251 |
Mise en place, caractérisation phénotypique et transcriptomique d'un modèle de Drosophilie de la Dystrophie Myotonique de type 1 / Establishment, phenotypic and transcriptomic characterization of a Drosophilie model of Myotonic dystrophy of type 1Picchio, Lucie 05 December 2013 (has links)
La dystrophie myotonique de type 1 (DM1) ou maladie de Steinert est la maladie génétique neuromusculaire la plus commune avec une incidence de 1/8000 à travers le monde. Cette maladie multisystémique touche particulièrement les muscles squelettiques (myotonie, faiblesse et perte musculaires) et le coeur qui présente des symptômes variés comme des troubles de la conduction et des arythmies. La DM1 est causée par une expansion instable de répétitions CTG dans la région 3’ non traduite du gène DMPK. Les individus sains possèdent entre 5 et 37 répétitions CTG tandis que les patients DM1 portent entre 50 et plusieurs milliers de répétitions. Il est bien établi que les expansions de répétitions non codantes forment des foci dans les noyaux musculaires où elles séquestrent le facteur d'épissage MBNL1. Toutefois, l'implication de la stabilisation et l'accumulation de CUGBP1 hyperphosphorylé par la PKC dans la maladie est un sujet controversé dans la communauté DM1. Dernièrement, en plus de la rupture de l'équilibre entre MBNL1/CUGBP1, plusieurs mécanismes ont été mis en cause dans la pathogenèse de la DM1. Parmi eux, l'expression perturbée de facteurs de transcription, la maturation altérée de miARNs, l'activation de kinases... chacune de ces altérations menant au final à une perturbation du transcriptome. Afin d'étudier l'effet de la toxicité des répétitions sur les phénotypes et lestranscriptomes, nous avons généré trois lignées de Drosophile inductibles et site-spécifiques exprimant 240, 600 et 960 répétitions de triplets. Nous avons travaillé en parallèle sur une lignée atténuée pour mbl (orthologue de MBNL1) et deux lignées gain de fonction bru -3 (orthologue de CUGBP1). Exprimées dans les muscles somatiques, les répétitions CTG conduisent à une mobilité réduite, le fractionnement des fibres musculaires, une réduction de leur taille et une altération du processus de fusion des myoblastes de manière dépendante de Mbl et Bru-3. En outre, l'expression des répétitions cause une hypercontraction musculaire dépendante de Mbl et due à un mauvais épissage de dSERCA. L'analyse transcriptionnelle comparative réalisée sur les muscles larvaires des différentes conditions pathologiques montre que l'atténuation de mbl reproduit 70-82% des dérégulations transcriptomiques des larves DM1 alors que le gain de fonction bru-3 représente 32-53% des altérations transcriptomiques des lignées DM1. Ainsi Mbl est un facteur clé des dérégulations observées dans les muscles somatiques des lignées DM1. Au contraire, les analyses physiologiques effectuées sur les coeurs adultes suggèrent que Bru-3 est un facteur clé dans la mise en place des phénotypes cardiaques. En effet, d'une part, l'atténuation de mbl dans le coeur cause une cardiomyopathie dilatée, un symptôme rarement diagnostiqué chez les patients. D'autre part, les lignées gain de fonction bru-3 et DM1 présentent de la fibrillation qui évolue avec l'âge ou la taille des répétitions vers un phénotype qui rappelle l'insuffisance cardiaque chez les patients. / Myotonic Dystrophy Type 1 (DM1) or Steinert's disease is the most common genetic neuromuscular disorder affecting 1 out of 8000 people worldwide. This multisystemic disease affects particularly the skeletal muscles (myotonia, muscle weakness and wasting) and the heart, which can exhibit various symptoms like conduction disturbances and arrhythmia (auricular fibrillation and flutter). DM1 is caused by an unstable CTG repeat expansion in the 3' non-translated region of the DMPK gene. In healthy individuals, the number of CTG repeats ranges from 5 to 37 whereas DM1 patients carry from 50 to thousands repeats. It is well established that when expanded non-coding repeats aggregate into foci within muscle nuclei and sequester the MBNL1 splicing factor. However, the involvement of the stabilization and accumulation of CUGBP1 following PKC hyper-phosphorylation in the disease is a controversial matter in the DM1 community. Lately, in addition to the disruption of the balance between MBNL1/CUGBP1, several mechanisms were identified as part of the DM1 pathogenesis. Among them, transcription factors perturbations, altered maturation of miRNA, kinases activation… each of them leading eventually to transcriptomic alterations. In order to investigate the effect of toxic repeat expression on phenotypic and transcriptomic alterations, we generated three inducible site-specific Drosophila lines expressing 240, 600 and 960 triplet repeats. We worked in parallel on a mbl (MBNL1 orthologue) knocked-down line and two bru-3 (CUGBP1 orthologue) gain of function lines. When expressed in somatic muscles, CTG repeats lead to altered motility, fiber splitting, reduced fiber size and affected myoblast fusion process in a Mbl and Bru-3 dependent manner. In addition, toxic repeats cause fiber hyper-contraction in a Mbldependentmanner due to dSERCA mis-splicing. Comparative transcriptional profiling performed on larval muscles of different conditions show that mbl attenuation reproduces 70-82% of DM1 transcriptomic deregulations whereas bru-3 gain of function represents 32-53% of transcritomic alterations. Thus Mbl appears as a key factor of transcripts deregulations observed in DM1 muscles. On the contrary, physiologic analyses performed on adult hearts suggest that Bru-3 is a key factor for cardiac phenotypes. Indeed, on one hand, mbl attenuated flies display dilated cardiomyopathy, a symptom barely diagnosed in patients. On the other hand, bru-3 gain of function line and DM1 lines display fibrillation, which evolves withage or repeat size into a phenotype reminiscent of heart insufficiency in patients.
