• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 8
  • Tagged with
  • 33
  • 25
  • 14
  • 14
  • 14
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Hofstadter butterfly and quantum interferences in modulated 2-dimensional electron systems

Geisler, Martin C., January 2005 (has links)
Stuttgart, Univ., Diss., 2005.
12

Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) für Anwendungen in nicht von-Neumann-Rechnerarchitekturen / Investigation of nanostructures based on LaAlO\(_3\)/SrTiO\(_3\) for applications in non von Neumann architectures

Miller, Kirill January 2024 (has links) (PDF)
Die Dissertation beschäftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfläche beider Übergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine Fülle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfläche prozessiert wurde und eine bemerkenswerte Trialität aufweist. Dieses Bauelement kann unter anderem als ein herkömmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zusätzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall hängt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts lässt sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen verändern. Darüber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine ergänzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsströmen innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt. / The dissertation focuses on the analysis of oxide nanostructures. The basis of the devices consists of the LaAlO3/SrTiO3 heterostructure. A quasi two-dimensional electron gas is formed at the interface of the two transition metal oxides, which in turn exhibits a plethora of remarkable properties and characteristics. Two different components were realized using lithographic processes. The first is a planar nanowire with lateral gates, which was processed on the sample surface and exhibits remarkable triality. Among other things, this device can act as a conventional field-effect transistor, whereby the charge transport is manipulated by the laterally applied voltage. In addition, storage properties could also be observed, so that the entire component can function as a so-called memristor. In this case, the charge transport depends on the accumulation of electrons on the floating gates. The memristance of the nanowire can be altered using light power in the nanowatt range and with the aid of short voltage pulses. In addition, electron accumulation can also be observed in the form of a memcapacitive characteristic. In addition to the nanowire, a cross structure containing a complementary ferromagnetic electrode was also realized. This novel device is used to investigate the conversion between spin and charge currents within the nanoscale structure. Here, the strong spin-orbit coupling in the quasi two-dimensional electron gas is utilized.
13

Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport / Electric and magnetic switching in nonlinear mesoscopic transport

Hartmann, David January 2008 (has links) (PDF)
Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Heteroübergängen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfläche ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer Ätztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorzüge derartiger Strukturen zeigen sich im ballistischen Elektronentransport über mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendrähte sowie y-förmig verzweigte Strukturen untersucht, deren Kanalleitwert über seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen überwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgeführt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verstärkungseigenschaften und kapazitiven Kopplungen zwischen Nanodrähten, der Realisierung von komplexen Logikfunktionen wie Zähler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzphänomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes. / This thesis reports on transport features of nanoelectronic devices based on modulation doped GaAs/AlGaAs heterostructures with a two dimensional electron gas (2DEG) a few 10 nm below the sample surface. Using electron beam lithography and wet chemical etching techniques low dimensional conductors were designed with a channel width of a few 10 nm. Such conductors enable ballistic transport up to 10 µm with high electron mobilities in the range of 10^6cm^2/Vs. One dimensional quantum wires as well as y-branched structures were used as nanoelectronic basic elements, which were controlled by lateral side-gates. Transport measurements were mainly performed in the strong nonlinear transport regime at temperatures between 4.2 K and room temperature. Experimental investigations were focused on gain, capacitive couplings between single nanowires, the realisation of complex logic functions like counter and fulladder devices, quantum-gate applications, noise activated switching, stochastic resonance phenomena and magnetic field asymmetries of the nonlinear mesoscopic transport.
14

