a constant switching frequency of 900 Hz was used. Various steady state and transient operation results are provided to validate the proposed inverter topology and the zero and reduced CMV operation schemes and extending the linear modulation scheme presented in this thesis. With the advantages like reduced switch count, single DC supply requirement, zero and reduced CMV operation, extension of linear modulation range, linear control of induction motor over the entire modulation range with zero CMV, lesser dv=dt stresses on devices and motor phase windings, lower switching frequency, inherent capacitor balancing, the proposed inverter power circuit topologies, and the SVPWM methods can be considered as good choice for medium voltage, high power motor drive applications.
24

Reduced Switch Count Multilevel Inverter Topologies for Open End Induction Motor Drives

Kshirsagar, Abhijit January 2016 (has links) (PDF)
MU LT I L E V E L inverters are becoming the preferred choice for medium voltage high power applications. Multilevel inverters have a number of inherent advantages over conventional two level inverters. The output voltage has multiple steps or levels, resulting in reduced dV/dt, which leads to lower electromagnetic interference, making it easier to meet electromagnetic compatibility (EMC) regulations. Multilevel inverters have a much lower effective switching frequency, which leads to a reduction in switching losses. The output voltage of multilevel inverters has a much lower harmonic content. In applications such as power conversion or grid-connection, filters need to be much smaller, or can be eliminated. In motor drive applications, the low harmonic content results in smoother, ripple-free shaft torque. The neutral-point clamped (NPC), cascaded H-bridge (CHB) and flying capacitor (FC) topologies were among the earliest multilevel topologies. NPC topologies require additional clamping diodes to clamp the output to the DC bus midpoint. CHB topologies use a number of isolated DC suplies to generate multilevel output. FC topologies work with a single DC link but use additional floating capacitors. Since then, a number derivatives and improvements to these topologies have been proposed. Topologies with low switch counts are desirable because of the corresponding reduction in system size and cost. A low total component count is also desirable since it results in better reliability. Induction motors in high power applications are often operated in the open-end configuration. Here, the start terminals of the motor phase windings are connected to one three phase inverter, while the end terminals are connected to a second three-phase inverter. The two inverters are typically powered by isolated supplies to prevent the flow of common mode currents through the motor. The open end configuration has a number of advantages It can be used with nearly all high power motors with no need for electrical or mechanical modification, since all six winding terminal are available externally. The two inverters driving the open-end motor are effectively cascaded. As a result, two inverters of lower voltage and power rating can replace a single inverter with higher voltage and power rating. In addition, if one of the inverter fails, it can be bypassed and the system can be operated at reduced power. In many applications such as heating, ventilation and air conditioning (HVAC), the load power is proportional to the cube of the shaft speed, so a 50% reduction in power translates to only 20% reduction in speed, thereby improving overall system reliability. The cascading of inverters also enables multilevel operation, which is exploited for the topologies proposed in this thesis. In the open-end configuration it is important to ensure that both the DC supplies deliver power to the load. Otherwise, power can circulate through the motor windings. In addition, if the two inverters are powered by rectifier supplies, the DC bus of one inverter can charge uncontrollably, resulting in distortion of phase voltages and currents. If DC bus overcharging continues unchecked the DC bus voltage can even exceed the system rating, resulting in permanent damage. This thesis proposes two novel topologies for open-end induction motor drives with low switch counts. Both topologies are powered by two unequal, isolated DC sources having DC voltages in a 3:1 ratio. Multiple levels in the output voltage are obtained using a number of floating capacitors in each phase. Modulation and control schemes are also proposed for both topologies to ensure that DC bus overcharging never occurs, while all the capacitor voltages are kept balanced at their nominal values. The first of these two topologies is a nine level inverter for open end induction motor drives. It consists of two three-level flying capacitor inverters connected to the induction motor in the open end configuration. The two inverters are