|
252 |
No synthase neuronale pancréatique et musculaire dans la pathogénie des états prédiabétiques / Pancreatic and muscular neuronal NO synthases in the pathogenesis of prediabetic statesMezghenna, Karima 31 May 2010 (has links)
Le diabète de type 2, défini par une hyperglycémie chronique, résulte d'un déficit de la sécrétion d'insuline et d'une insulinorésistance. Durant le prédiabète qui précède la maladie, la cellule ß pancréatique est capable d'établir une hyperactivité sécrétoire compensatrice de l'insulinorésistance. Les NO synthases neuronales (nNOS) pancréatique et musculaire contrôlent respectivement la sécrétion d'insuline induite par le glucose dans la cellule ß et la force contractile, la captation et l'utilisation du glucose dans les myocytes. Dans le modèle génétique du rat obèse Zucker fa/fa mimant l'état prédiabétique associant un hyperinsulinisme et une insulinorésistance, nous avons retrouvé au niveau de la cellule ß une forte augmentation du complexe entre la nNOS et son inhibiteur endogène PIN (Protein Inhibitor of Neuronal NOS) au niveau des granules de sécrétion d'insuline. Ce complexe, grâce à une interaction accrue avec la myosine V, participe à l'hyperactivité sécrétoire de la cellule ß pancréatique. En effet, des molécules inhibant spécifiquement l'interaction nNOS-PIN permettent de rétablir, chez le rat fa/fa, une sécrétion d'insuline normale. Au niveau musculaire, nous avons observé, dans ce modèle animal, une diminution d'expression de la nNOS sans variation du taux d'ARNm, traduisant une protéolyse accrue de la protéine. L'inhibition de la dégradation protéasomale permet de restaurer l'expression et l'activité catalytique de la nNOS dans le muscle squelettique. Cette perte de fonctionnalité de l'enzyme participerait à l'installation de l'insulinorésistance. Ces travaux ont permis de valider la nNOS comme une cible potentielle pour la prévention du diabète de type 2. / Type 2 diabetes is a chronic disorder defined by chronic hyperglycemia resulting from a deficiency of insulin secretion and an insulin resistance in peripheral tissues and liver. A long lasting silent phase, called prediabetes, precedes the disease and in which pancreatic ß cell is able to improve insulin secretion to compensate for the insulin resistance. The pancreatic and muscular neuronal nitric oxide synthases (nNOS) control respectively glucose-induced insulin secretion in pancreatic ß cell and glucose uptake and utilization in myocytes. In the genetic model of obese Zucker fa/fa rat mimicking the prediabetic state characterized by hyperinsulinemia and insulin resistance, we found a high increase in the amount of the complex between nNOS and its endogenous inhibitor PIN (Protein Inhibitor of Neuronal NOS) at the level of insulin secretory granules within the ß cell. This complex, through an increased interaction with myosin V, participates in the secretory hyperactivity of the pancreatic ß cell, observed in this model of prediabetes. Indeed, molecules that specifically inhibit nNOS-PIN interaction allow to restore a normal insulin secretion in fa/fa rat. In skeletal muscle of this model, we observed a decreased expression of nNOS protein with no change in mRNA levels, suggesting an increased proteolysis of the protein. Inhibition of proteasomal degradation restores the expression and the catalytic activity of nNOS in skeletal muscle. Thus, this loss of functionality of the enzyme could participate in the installation of insulin resistance. This work therefore validated nNOS as a potential target for the prevention of type 2 diabetes.