Zeitaufgelöster Elektronentransport in Quantendotsystemen

Croy, Alexander 29 July 2010 (has links) (PDF)
Der Elektronentransport durch Nanostrukturen bietet eine Perspektive auf interessante Anwendungen und neue Einsichten in die Nichtgleichgewichtsdynamik von Elektronen in komplexen Umgebungen. Quantendotsysteme erlauben im Speziellen ein hohes Maß an Kontrolle ihrer Eigenschaften und ermöglichen damit detaillierte Untersuchungen. Das wachsende Interesse an zeitaufgelöstem Elektronentransport in diesen Systemen erklärt sich vor allem durch die rasanten Fortschritte bei der experimentellen Realisierung von pulsinduziertem Transport. Zur Beschreibung und Interpretation dieser Experimente bedarf es der Entwicklung neuer theoretischer Zugänge und Berechnungsverfahren. In dieser Arbeit werden zwei Propagationsmethoden zur numerischen Beschreibung von zeitaufgelöstem Elektronentransport entwickelt. Hierbei wird einerseits von einer Einteilchenbeschreibung mit Nichtgleichgewichts-Green-Funktionen (NEGF) und andererseits von einer Vielteilchenbeschreibung, basierend auf verallgemeinerten Quantenmastergleichungen für die reduzierte Vielteilchendichtematrix, ausgegangen. Das Konzept ist in beiden Fällen ähnlich: Im ersten Schritt der Herleitung werden Hilfsgrößen eingeführt und gleichberechtigt zum reduzierten Zustand des Systems behandelt. Eine Hilfsmodenentwicklung der Fermi-Funktion ermöglicht im zweiten Schritt die numerische Berechnung mit den hergeleiteten Bewegungsgleichungen. Mit Hilfe einer Partialbruchzerlegung wird eine Entwicklung der Fermi-Funktion abgeleitet, die sich durch eine wesentlich verbesserte Konvergenz gegenüber bisher bekannten Entwicklungen auszeichnet. Diese Zerlegung erweist sich für die Propagation als effizienter Zugang und kann darüber hinaus bei Berechnungen zur Elektronenstruktur angewendet werden. Obwohl der NEGF-Formalismus eines der Standardverfahren für die Behandlung von Transportdynamik in Nanostrukturen darstellt, ist die Auswahl an numerischen Implementierungen verschwindend gering. Die in dieser Arbeit entwickelte Propagationsmethode stellt eine neue Herangehensweise dar, die im Vergleich zu den bisherigen Zugängen ein günstigeres Skalierungsverhalten aufweist. Anhand von zwei Beispielen wird demonstriert, dass die Methode sowohl auf stochastisch getriebene Systeme als auch auf Situationen mit realistischen Spannungspulsen anwendbar ist. Eine Erweiterung auf wechselwirkende Elektronen wird ausgehend von der Methode der Bewegungsgleichungen abgeleitet. Im Rahmen der Vielteilchenbeschreibung durch die verallgemeinerten Quantenmastergleichungen wird insbesondere der Einfluss von Termen höherer Ordnung untersucht. Hierzu wird, neben der üblichen Quantenmastergleichung zweiter Ordnung, explizit die vierte Ordnung berechnet. Ein Vergleich mit dem NEGF-Formalismus zeigt die Notwendigkeit höhere Ordnungen, zumindest partiell, zu berücksichtigen, da erst hierdurch die Verbreiterung der Energieniveaus aufgrund der Tunnelkopplung an die Reservoirs konsistent beschrieben wird. Dieser Befund wird am Beispiel des stationären und transienten Elektronentransports durch einen Doppelquantendot untermauert. Auf der Basis von numerischen Berechnungen und einem analytisch lösbaren Modell werden die Resultate eines aktuellen Pump-Probe-Experiments zur kohärenten Kontrolle von Ladungs-Qubits in Doppelquantendots interpretiert. Die Anwendungsmöglichkeiten der entwickelten Propagationsmethoden gehen weit über die in der Arbeit betrachteten Beispiele hinaus. Sie erlauben die Beschreibung von neuartigen Transportkonzepten und ermöglichen einen erweiterten Einblick in die Nichtgleichgewichtsdynamik von Elektronen in Nanostrukturen.
15