powered by DC sources of voltage 6VDC/8 and 2VDC/8, which generates an effective phase voltage having nine levels in steps of VDC/8. This topology has only eight switches and two floating capacitors per phase. The space vector structure for this topology is hexagonal, and has 217 space vector locations. A space-vector based formulation is used to determine the pole voltage of the inverter such that DC bus over charging is prevented. In addition, selection of switching states is used to balance the voltages of all floating capacitors. This scheme allows the floating capacitors to be charged up during system startup, thereby eliminating the need for separate pre-charging circuitry. A level-shifted carrier PWM based modulation scheme has been developed, which can be used with both scalar and vector control schemes. The gating signal for switches turning on must be delayed by a small amount (to allow the complementary switch to turn of), failing which current shoot through can occur. This delay is called dead time, during which gate signals to both complementary devices are turned of. Under certain conditions in the flying capacitor topology, the pole voltage can contain large undesirable transients during the dead time which result in phase current distortion, and electromagnetic noise. A novel scheme to eliminate this problem is proposed using a digital state machine approach. The switching state for each subsequent switching interval is determined based on the present switching state such that the pole voltage does not contain a transient, without affecting the phase voltage of the inverter, and irrespective of the current magnitude or direction. The state machine was implemented using an FPGA, and required an additional computation time of just 20ns, which is much smaller than the inverter dead time duration of typically 2.5µs. The second novel topology proposed in this thesis is a seventeen level inverter for an open end induction motor drive. Here, one three-level inverter and one seven-level inverter are connected to the two ends of the induction machine. The three-level inverter is a flying capacitor inverter. The seven-level inverter is a hybrid topology – it consists of an H-bridge cascaded to each phase of a three level flying capacitor inverter. This scheme is also powered by two isolated DC sources in 3:1 ratio with magnitudes 12VDC/16 and 4VDC/16. The effective phase voltage has seventeen levels in steps of VDC/16. This topology has a total of twelve switches and three floating capacitors per phase. The space vector structure for this topology is hexagonal, and has 817 space-vector locations. Space vector analysis was used to determine the pole voltages, and the switching states such that DC bus overcharging is prevented while also balancing the voltages of the floating capacitors. A non-iterative algorithm was developed for determining the switching states, suitable for implementation in digital logic using an FPGA. The scheme is able to charge the all capacitors at startup as well, eliminating the need for separate pre-charging circuits. Hardware prototypes were built for both the topologies described above for experimental verification, and used to drive a three phase 50Hz, 1.5kW, four pole induction motor in V/f control mode. The inverters topologies were built using 1200V, 75A IGBT half-bridge modules (Semikron SKM75GB12T4) with hybrid opto-isolated gate drivers (Mitsubishi M57962). Three phase rectifiers were used to create the asymmetric DC supplies Hall effect sensors were used to sense the DC link and floating capacitor voltages and phase currents (LEM LV20P voltage sensors and LA55 current sensors). Signal conditioning circuitry was built using discrete components. The PWM signals and V/f controller were implemented using a digital signal processor (Texas Instruments TMS320F28335). Synchronous PWM with was used to eliminate sub-harmonics from the phase voltage, and to ensure three-phase and half-wave symmetry. The internal ADC of the DSP was used for sampling all voltages and currents. The remaining digital logic for switch state selection was implemented on a FPGA (Xilinx Spartan3 XC3S200). Dead time functionality was also implemented within the FPGA, eliminating the need for separate dead time hardware. Both topologies were first tested for steady state operation over the full modulation range, and the pole voltages, phase voltages and phase currents were recorded. System startup, and the ability of the controllers to balance all the capacitors at startup was tested next. The capacitor voltages were also observed during sudden loading, by quickly accelerating the motor. Finally, the phenomenon of DC bus overcharging was also demonstrated. These results demonstrate the suitability of the proposed topology for a number of applications, including industrial drives, alternate energy systems, power conversion and electric traction.