|
253 |
Étude des modifications sub-cellulaires associées au vieillissement musculaire chez Caenorhabditis elegans-Rôle du facteur de transcription UNC-120/SRF / Studies of sub-cellular modifications associated with muscle aging in Caenorhabditis elegans : role of the transcription factor UNC-120/SRFMergoud dit Lamarche, Adeline 13 July 2016 (has links)
Le vieillissement s'accompagne d'une perte progressive de la masse et de la fonction musculaire, appelée sarcopénie. Différents mécanismes ont été proposés pour expliquer la sarcopénie. Cependant, la majorité d'entre eux ont été identifiés dans le contexte d'une atrophie induite expérimentalement (par dénervation, immobilisation, jeûne...) ou via des études corrélatives chez l'homme. Ainsi nous ne connaissons pas aujourd'hui l'importance et la chronologie de ces facteurs dans le contexte du vieillissement physiologique. Caenorhabditis elegans est un organisme modèle de référence pour les études de longévité. Grâce aux outils génétiques disponibles chez le nématode C. elegans, des voies moléculaires, qui contrôlent la longévité et dont le rôle est conservé chez les mammifères, ont pu être identifiées, comme la voie du récepteur de l'insuline/IGF-1. Toutefois le vieillissement musculaire a été très peu étudié dans cet organisme.Le premier objectif de mon projet de thèse était de décrire chez C. elegans les changements subcellulaires qui sont associés la perte de mobilité avec l'âge afin d'identifier des biomarqueurs potentiels du vieillissement musculaire. Le deuxième objectif était d'utiliser ces biomarqueurs comme outil pour identifier des gènes modificateurs de la sarcopénie. Nous avons ainsi pu mettre en évidence une diminution de l'expression de gènes impliqués dans la structure et la fonction musculaire très tôt au cours de la vie adulte. Ce phénotype est suivi par une fragmentation progressive des mitochondries puis une accumulation de vésicules d'autophagie. Ces biomarqueurs ont été utilisés pour tester le rôle potentiel, dans le maintien du muscle, de facteurs impliqués dans la différenciation musculaire au cours de l'embryogenèse.L'ensemble des résultats obtenus nous permettent de proposer un modèle selon lequel le facteur de transcription unc-120, orthologue du Serum Response Factor, agirait en aval de la voie de signalisation de l'insuline/IGF-1 dans le contrôle des différents biomarqueurs du vieillissement musculaires / Aging is accompanied by a progressive loss of muscle mass and function, named sarcopenia. Different mechanisms have been proposed to explain it. Furthermore most of them have been identified in the context of an experimental induced atrophy (by denervation, immobilization, fasting...) or via correlative studies in humans. Thus today we do not know the importance and chronology of these factors in the context of physiological aging. Caenorhabditis elegans is a reference model organism for longevity studies. Thanks to genetics tools available for the nematode C. elegans, evolutionarily conserved molecular pathways, which control longevity, have been identified, such as the Insulin/IGF-1 receptor pathway. However muscle aging has been very poorly studied in this organism. The first aim of my thesis project was to describe, in C. elegans, subcellular changes that are associated with mobility loss with age in order to determine potential biomarkers of muscle aging. The second aim was to use these biomarkers as tools to identify genes able to modify sarcopenia. Specifically, we could highlight a decrease of expression of genes involved in muscle mass and function very early during adulthood. This phenotype is followed by a gradual mitochondrial fragmentation then an accumulation of autophagic vesicles.These biomarkers have been used to test the potential role in muscle maintenance, of factors involved in muscle differentiation during embryogenesis. Altogether these results suggest a model in which the transcription factor unc-120, ortholog of Serum Response Factor, would act downstream in the insulin/IGF-1 signalization pathway on the control of the different biomarkers of muscle aging
|
254 |
Transcriptional regulatory network underlying connective tissue differentiation during limb development / Réseau de régulation transcriptionnelle sous-jacent à la différenciation du tissu conjonctif au cours du développement du membreOrgeur, Mickael 26 September 2016 (has links)
Le système musculo-squelettique se compose des muscles, du squelette et du tissu conjonctif qui comprend, entre autres, les tendons et le tissu conjonctif musculaire. Le tissu conjonctif musculaire contribue à l'élasticité et à la rigidité des muscles, alors que les tendons transmettent les forces musculaires à l'os nécessaires aux mouvements du corps. Contrairement au muscle et au squelette, la mise en place et la formation du tissu conjonctif restent à ce jour peu étudiées. Afin d'identifier les mécanismes moléculaires sous-jacents à la formation du tissu conjonctif au cours du développement du membre, cinq facteurs de transcription à doigt de zinc ont été examinés : OSR1, OSR2, EGR1, KLF2 et KLF4. Ces facteurs de transcription sont exprimés dans différents sous-compartiments du système musculo-squelettique et leur surexpression influence la différentiation des cellules mésenchymateuses du membre. Afin d'élucider leurs rôles au niveau de la régulation génique, plusieurs stratégies à haut-débit (RNA-seq, ChIP-seq) ont été mises en place. Ces stratégies ont permis : (i) d'identifier que les facteurs de transcription partagent des fonctions régulatrices communes liées à la transduction du signal, à la communication cellulaire et à l'adhésion cellulaire ; (ii) de révéler que les gènes différentiellement exprimés étaient enrichis pour des signatures d'activation et de répression chromatiniennes, suggérant qu'ils sont dynamiquement régulés ; (iii) de distinguer les gènes cibles directs des cibles indirectes. Ces résultats fournissent ainsi une base pour des travaux futurs visant à mieux comprendre l'inter-connectivité entre les différents composants de l'appareil locomoteur. / The musculoskeletal system is composed of muscles, skeletal elements and connective tissues such as tendon and muscle connective tissue. Muscle connective tissue contributes to the elasticity and rigidity of muscles, while tendons transmit forces generated by muscles to the bone to allow body motion. In contrast to muscle and skeleton, connective tissue patterning and formation remain poorly investigated. In order to identify molecular mechanisms underlying connective tissue formation during limb development, five zinc-finger transcription factors were investigated: OSR1, OSR2, EGR1, KLF2 and KLF4. These transcription factors are expressed in distinct subcompartments of the musculoskeletal system and influence the differentiation of limb mesenchymal cells upon overexpression. To further investigate their roles at the molecular level, several genome-wide strategies (RNA-seq, ChIP-seq) were employed. These strategies enabled: (i) to identify that the transcription factors share common regulatory functions and positively regulate biological processes related to signal transduction, cell communication and biological adhesion; (ii) to reveal that the differentially expressed genes were enriched for both active and repressive chromatin signatures at their promoters, suggesting that they are dynamically regulated; (iii) to distinguish between indirect and direct target genes. Altogether, these results provide a framework for future investigations to better understand the interconnectivity between components of the musculoskeletal system.
|
255 |
BMP signaling controls postnatal muscle development / La signalisation BMP contrôle le développement musculaire postnatalStantzou, Amalia 29 September 2015 (has links)
Les "Bone Morphogenetic Proteins" (BMPs) jouent un rôle clef dans la régulation de cellules précurseurs du muscle prénatal et de cellules souches musculaires adultes dénommées "cellules satellites". Les objectifs principaux de ma thèse étaient d'une part de déterminer si la signalisation BMP joue un rôle pendant la phase de croissance du muscle postnatale/juvénile dépendante des cellules satellites, et d'autre part d'investiguer si cette voie est impliquée dans la maintenance de la masse musculaire squelettique adulte. J'ai trouvé que les composants de cette voie de signalisation sont exprimés dans les cellules satellites de souris néonatales, juvéniles et adultes. Par ailleurs, j'ai utilisé des lignées de souris transgéniques pour surexprimer, de manière conditionnelle, l'inhibiteur Smad6 de la cascade de signalisation BMP dans les cellules satellites ou dans le muscle squelettique. J'ai pu ainsi démontrer que cette signalisation est requise pour une prolifération correcte des cellules satellites et pour leur différentiation en myonuclei, assurant que les fibres musculaires en croissance atteignent une taille finale normale. Par ailleurs, mes travaux révèlent que le nombre final de cellules satellites est établis pendant la phase de croissance postnatale/juvénile et que celle-ci dépend de la cascade de signalisation BMP. Enfin, je fournis des preuves montrant que la signalisation BMP est un puissant signal hypertrophique dans le muscle squelettique adulte et que sa présence est indispensable pour le maintien du tissu musculaire. En résumé, mes résultats de recherche démontrent que les BMPs sont des facteurs de croissance essentiels pour le muscle squelettique postnatal. / Bone Morphogenetic Proteins (BMPs), a subfamily of TGF-β growth factors, have been shown to be key signals that regulate embryonic and fetal muscle precursors during prenatal myogenesis, as well as the stem cells of adult muscle, termed ‘satellite cells’, when activated during muscle regeneration. The main aims of my thesis were to elucidate whether BMP signaling plays a role during postnatal/juvenile satellite cell-dependent muscle growth as well as for maintenance of adult muscle mass. I found that components of BMP signaling pathway are expressed in muscle satellite cells of neonatal, juvenile and adult mice. I used transgenic mouse lines to conditionally overexpress the BMP signaling cascade inhibitor Smad6 in muscle satellite cells and in differentiated skeletal muscle. I show that BMP signaling is required for correct proliferation of muscle satellite cells and their differentiation into myonuclei, thereby ensuring that the growing muscle fibers reach the correct final size. Moreover, I demonstrated that the final number of muscle stem cells is established during the postnatal/juvenile growth phase and this also depends on the BMP signaling cascade. Finally, I provide evidence that BMP signaling is a strong hypertrophic signal for the adult skeletal muscle and its presence is indispensable for muscle tissue maintenance. In summary, my findings demonstrate that BMPs are essential growth factors for postnatal skeletal muscle.