Zeitaufgelöster Elektronentransport in Quantendotsystemen

Croy, Alexander 30 June 2010 (has links)
Der Elektronentransport durch Nanostrukturen bietet eine Perspektive auf interessante Anwendungen und neue Einsichten in die Nichtgleichgewichtsdynamik von Elektronen in komplexen Umgebungen. Quantendotsysteme erlauben im Speziellen ein hohes Maß an Kontrolle ihrer Eigenschaften und ermöglichen damit detaillierte Untersuchungen. Das wachsende Interesse an zeitaufgelöstem Elektronentransport in diesen Systemen erklärt sich vor allem durch die rasanten Fortschritte bei der experimentellen Realisierung von pulsinduziertem Transport. Zur Beschreibung und Interpretation dieser Experimente bedarf es der Entwicklung neuer theoretischer Zugänge und Berechnungsverfahren. In dieser Arbeit werden zwei Propagationsmethoden zur numerischen Beschreibung von zeitaufgelöstem Elektronentransport entwickelt. Hierbei wird einerseits von einer Einteilchenbeschreibung mit Nichtgleichgewichts-Green-Funktionen (NEGF) und andererseits von einer Vielteilchenbeschreibung, basierend auf verallgemeinerten Quantenmastergleichungen für die reduzierte Vielteilchendichtematrix, ausgegangen. Das Konzept ist in beiden Fällen ähnlich: Im ersten Schritt der Herleitung werden Hilfsgrößen eingeführt und gleichberechtigt zum reduzierten Zustand des Systems behandelt. Eine Hilfsmodenentwicklung der Fermi-Funktion ermöglicht im zweiten Schritt die numerische Berechnung mit den hergeleiteten Bewegungsgleichungen. Mit Hilfe einer Partialbruchzerlegung wird eine Entwicklung der Fermi-Funktion abgeleitet, die sich durch eine wesentlich verbesserte Konvergenz gegenüber bisher bekannten Entwicklungen auszeichnet. Diese Zerlegung erweist sich für die Propagation als effizienter Zugang und kann darüber hinaus bei Berechnungen zur Elektronenstruktur angewendet werden. Obwohl der NEGF-Formalismus eines der Standardverfahren für die Behandlung von Transportdynamik in Nanostrukturen darstellt, ist die Auswahl an numerischen Implementierungen verschwindend gering. Die in dieser Arbeit entwickelte Propagationsmethode stellt eine neue Herangehensweise dar, die im Vergleich zu den bisherigen Zugängen ein günstigeres Skalierungsverhalten aufweist. Anhand von zwei Beispielen wird demonstriert, dass die Methode sowohl auf stochastisch getriebene Systeme als auch auf Situationen mit realistischen Spannungspulsen anwendbar ist. Eine Erweiterung auf wechselwirkende Elektronen wird ausgehend von der Methode der Bewegungsgleichungen abgeleitet. Im Rahmen der Vielteilchenbeschreibung durch die verallgemeinerten Quantenmastergleichungen wird insbesondere der Einfluss von Termen höherer Ordnung untersucht. Hierzu wird, neben der üblichen Quantenmastergleichung zweiter Ordnung, explizit die vierte Ordnung berechnet. Ein Vergleich mit dem NEGF-Formalismus zeigt die Notwendigkeit höhere Ordnungen, zumindest partiell, zu berücksichtigen, da erst hierdurch die Verbreiterung der Energieniveaus aufgrund der Tunnelkopplung an die Reservoirs konsistent beschrieben wird. Dieser Befund wird am Beispiel des stationären und transienten Elektronentransports durch einen Doppelquantendot untermauert. Auf der Basis von numerischen Berechnungen und einem analytisch lösbaren Modell werden die Resultate eines aktuellen Pump-Probe-Experiments zur kohärenten Kontrolle von Ladungs-Qubits in Doppelquantendots interpretiert. Die Anwendungsmöglichkeiten der entwickelten Propagationsmethoden gehen weit über die in der Arbeit betrachteten Beispiele hinaus. Sie erlauben die Beschreibung von neuartigen Transportkonzepten und ermöglichen einen erweiterten Einblick in die Nichtgleichgewichtsdynamik von Elektronen in Nanostrukturen.
16

Herstellung, Charakterisierung und Modellierung dünner aluminium(III)-oxidbasierter Passivierungsschichten für Anwendungen in der Photovoltaik