25

Investigation On Dodecagonal Multilevel Voltage Space Vector Structures By Cascading Flying Capacitor And Floating H-Bridge Cells For Medium Voltage IM Drives

Mathew, Jaison 07 1900 (has links) (PDF)
In high-power electric drives, multilevel inverters are generally deployed to address issues such as electromagnetic interference, switch voltage stress and harmonic distortion. The switching frequency of the inverter is always kept low, of the order of 1KHz or even less to reduce switching losses and synchronous pulse width modulation (PWM) is used to avoid the problem of sub-harmonics and beat frequencies. This is particularly important if the switching frequency is very low. The synchronous PWM is getting popularity as its realization is very easy with digital controllers compared to analog controllers. Neutral-point-clamped (NPC) inverters, cascaded H-bridge, and flying-capacitor multilevel inverters are some of the popular schemes used for high-power applications. Hybrids of these multilevel inverters have also been proposed recently to take advantage of the basic configurations. Multilevel inverters can also be realized by feeding the induction motor from both ends (open-end winding) using conventional inverter structures. For controlling the output voltage of these inverters, various PWM techniques are used. Chapter-1 of this thesis provides an over view of the various multilevel inverter schemes preceded by a discussion on basic two-level VSI topology. The inverters used in motor drive applications have to be operated in over-modulation range in order to extract the maximum fundamental output voltage that is possible from the dc-link. Operation in this high modulation range is required to meet temporary overloads or to have maximum power operation in the high speed range (flux weakened region). This, however, introduces a substantial amount of low order harmonics in the Motor phase voltages. Due to these low-order harmonic frequencies, the dynamic performance of the drive is lost and the current control schemes are severely affected especially due to 5th and 7th harmonic components. Further, due to these low-order harmonics and non-linear PWM operation in over-modulation region, frequent over-current fault conditions occur and reliability of the drive is jeopardized. The twelve sided-polygonal space vector diagram (dodecagonal space vectors) can be used to overcome the problem of low order 5th and 7th harmonics and to give more range for linear modulation while keeping the switching frequency at a minimum compared to conventional hexagonal space vector based inverters. Thus, the dodecagonal space-vector switching can be viewed as an engineering compromise between low switching frequency and quality load current waveform. Most of the previous works of dodecagonal space-vector generation schemes are based on NPC inverters. However, sophisticated charge control schemes are required in NPC inverters to deal with the neutral-point voltage fluctuation and the neutral-point voltage shifting issues. The losses in the clamping diodes are another major concern. In the second chapter, a multilevel dodecagonal space-vector generation scheme based on flying capacitor topology, utilizing an open end winding induction motor is presented. The neutral point charge-balancing problem reported in the previous works is not present in this scheme, the clamping diodes are eliminated and the number of power supplies required has been reduced. The capacitors have inherent charge balancing capability, and the charge control is done once in every switching cycle, which gives tight voltage control for the capacitors. For the speed control of induction motors, the space-vector PWM scheme is more advantageous than the sine-triangle PWM as it gives a more linear range of operation and improved harmonic performance. One major disadvantage with the conventional space-vector PWM is that the trigonometric operations demand formidable computational efforts and look-up tables. Carrier based, common-mode injected PWM schemes have been proposed to simplify the PWM process. However, the freedom of selecting the PWM switching sequences is limited here. Another way of obtaining SVPWM is using the reference voltage samples and the nearest vector information to switch appropriate devices for proper time intervals, realizing the reference vector in an average sense. In-formation regarding the sector and nearest vectors can be easily obtained by comparing the instantaneous amplitudes of the reference voltages. This PWM approach is pro-posed for the speed control of the motor in this thesis. The trigonometric operations and the requirement of large look-up tables in the conventional SVPWM are avoided in this method. It has the additional advantage that the switching sequences can be decided at will, which is helpful in reducing further, the harmonic distortion in certain frequency ranges. In this way, this method tries to combine the advantages of vector based methods (conventional SVPWM) and scalar methods (carrier-based methods). The open-end winding schemes allowed the required phase voltage levels to be generated quite easily by feeding from both ends of the windings. Thus, most of the multilevel inverters based on dodecagonal space-vector structures relied on induction motors with open-end windings. The main disadvantage of open-end winding induction motor is that six wires are to be run from the inverter to the motor, which may be unacceptable in certain applications. Apart from the inconvenience of laying six wires, the voltage reflections in the wires can lead to over voltages at the motor terminals, causing insulation failures. Where as the topology presented in chapter-2 of this thesis uses open-end winding motor with flying-capacitor inverters for the generation of dodecagonal space-vectors, the topology presented in chapter-3 utilizes a cascade connection of flying-capacitors and floating H-bridge cells to generate the same set of voltage space-vectors, thus allowing any standard induction motor as the load. Of the methods used for the speed control of induction motors, namely sine-triangle PWM and space vector PWM, the latter that provides extra modulation range is naturally preferred. It is a well-understood fact that the way in which the PWM switching sequences are applied has a significant influence on the harmonic performance of the drive. However, this topic has not been addressed properly for dodecagonal voltage space-vector based multilevel inverter drives. In chapter-4 of the thesis, this aspect is taken into ac-count and the notion of “harmonic flux trajectories” and “stator flux ripple” are used to analyze the harmonic performance of the various PWM switching schemes. Although the PWM method used in this study is similar to that in chapter-2, the modification in the PWM switching sequence in the PWM algorithm yields significant improvements in harmonic performance. The proposed topologies and PWM schemes are extensively simulated and experimentally verified. The control scheme was implemented using a DSP processor running at a clock frequency 150MHz and a four-pole, 3.7kW, 50Hz, 415V three-phase induction motor was used as the load. Since the PWM ports are limited in a DSP, a field-programmable gate array (FPGA) was used to decode the PWM signals from the DSP to generate timing information required for PWM sequencing for all the power devices. The same FPGA was used to generate the dead-time signals for the power devices also.