|
256 |
The influence of Notch over-stimulation on muscle stem cell quiescence versus proliferation, and on muscle regeneration / L'influence de Notch sur-stimulation sur quiescence de cellules souches du muscle contre la prolifération et sur la régénération musculaireDing, Can 06 November 2015 (has links)
La transplantation de cellules souches de muscle possède un grand potentiel pour la réparation à long terme du muscle dystrophique. Cependant, la croissance ex vivo des cellules souches musculaires réduit de manière significative l'efficacité de leur greffe puisque le potentiel myogénique est considérablement réduit lors de la mise en culture. La voie de signalisation Notch a émergé comme un régulateur majeur des cellules souches musculaires (MuSCs) et il a également été décrit que la sur-activation de Notch est crucial pour le maintien du caractère souche des MuSC. Cette découverte pourrait être traduite comme un bénéfice thérapeutique potentiel. Des MuSCs murines ont été fraîchement isolées et ensemencées sur des boîtes de culture recouverte de Dll1-Fc, le domaine extracellulaire de Delta-like-1 est fusionné au fragment Fc humain, afin d'activer la voie de signalisation Notch et avec un IgG hu-main comme contrôle. Nous avons utilisé le rAAV afin d’exprimer le Dll1 spécifique-ment dans les muscles de souris. Les souris P3 ont été traitées avec de l’AAV pendant 3 semaines et 6 semaines afin d’étudier l'effet de Dll1 au cours du développement postnatal. Afin d’étudier le processus de régénération, l'AAV a également été injecté dans les muscles de souris mdx alors que les souris de type sauvage ont été utilisées comme contrôle. Un potentiel caractère souche supérieur (marquée avec le Pax7) est observé dans les cultures des MuSCs qui sont recouverte de Dll1-Fc par rapport à leurs homologues contrôles, par contre le taux de proliférer est réduit. Au cours du développement postnatal, la sur-activation de la voie de signalisation Notch par Dll1 sur les fibres musculaires a été en mesure d'élargir le pool des cellules Pax7+, cependant elle entraîne une diminution de la masse musculaire avec réduction de la taille des fibres et ceci sans affecter l'accumulation des myonuclei. Dans les MuSCs quiescentes (de type sauvage), la sur-activation de la voie de signalisation Notch ne présente pas de réel effet. La surexpression de Dll1 dans le muscle mdx a diminué la masse musculaire et agrandit le pool de cellules souches musculaires, ce-pendant le taux de régénération n'a pas été affecté. L’augmentation des MuSCs est attribuée à une différenciation entravée des cellules souches musculaires. En étudiant la stimulation de la voie de signalisation Notch dans les MuSCs à la fois in vitro et in vivo, nous démontrons que sur-activation de Notch préserve le caractère souche des cellules via l’inhibition de la prolifération et de la différenciation myogénique des MuSCs. / Muscle stem cell transplantation possesses great potential for long-term repair of dys-trophic muscle. However expansion of muscle stem cells ex vivo significantly reduces their engraftment efficiency since the myogenic potential is dramatically lost in culture. The Notch signaling pathway has emerged as a major regulator of muscle stem cells (MuSCs) and it has recently been discovered that high Notch activity is crucial for maintaining stemness in MuSCs. This feature might be exploited and developed into a novel therapeutic approach.Murine MuSCs were freshly isolated and seeded on culture vessels coated with Dll1-Fc, which fused Delta-like-1 extracellular domain with human Fc, to activate Notch sig-naling and with human IgG as a control. The rAAV gene delivery system was em-ployed to express Dll1 in murine muscles. P3 mice were treated with AAV for 3 weeks and 6 weeks to investigate the effect of Dll1 during postnatal development. To investi-gate the regeneration process, AAV were injected into mdx muscles whereas wild-type mice were used as control.Higher potential stemness (marked by Pax7 positivity) was observed in MuSCs grow-ing on a Dll1-Fc surface as compared to their counterparts on the control surface, while their proliferation rate was reduced. During postnatal development, overstimulation of Notch signaling by Dll1 on the mus-cle fibers was able to enlarge the Pax7+ cell pool, while also resulting in decreased muscle mass and smaller muscle fibers without affecting the accretion of myonuclei into the fiber. In quiescent (wild-type) MuSCs, overstimulation of Notch signaling did not have any discernible effect. Overexpression of Dll1 in mdx muscle decreased the muscle mass and enlarged the muscle stem cell pool, while muscle regeneration re-mained unaffected. By investigating Notch stimulation in MuSCs both in vitro and in vivo, we demonstrate that high Notch activity preserves stemness via inhibition of MuSCs proliferation and myogenic differentiation. Our findings point out that the Dll1 molecule, as a canonical Notch ligand, might have a therapeutic potential in cell-based therapies against muscu-lar dystrophies.