Benner, Frank 25 October 2016 (has links) (PDF)
Hocheffiziente Solarzellen beruhen auf der exzellenten Oberflächenpassivierung, die minimale Rekombinationsverluste gewährleistet. Innerhalb des letzten Jahrzehnts wurde Al2O3 in der Photovoltaikindustrie zum bevorzugten Material für p-leitendes Si. Unterschiedliche Abscheidetechnologien erreichten Passivierungen mit effektiven Minoritätsladungsträgerlebensdauern nahe der AUGER–Grenze. Die ausgezeichnete Passivierungswirkung von Al2O3wird zwei Effekten zugeschrieben: Einerseits werden Si−SiO2-grenzflächennahe Rekombinationszentren passiviert, wenn Wasserstoff, beispielsweise aus der Al2O3-Schicht, offene Bindungen absättigt. Bedingt durch die hohe Konzentration intrinsischer negativer Ladungen an der SiO2-Grenzfläche weist Al2O3 andererseits einen charakteristischen Feldeffekt auf. Das resultierende elektrische Feld hält Elektronen von Oberflächenrekombinationszentren fern. Negative Ladungen im Al2O3 werden generell als fest bezeichnet. Allerdings hat Al2O3 zusätzlich eine hohe Dichte an Haftstellen, die von Elektronen besetzt werden können. Die Dichte negativer Ladungen im Al2O3-Passivierungsschichten hängt vom elektrischen Feld und der Bestrahlungsintensität ab. Ziel dieser Arbeit ist die systematische Untersuchung dielektrischer Passivierungsschichtstapel für die Anwendung auf Si-Solarzellen. Der Qualität und Dicke der SiO2-Grenzschicht kommt in diesem Kontext eine besondere Rolle zu, da sie Ladungsträgertunneln ermöglicht. Der Elektronentransport ist eine Funktion der Oxiddicke und das Optimum zwischen Ladungseinfang und -haltung liegt bei etwa 2 nm SiO2. Vier relevante Al2O3-Abscheidetechnologien werden untersucht: Atomlagenabscheidung, Kathodenzerstäubung, Sprühpyrolyse und Rotationsbeschichtung, wobei die erstgenannte dominiert. Es werden Nanolaminate verglichen, die aus Al2O3 und TiO2, HfO2 oder SiO2 mit subnanometerdicken Zwischenschichten bestehen. Während letztgenannte die Oberflächenrekombination nicht vermindern, beeinflussen TiO2- und HfO2-Nanolaminate die Passivierungswirkung. Ein dynamisches Wachstumsmodell, das initiale und stationäre Wachstumsraten der beteiligten Metalloxide berücksichtigt, beschreibt die physikalischen Parameter. Schichtsysteme mit 0,2 % TiO2 oder 7 % HfO2 sind konventionellen Al2O3-Schichten überlegen. In beiden Fällen überwiegt die veränderte Feldeffekt- der chemischen Passivierung, die mit einer Grenzflächenzustandsdichte von maximal 5·1010 eV−1·cm−2 unverändert auf hohem Niveau verbleibt. Die Ladungsdichte beider Schichtsysteme wird entweder über die Änderung ihrer Polarität der festen Ladungen oder der Fähigkeit zum Ladungseinfang bestimmt. Das Tunneln von Elektronen wird durch ein mathematisches Modell erklärt, dass eine bewegliche Ladungsfront innerhalb der Oxidschicht beschreibt. / High-efficiency solar cells rely on excellent passivation of the surface to ensure minimal recombination losses. In the last decade, Al2O3 became the material of choice for p-type Si in the photovoltaic industry. A remarkable surface passivation with effective minority carrier lifetimes close to the AUGER–limit was demonstrated with different deposition techniques. The excellent passivation effect of Al2O3 is attributed to two effects: Firstly, recombination centers at the Si−SiO2 interface get chemically passivated when hydrogen, for instance from the Al2O3 layer, saturates dangling bonds. Secondly, Al2O3 presents an outstanding level of field effect passivation due to its high concentration of intrinsic negative charges close to the SiO2 interface. The generated electrical field effectively repels electrons from surface recombination centers. Negative charges in Al2O3 are generally termed fixed charges. However, Al2O3 incorporates a high density of trap sites, too, that can be occupied by electrons. It was shown that the negative charge density in Al2O3 passivation layers depends on the electrical field and on the illumination intensity. The goal of this work is to systematically investigate dielectric passivation layer stacks for application on Si solar cells. The SiO2 interface quality and thickness plays a major role in this context, enabling or inhibiting carrier tunneling. Since the electron transport is a function of the oxide thickness, the balance between charge trapping and retention is achieved with approximately 2 nm of SiO2. Additionally, four relevant Al2O3 deposition techniques are compared: atomic layer deposition, sputtering, spray pyrolysis and spin–on coating, whereas the former is predominant. Using its flexibility, laminates comprising of Al2O3 and TiO2, HfO2 or SiO2 with subnanometer layers are compared. Although the latter do not show decreased surface recombination, nanolaminates with TiO2 and HfO2 contribute to the passivation. Their physical properties are described with a dynamic growth model that considers initial and steady–state growth rates for the involved metal oxides. Thin films with 0.2 % TiO2 or 7 % HfO2 are superior to conventional Al2O3 layers. In both cases, the modification of the field effect prevails the chemical effect, that is, however, virtually unchanged on a very high level with a density of interface traps of 5·1010 eV−1·cm−2 and below. The density of charges in both systems is changed via modifying either the polarity of intrinsic fixed charges or the ability of trapping charges within the layers. The observations of electron tunneling are explained by means of a mathematical model, describing a charging front, which moves through the dielectric layer.
17