26

Investigations on Online Boundary Variation Techniques for Nearly Constant Switching Frequency Hysteresis Current PWM Controller for Multi-Level Inverter Fed IM Drives

Dey, Anubrata January 2012 (has links) (PDF)
In DC to AC power conversion, voltage source inverters (VSI) based current controllers are usually preferred for today’s high performance AC drive which requires excellent dynamic and steady state performances at different transient and load conditions, with the additional advantages like inherent short circuit and over current protection. Out of different types of current controllers, hysteresis controllers are widely used due to their simplicity and ability to meet the requirements for a high performance AC drives. But the conventional hysteresis controllers suffers from wide variation of PWM switching frequency, overshoot in current errors, sub-harmonic components in the current waveform and non-optimum switching at different operating point of the drive system. To mitigate these problems, particularly to control the switching frequency variation, which is the root cause of all other problems, several methodologies like ramp comparison based controller, predictive current controller, etc. were proposed in the literature. But amplitude and phase offset error in the ramp comparison based controllers and complexities involved in the predictive controllers have limited the use of these controllers. Moreover, these type of controllers, which uses three separate and independently controlled tolerance band (sinusoidal type or adaptive) to control the 3-phase currents, shows limited dynamic responses and they are not simple to implement. To tackle the problem of controlling 3-phase currents simultaneously, space vector based hysteresis current controller is very effective as it combines the current errors of all the three phases as a single entity called current error space vector. It has a single controller’s logic with a hysteresis boundary for controlling this current error space vector. Several papers on space vector based hysteresis controllers for 2-level inverter with constant switching frequency have been published, but the application of the constant switching frequency based hysteresis current controllers for multi¬level inverter fed drive system, has not been addressed properly. Use of multi-level inverter in modern high performance drive for medium and high voltage levels is more prominent because of multi-level’s inherent advantages like good power quality, good electromagnetic compatibility (EMC), better DC link voltage utilization, reduced device voltage rating, so on. Even though some of the earlier works describe three-level space vector based hysteresis current controller techniques, they are specific to the particular level of inverters and does not demonstrate constant switching frequency of operation. This thesis proposes a novel approach where nearly constant switching frequency based hysteresis controller can be implemented for any general n-level inverter and it is also independent of inverter topology. In this work, varying parabolic boundary is used as the hysteresis current error boundary for controlling the current in a multi-level space vector structure. The computation of the parabolic boundary is accomplished offline and all the necessary boundary parameters at different operating points are stored in the look-up tables. The varying parabolic boundary for the multi-level space vector structure depends on the sampled reference phase voltage values which are estimated from stator current error information and then using the equivalent circuit model of induction motors. Here, a mapping technique is adopted to bring down all the three phase references to the inner- most carrier region, which results in mapping any outer triangular structure where tip of the voltage space vector is located, to one of the sectors of the inner most hexagon of the multi-level space vector structure. In this way, the required mapped sector information is easily found out to fix the correct orientation of the parabolic boundary in the space vector plane. This mapping technique simplifies the controller’s logic similar to that of a 2-level inverter. For online identification of the inverter switching voltage vectors constructing the present outer triangle of the multi-level space vector structure, the proposed controller utilizes the sampled phase voltage references. This identification technique is novel and also generic for any n-level inverter structure. This controller is having all the advantages of a space vector based hysteresis current controller and that of a multi-level inverter apart from having a nearly constant switching frequency spectrum similar to that of a voltage controlled space vector PWM (VC-SVPWM). Using the proposed controller, simulation study of a five-level inverter fed induction motor (IM) drive scheme, was carried out using Matlab-Simulink. Simulation study showed that the switching frequency variations in a fundamental cycle and over the entire speed range of the linear modulation region, is similar to that of a VC-SVPWM based multi-level VSI. The proposed hysteresis controller is experimentally verified on a 7.5 kW IM vector control drive fed with a five-level VSI. The proposed current error space vector based hysteresis controller providing nearly constant switching frequency is implemented on a TI TMS320LF2812 DSP and Xilinx XC3S200FT256 FPGA based platform. The three-phase reference currents are generated depending on the frequency command and the controller is tested with the drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and quick transient results of the proposed drive are presented in this thesis. This thesis also proposes another type of