|
257 |
Lipides intramyocellulaires (IMCL) et exercice. Evaluation par la technique histochimique dans les champs d’application : effet de l’exercice aigu de très longue durée : effet de l’entraînement chez les sujets âgés et les sujets en surpoids / Intramyocellular lipids (IMCL) and exercise. Estimation by histochemical assay in practical applications : effects of very long lasting exercise : effects of exercise training in ageing and overweighting subjectsNgo, Kim Tu An 13 December 2013 (has links)
Le métabolisme lipidique est stimulé lors de l'exercice musculaire. La contribution énergétique des lipides s'accentue pendant l'exercice d'endurance d'intensité modérée de longue durée (40% à 60% de VO2max). Outre les acides gras circulants, les réserves de lipides intramyocellulaires (IMCL) sont sensées être utilisées pendant des performances dépassant 4 heures. Devant le manque de preuves expérimentales jusqu'à ce jour, une 1ere étude a été entreprise sur 10 sportifs (40 ± 6 ans) lors d'une course de 24h. Les résultats obtenus sur le muscle vaste externe ont montré une baisse significative d'IMCL de 56% et 45% dans les fibres de type I et IIA respectivement, alors que le glycogène n'a diminué que dans les fibres I. Ces données indiquent un catabolisme d'IMCL plus efficace que celui du glycogène dans les fibres rapides lors de l'exercice d'ultra endurance, dont le mécanisme reste à déterminer. IMCL s'accumule lors du vieillissement ou de l'obésité et peut constituer un risque de résistance à l'insuline (RI). Un entraînement combiné en endurance (EE) et en résistance (ER) de 14 semaines a été mené sur des sujets âgés (73 ± 4 ans) et d'autres en surpoids (58 ± 5 ans). Dans les deux groupes IMCL a augmenté (p<0.05) dans le muscle vaste externe (après EE) mais est resté stable dans le muscle deltoïde (après ER) et s'est accompagné de l'augmentation (p<0.05) de la capacité enzymatique de la β-oxydation après EE. Les céramides musculaires, une classe de lipides impliquée dans RI, ont été diminués (p=0.052) par EE et non par ER. Ces résultats confirment que l'augmentation d'IMCL n'est pas un facteur de risque métabolique et que EE se traduit par une diminution des céramides et de RI / Lipid metabolism is involved during muscle exercise. Energetic contribution of lipids increases during long lasting endurance exercise of moderate intensity (40% à 60% of VO2max). As well as circulating free fatty acids, intramyocellular lipid storages (IMCL) are postulated to be used during performances longer than 4 hours. Due the the lack experimental evidences untill today, a first study was undertaken on 10 athletes (40 ± 6 yrs) during a 24h running. Results obtained on vastus lateralis muscle showed a significant 56% and 45% decrease of IMCL in type I and IIA fibres respectively while glycogen decreased only in type I fibres. These data indicate a more efficient catabolism of IMCL than those of glycogen in fast twitch fibres during ultra endurance exercise, of which mechanism remains to be explored. IMCL accumulates during ageing or overweighting and may constitute a risk of insulin resistance (IR). A combined 14 weeks endurance (ET) and resistance (RT) training was followed by older (73 ± 6 yrs) and overweighted (58 ± 5 yrs) subjects. In the two groups IMCL increased (p<0.05) in vastus lateralis muscle (after ET) but remained stable in deltoidus muscle (after RT) and was linked to an increase (p<0.05) of β-oxydation enzymatic capacity after ET. Muscle ceramides, a category of lipids implicated in IR, decreased (p=0.052) after ET and not after RT. These results confirm that increase in IMCL is not a metabolic risk factor and that ET induces a decrease of both ceramides and IR
|
258 |
Caractérisation moléculaire et cellulaire de la dégénérescence musculaire dépendante de la dystrophine chez le nématode Cænorhabditis elegans / Molecular and cellular characterisation of dystrophin-dependant muscle degeneration in the nematode Cænorhabditis elegansLecroisey-Leroy, Claire 20 September 2010 (has links)
La Dystrophie Musculaire de Duchenne (DMD) est la plus fréquente et la plus sévère des maladies dégénératives du muscle. Elle se caractérise par une dégénérescence progressive des fibres musculaires due à l’absence de dystrophine fonctionnelle dans les muscles. Actuellement, le rôle physiologique de la dystrophine n’est pas clairement établi et il n’existe pas encore de traitement curatif pour cette maladie. La difficulté de mettre en évidence la fonction de la dystrophine et la physiopathologie de la DMD est en partie expliquée par la complexité moléculaire et cellulaire du muscle des modèles vertébrés utilisés dans les études actuelles. Notre équipe de recherche a développé un modèle de DMD chez le nématode Caenorhabditis elegans. Dans ce modèle, la mutation du gène de la dystrophine, provoque une dégénérescence progressive des muscles conduisant