Profillinie 3: Mikroelektronik und Mikrosystemtechnik

Geßner, Thomas, Schulz, Stefan E., Hiller, Karla, Otto, Thomas, Radehaus, Christian, Dötzel, Wolfram, Müller, Dietmar, Löbner, Bernd, Wanielik, Gerd, Neubert, Ulrich, Lutz, Josef, Lang, Heinrich 11 November 2005 (has links) (PDF)
Der Siegeszug der Mikroelektronik ist faszinierend. In den vergangenen Jahrzehnten bestimmte die Mikroelektronik das Geschehen in der Informationstechnik: Immer leistungsstärkere Computer, vernetzte Systeme und das Internet sind ohne Mikroelektronik nicht denkbar. Weltweit haben Mikroelektronik-Firmen ihre strategischen Ziele im Rahmen einer in regelmäßigen Abständen aktualisierten “Roadmap” niedergelegt. Alle gehen davon aus, dass die bisher zu beobachtende Steigerung der Leistungsfähigkeit mikroelektronischer Produkte auch in den nächsten Jahrzehnten fortgesetzt werden wird. Das bedeutet konkret, dass an vielen Stellen – auch in der heutigen Massenfertigung der Mikroelektronik – die charakteristischen Abmessungen der Einzelelemente im Nanometerbereich liegen, also eigentlich schon als Nanoelektronik bezeichnet werden können. Hinzu kommt ein weiteres, ebenso spannendes Feld: die Mikrosystemtechnik.
18