hysteresis controller, firstly for 2-level inverter and then for general n-level multi-level inverter, which eliminates the parabolic boundary and replaces it with a boundary which is computed online and does not use any look up table for boundary selection. The current error boundary for the proposed hysteresis controller is computed online in a very simple way, using the information of estimated fundamental stator voltages along α and β axes of space vector plane. The method adopted for the proposed controller to compute the boundary does not involve any complicated computations and it selects the optimal vector for switching when current error space vector crosses the boundary. This way adjacent voltage vector switching similar to VC-SVPWM can be ensured. For 2-level inverter, it precisely determines the sector, in which reference voltage vector is present. In multi-level inverter, this controller also finds out the mapped sector information using the same mapping techniques as explained in the first part of this thesis. In both 2-level and multi-level inverter, the proposed controller does not use any look up table for finding individual voltage vector switching times from the estimated voltage references. These switching times are used for the computation of hysteresis boundary for individual vectors. Thus the hysteresis boundary for individual vectors is exactly calculated and the boundary is similar to that of VC-SVPWM scheme for the respective levels of inverter. In the present scheme, the phase voltage harmonic spectrum is very close to that of a constant switching frequency VC-SVPWM inverter. In this thesis, at first, the proposed on line boundary computation scheme is implemented for a 2-level inverter based controller for the initial study, so that it can be executed as fast as 10 µs in a DSP platform, which is required for accurate current control. Then the same algorithm of 2-level inverter is extended for multi-level inverter with the additional logic for online identification of nearest switching voltage vectors (also used in the parabolic boundary case) for the present sampling interval. Previously mentioned mapping technique for multi-level inverter, is also implemented here to bring down the phase voltage references to the inner-most carrier region to realize the multi-level current control strategy equivalent to that of a 2-level inverter PWM current control. Simulation study to verify the steady state as well as transient performance of the proposed controller for both 2-level as well as five-level VSI fed IM drive is carried out using Simulink tool box of MATLAB Simulation Software. The proposed hysteresis controllers are experimentally verified on a 7.5 kW IM vector control drive fed with a two-level VSI and five-level VSI separately. The proposed current error space vector based hysteresis controller providing nearly constant switching frequency profile for phase voltage is implemented on the TI TMS320LF2812 DSP and Xilinx XC3S200FT256 FPGA based platform. The three-phase reference currents are generated depending on the frequency command and the proposed hysteresis controllers are tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are also presented for different operating conditions, through the simulation study followed by experimental verifications. Even though the simulation and experimental verifications are done on a 5-level inverter to explain the proposed hysteresis controller, it can be easily implemented for any general n-level inverter, as described in this thesis.
27

Studies on Single DC Link Fed Multilevel Inverter Topologies by Cascading Flying Capacitor and Floating Capacitor Fed H-Bridges

Pappu, Roshan Kumar January 2014 (has links) (PDF)
Use of multilevel inverters are inevitable in medium and high voltage drives. This is due to the fact that the multilevel inverters can produce voltages in smaller steps which will reduce the harmonic content and result in more sinusoidal voltages and currents as compared to voltages and currents from two-level inverters. Due to the device limitations, use of two-level inverters is not possible in medium and high voltage drive applications. Though multiple devices can be connected both in series and parallel to achieve two-level operation, the output voltages still suffer from high harmonic content. Multilevel inverters have multiple DC voltage levels with switches that enable one of the voltage steps to be applied to the load. Due to decrease in step size during each switching instant, output voltages and currents of the multilevel inverters have considerably less harmonic content. As the number of levels increase, the switching step reduces thereby the harmonic content also reduces drastically. Due to their advantages, multilevel inverters have gained lot of acceptance in the industry even at lower voltages. The three main configurations that have gained popularity are the neutral point clamped converter, the flying capacitor converter and the cascaded H-bridge converter. Each converter has its own set of advantages and disadvantages. Based on the requirements of various applications, it is possible to fabricate hybrid multilevel topologies that are combinations of the three basic topologies. Researchers around the world have proposed several such converters for diverse applications so as to suit particular requirements like modularity, ease of control, improved reliability, fault tolerant capability etc. The present thesis explores multilevel converters with single DC link to be used for motor drive and grid connected applications. A novel five-level inverter topology formed by cascading a floating capacitor H-bridge module to a regular three-level flying capacitor inverter has been explored in chapter 2. The three-level