à une paralysie des animaux adultes. Nous utilisons ce modèle afin d’étudier la fonction de la dystrophine et les mécanismes impliqués dans la dégénérescence musculaire chez le nématode. Ce travail de thèse porte sur deux nouveaux acteurs de la dégénérescence musculaire dépendante de la dystrophine : la protéine DYC‐1 et son principal partenaire ZYX‐1. Ce travail présente la caractérisation de ces deux protéines et étudie leurs fonctions dans le muscle. Par ailleurs, ce travail de thèse présente les premiers résultats d’un projet de microscopie électronique ayant pour but de caractériser en détail les évènements subcellulaires du processus dégénératif au cours du cycle de vie du nématode dystrophique. À plus long terme, les études chez le nématode permettront de proposer de nouvelles hypothèses quant aux mécanismes moléculaires et cellulaires de la dégénérescence musculaire / Duchenne Muscular Dystrophy (DMD) is the most prevalent and one of the most severe muscular dystrophy. DMD is due to the absence of functional dystrophin in cardiac and skeletal muscle cells, this lack leads to a progressive muscle degeneration of contractile fibres. Currently, the physiological role of dystrophin is not yet clearly established and curative treatments for DMD are not yet available. The lack of knowledge about dystrophin function and DMD physiopathology can be partly attributed to the complexity of vertebrate muscle, and the absence of a simple model that emulates the human pathology. Our research team developed a model of muscle degeneration in the nematode Caenorhabditis elegans. In this model, the mutation of the dystrophin gene produces a progressive muscle degeneration leading to the paralysis of the adult worms. We use this model for investigating the role of dystrophin and the mechanisms of muscle degeneration in C. elegans. This PhD work concerns two new actors of dystrophin‐dependant muscle degeneration: The DYC‐1 protein and its main interactor ZYX‐1. This study aims to characterise these proteins and to study their muscle functions. Moreover, this PhD work presents preliminary results of an in depth characterisation of subcellular processes of muscle degeneration in dystrophic worms by electron microscopy. Our aim is to visualise first events and to observe the progression of degeneration until the death of muscle cell. These molecular and cellular approaches aims to get new insights in the mechanisms underlying muscle degeneration in order to propose new hypotheses for the understanding of DMD
|
259 |
Invalidation du gène de la myostatine dans un modèle murin de cachexie associée au cancer : implication dans la régulation de la masse musculaire / Myostatin gene inactivation in a mouse model of cancer cachexia : involvement in the regulation of muscle massGallot, Yann 06 November 2013 (has links)
La cachexie est un syndrome clinique et métabolique caractérisé par une perte de tissu adipeux et de tissu musculaire, fréquemment observé chez les patients atteints de cancer. La myostatine (Mstn) régule négativement la masse musculaire. Bien que la régulation des mécanismes moléculaires impliqués dans le contrôle de la masse musculaire joue un rôle central dans la cachexie associée au cancer, les relations existant entre la Mstn et les mécanismes physiopathologiques restent largement inconnues. Suite à l’inoculation de cellules Lewis lung carcinoma (LLC) à des souris, nous avons montré que l’invalidation du gène de la Mstn (souris Mstn-/-) confère une résistance au développement de la cachexie associée au cancer par rapport à des souris sauvages. La déficience en Mstn prévient la perte de masse musculaire et réduit la croissance tumorale, 35 jours après l’injection des cellules LLC, et est associée à un allongement de la durée de vie des souris. L’invalidation du gène de la Mstn provoque aussi une augmentation de l’apoptose des cellules LLC et une diminution de l'expression de gènes impliqués dans la prolifération et le métabolisme tumoraux. L’activation des systèmes protéolytiques ubiquitine-protéasome et autophagie-lysosome, due au développement tumoral, est réduite voire supprimée dans le muscle des souris Mstn-/-. L’accumulation de céramides intramusculaires, un sphingolipide formé suite à une lipolyse exacerbée, est corrélée à la perte de masse musculaire, suggérant que les céramides pourraient être un médiateur cellulaire impliqué dans la cachexie associée au cancer. Ces résultats montrent que la Mstn joue un rôle essentiel dans la cachexie associée au cancer / Cachexia is a complex clinical and metabolic syndrome, whose definition is imprecise, characterized by an uncontrolled loss of adipose tissue and skeletal muscle mass, frequently observed in cancer patients, and leading to death in 25% of cancer patients. Myostatin (Mstn) is a negative regulator of skeletal muscle mass and a critical determinant of skeletal