Silicon Nanowires for Biosensor Applications

Zörgiebel, Felix 23 November 2017 (has links) (PDF)
Nanostrukturen haben in den letzten Jahrzehnten durch konsequente Förderung wie der im Jahr 2000 gestarteten National Nanotechnology Initiative der USA oder des deutschen Pendants Aktionsplan Nanotechnologie erhebliches Aufsehen, nicht nur in der Wissenschaft, sondern auch in der technischen und wirtschaftlichen Umsetzung erfahren. In Kombination mit biologischen Systemen, deren Funktionalität sich auf der Größenordnung von Nanometern abspielt, finden nanotechnologische Entwicklungen auf dem Gebiet der Medizin ein großes technisches Anwendungsgebiet. Diese Arbeit widmet sich der Untersuchung und technischen Entwicklung von Siliziumnanodrähten als Sensoren für zukünftige medizinische Anwendungen. Im Gegensatz zu Sensoren die auf dotierten Nanodrähten basieren, wurden hier undotierte Nanodrähte untersucht, die mit geringerem Produktionsaufwand auskommen und mittels Schottky-Barrieren als Feldeffekttransistoren nutzbar sind. Deren Eigenschaften wurden im Hinblick auf pH und Biosensorik theoretisch und experimentell untersucht, sowie technisch in ein lab-on-chip sowie ein kompaktes Multiplexer-Messgerät integriert. In einem zweiten, separaten Teil wurden die Eigenschaften undotierter Nanodrähte für die optische Spektroskopie theoretisch modelliert. Die Inhalte beider Teile werden im folgenden kurz zusammengefasst. Um die elektrischen Sensoreigenschaften der Siliziumnanodrähte zu untersuchen, wurden zunächst Computermodelle der Drähte erstellt, mit deren Hilfe der Elektronentransport in flüssiger Umgebung quantenmechanisch modelliert wurde. Die dafür erstellten Modellvorstellungen waren für die sich daran anschließenden experimentellen Untersuchungen des Rauschverhaltens, der pH-Sensitivität sowie der Biosensoreigenschaften sehr vorteilhaft. Mit Hilfe einer neu entwickelten Messmethode konnte der optimale Arbeitspunkt der Sensoren ermittelt werden, sowie die hohe Sensorqualität mittels einer empirischen mathematischen Beschreibung des zu erwartenden Sensorsignals eingeordnet werden. Weiterhin wurden für die Medizintechnik relevante Messungen von Thrombin durchgeführt. Damit ist für den hier beschriebenen Sensortyp ein proof-of-concept für neuartige medizinische Messelemente gelungen. Um die kleinen Abmessungen der Sensoren darüber hinaus technisch nutzbar zu machen, wurden sie in ein lab-on-chip System integriert, in welchem sie als Sensoren für den pH-Wert sowie die ionische Konzentration in Nanoliter-Tropfen verwendet wurden. Desweiteren wurde in Kooperation mit dem Institut für Aufbau- und Verbindungstechnik ein portables Messgerät entwickelt, welches die parallele Messung mehrerer Nanodrahtsensoren ermöglicht. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung zur Eignung von Silizium-Nanodrähten als Messsonden (Probes) für die optische Spektroskopie vorgestellt. Dazu wurde eine Methode entwickelt mittels derer es möglich ist, Raman und Infrarotspektren von Nanostrukturen mittels Molekulardynamik zu berechnen. Die Methode wurde auf undotierte Silizium-Nanodrähte augewendet und zeigt, dass die Oberflächenbeschaffenheit der Drähte die optischen Spektren entscheidend beeinflusst. Damit konnte die Relevanz von Halbeiter-Nanostrukturen auch für Anwendungen in der optischen Spektroskopie gezeigt werden. / Nanostructures have attracted great attention not only in scientific research, but also in engineering applications during the last decades. Especially in combination with biological systems, whose complex function is controlled from nanoscale building blocks, nanotechnological developments find a huge field of applications in the medical sector. This work is dedicated to the functional understanding and technical implementation of silicon nanowires for future medical sensor applications. In contrast to doped silicon nanowire based sensors, this work is focussed on pure, undoped silicon nanowires, which have lower demands on production techniques and use Schottky-barriers as electric field detectors. The pH and biosensing capabilities of such undoped silicon nanowire field effect transistors were investigated theoretically and experimentally and further integrated in a lab-on-a-chip device as well as a small-scale multiplexer measurement device. In a second separate part, the optical sensing properties of undoped silicon nanowires were theoretically modeled. The main contents of both parts are shortly described in the following paragraphs. A multiscale model of silicon nanowire FETs to describe the charge transport in liquid surrounding in a quantum mechanical framework was developed to investigate the sensing properties of the nanowire sensors in general. The model set the basis for the understanding of the subsequent experimental investigations of noise characterization, pH sensitivity and biosensing properties. With the help of a novel gate sweeping measurement method the optimal working point of the sensors was determined and the high sensor quality could be quantified in terms of an empirical mathematical model. The sensor was then used for measurements of medically relevant concentrations of the Thrombin protein, providing a proof-of-concept for medical applications for our newly developed sensor. In order to exploit the small size of our sensors for technical applications we integrated the devices in lab-on-a-chip system with a microfluidic droplet generation module. There they were used to measure the pH and ionic concentration of droplets. Finally a portable multiplex measurement device for silicon nanowire sensors as well as other ion sensitive FETs was developed in cooperation with the IAVT at TU Dresden (Institut für Aufbau- und Verbindungstechnik). The second part of this thesis investigates the usability of silicon nanowires for optical sensor applications from a theoretical point of view. Therefore a method for the extraction of Raman and Infrared spectra from molecular dynamics simulations was developed. The method was applied to undoped silicon nanowires and shows that the surface properties of the nanowires has a significant effect on optical spectra. These results demonstrate the relevance of semiconductor nanostructures for applications in optical spectroscopy.
19