flying capacitor inverter can generate pole voltages of 0, VDC /2 and VDC . By cascading it with another floating capacitor H-bridge of voltage magnitude VDC /4, pole voltages of 0, VDC /4, VDC/2, 3VDC /4 and VDC . Each of these pole voltage levels can have one or more switching combinations. However each switching combination has a unique effect on the state of the two capacitor voltages. By switching through redundant switching combinations for the same pole voltage, the two capacitors present in each phase can be balanced. The proposed topology also has an advantage that if one of the devices in the H-bridge fails, the topology can still be operated as a regular three-level flying capacitor inverter that can supply full load at rated power by bypassing the faulty H-bridge. This fault tolerant operation of the converter will enable it to be used in applications like traction and marine drives where high reliability is needed. The proposed converter needs a single DC link. All the required voltage levels can be generated from the single DC link. This enables back to back grid connected operation possible where multiple converters can interact with a single DC link. Various pole voltage switching combination and its effect on individual capacitor has been studied. A control algorithm to balance the capacitor voltages by switching through multiple redundancies for the same pole voltage has been developed. The proposed configuration has been implemented in hardware using IGBT H-bridge modules and the control circuitry is realized using DSP and FPGA. The performance of the drive is verified for various frequencies and modulation indices during steady state by running a three phase induction motor at no load. The stability of the drive during transients has been studied by accelerating the machine suddenly at no load and analyzing the performance of the drive. The capacitor voltages are made to deviate from their intended values and the capacitor balancing algorithm has been verified for its ability to bring the capacitor voltages back to their intended values. The experimental results have been presented and discussed in detail in the chapter 2. In the third chapter a common-mode voltage eliminated three-level inverter using a single DC link has been proposed. The power schematic is similar to the one presented in chapter 2. In this chapter the space vector polygon formed by the three phases of the proposed topology has been presented. The common-mode voltage generated by different pole voltage combinations for same space vector location and the redundant switching state combinations has been studied. The pole voltage combinations with zero common mode voltage have been studied. The switching state redundancies for the the pole voltage have been studied. The space vector polygon formed with the pole voltage combinations has been analyzed. A drive is made with the proposed common-mode voltage eliminated inverter. The performance of the drive is tested for various modulation indices and frequencies by running a three phase squirrel cage induction motor at no load. The transient performance is verified by accelerating the motor suddenly and checking the common-mode voltage along with the capacitor voltages. The results have been presented and discussed in detail in chapter 3. This converter has advantages like use of single DC supply, ability to operate as a regular three level converter in case of failure of one of the H-bridges. The work presented in fourth chapter proposes a novel three phase 17-level inverter configuration which utilizes a single DC supply. The rest of voltages are generated using three floating capacitor H-bridges. The redundant switching combinations for generating various pole voltages and their effect on the capacitors have been studied and suitable capacitor balancing algorithm has been developed. The proposed topology has been realized in hardware and the performance of the drive during steady state has been studied by running an induction motor at various modulation indices and frequencies. The transient response of the drive has been observed by accelerating the motor suddenly under no load. The results have been presented in detail in chapter four. This configuration also needs a single DC link. The advantages of this configuration is in case of failure of any devices in the H-bridge, the drive can be operated at reduced number of levels while supplying full load current. This feature helps the drive to be used in fault tolerant applications like marine and traction drives where reliability of the drive is of prime importance. All the topologies that have been presented in the previous chapters have mentioned about the usage of the proposed genre of topologies use single DC link and hence will enable back to back grid tied inverter connection. In the fifth chapter this has has been verified experimentally. The three phase squirrel cage induction motor is driven by using the seventeen-level inverter drive proposed in chapter four. A five-level active front-end is realized by the converter topology proposed in chapter two. The converter is run and the performance of the drive is studied at various modulation indices and speeds of the motor. Various aspects like re-generation operation, acceleration and other aspects of the drive have been studied experimentally and the results are presented in detail. For experimental setup, Semikron SKM75GB12T4 IGBT modules have been used to realize the power topology. These IGBTs are driven by M56972L drivers. The control circuit is realized using TMS320F2812 DSP along with Xilinx Spartan 3 FPGA (XC3S200) has been used. The voltages and currents are sensed using LEM LV-20P and LA 55-P hall effect based sensors.

Page generated in 0.1104 seconds