muscle homeostasis. Although the regulation of the molecular mechanisms involved in the control of skeletal muscle mass plays a central role in the pathogenesis of cancer cachexia, the relationships between Mstn and the pathophysiological mechanisms remain largely unknown. Following subcutaneous inoculation of Lewis lung carcinoma cells (LLC) in mice, we showed that the Mstn gene inactivation (Mstn-/- mice) confers resistance to the development of cancer cachexia, compared to wild type mice. Mstn deficiency prevents the loss of skeletal muscle mass and reduces tumor growth, 35 days after the inoculation of LLC cells, and this is associated with a longer life of mice. Mstn gene inactivation also causes an increased apoptosis of LLC cells and decreases expression of genes involved in tumor proliferation and metabolism. Activation of ubiquitin-proteasome and autophagy-lysosome proteolytic systems, triggered by tumor growth is significantly reduced or suppressed in skeletal muscle of Mstn-/- mice. Accumulation of intramuscular ceramides, a sphingolipid synthesized due to excessive lipolysis, is correlated with the loss of muscle mass, suggesting that ceramides may be a cellular mediator involved in the pathogenesis of cancer cachexia. These results show that Mstn plays a critical role in the pathogenesis of cancer cachexia
|
260 |
Effets de l'entrainement sur la performance en coup droit et l'hypersollicitation du membre supérieur en tennis / Effects of training on forehand performance and upper overuse in tennisGenevois, Cyril 19 December 2013 (has links)
L'objectif de ce travail de doctorat étati d'examiner les modalités d'entrainement permettant de développer la vitesse de balle post impact en coup droit au tennis, tout en évaluant les risques potantiels d'hypersollicitation de l'épaule qui pourraient en résulter. Les résultats de nos différentes études ont montré que la puissance maximale développée lors d'un lancer de medecine-ball (MB) à 2 mains sur le côté expliquait 25% de la variation de la vitesse maximale de balle en coup droit et qu'elle était atteinte en utilisant une masse de MB de 5,7% du poids de corps du joueur. Toutefois, les relations entre les distances obtenues lors de ce type de lancer et la vitesse de balle en coup droit sont faibles. En revanche, les lancers de MB sur le côté à une main ont démontré une relation significative avec la vitesse maximale de balle en coup droit. Un entrainement de six semaines basé sur l'utilisation de ce type de lancers a augmenté la vitesse de balle de 11% mais la précision des coups tendait à diminuer. Finalement, un entraînement incorporant des frappes de balle avec une raquette lestée d'environ 12% a également amélioré la vitesse maximale de balle en coup droit (5%), tout en conservant la précision des coups. Enfi, la comparaison de la coordiantion musculaire entre lesles deux types de lancers de MB et la frappe en coup droit a montré que les muscles du tronc et du membre supérieur testés présentaient des modèles d'activité musculaire et des niveaux de sollicitations similaires. Ainsi, les craintes concernant un potentiel de blessure ne sembleraient pas justifiées. Ainsi, les résulats de ces tudes ont contribué à la périodisation de la préparation physique pour l'amélioration de la performance en coup droit chez le joueur de tennis compétiteur amateur / This work aimed at exploring the training modalities to develop maximal post impact ball velocity fo the tennis forehand drive, while assessing the potential risk of upper limb oeruse. The results of our studies showed that maximal power developed during a two-handed side medecine-ball(MB) throw explained 25% of the variation of maximal forehand ball velocitiy, and was achieved when using a MB mass of 5,7 % of player's body weight. However, the relationship between throwing distances and maximal ball velocity of forehand drive was weak. By contrast, a significant relationship was found between the performance for the one-handed side MB throw and the maximal velocity of the forehand drive. A six-week trainig program based on one-hand MB throws increased the ball velocity by 11%, but the shot accuracy tended to be reduced. In the same way, a six-week training program including forehand drives with an overweighted racketr about 12 % allowed the maximal forehand ball velocity to be improved (5%), without alteration in theshot accuracy. Finally, the comparison of muscular coordination between both MB throws and the forehand drive demonstrated that the trunk and upper limb muscles presented similar activity pattern and levels. The potentials for injury risk would thus not justify. In conclusion, the finding of this work contributed to the periodization of the strength and conditioning training in order to improve the forehand drive performance in nonprofessional competitive tennis players.
|
Page generated in 0.0508 seconds