Micro and Nano Raman Investigation of Two-Dimensional Semiconductors towards Device Application

Rahaman, Mahfujur 02 July 2020 (has links)
Recent advances in nanoscale characterization and device fabrications have opened up opportunities for layered semiconductors in nanoelectronics and optoelectronics. Due to strong confinement in monolayer thickness, physical properties of this materials are greatly influenced by parameters such as strain, defects, and doping at the nanoscale. Therefore, understanding the effect of this parameters on layered semiconductors is the prerequisite for any device application. In this doctoral thesis, impact of such parameters on the optical properties of layered semiconductors are studied in nanoscale. MoS2, the most famous transition metal dechalcogenide (TMDC) (n-type semiconductor), and p-type GaSe, a member of metal monochalcogenide (MMC) are investigated in this work. Finally, in outlook, a device made of p-type few layer GaSe and n-type 1L-MoS2 is discussed.
20

Herstellung, Charakterisierung und Modellierung dünner aluminium(III)-oxidbasierter Passivierungsschichten für Anwendungen in der Photovoltaik

Benner, Frank 24 March 2015 (has links)
Hocheffiziente Solarzellen beruhen auf der exzellenten Oberflächenpassivierung, die minimale Rekombinationsverluste gewährleistet. Innerhalb des letzten Jahrzehnts wurde Al2O3 in der Photovoltaikindustrie zum bevorzugten Material für p-leitendes Si. Unterschiedliche Abscheidetechnologien erreichten Passivierungen mit effektiven Minoritätsladungsträgerlebensdauern nahe der AUGER–Grenze. Die ausgezeichnete Passivierungswirkung von Al2O3wird zwei Effekten zugeschrieben: Einerseits werden Si−SiO2-grenzflächennahe Rekombinationszentren passiviert, wenn Wasserstoff, beispielsweise aus der Al2O3-Schicht, offene Bindungen absättigt. Bedingt durch die hohe Konzentration intrinsischer negativer Ladungen an der SiO2-Grenzfläche weist Al2O3 andererseits einen charakteristischen Feldeffekt auf. Das resultierende elektrische Feld hält Elektronen von Oberflächenrekombinationszentren fern. Negative Ladungen im Al2O3 werden generell als fest bezeichnet. Allerdings hat Al2O3 zusätzlich eine hohe Dichte an Haftstellen, die von Elektronen besetzt werden können. Die Dichte negativer Ladungen im Al2O3-Passivierungsschichten hängt vom elektrischen Feld und der Bestrahlungsintensität ab. Ziel dieser Arbeit ist die systematische Untersuchung dielektrischer Passivierungsschichtstapel für die Anwendung auf Si-Solarzellen. Der Qualität und Dicke der SiO2-Grenzschicht kommt in diesem Kontext eine besondere Rolle zu, da sie Ladungsträgertunneln ermöglicht. Der Elektronentransport ist eine Funktion der Oxiddicke und das Optimum zwischen Ladungseinfang und -haltung liegt bei etwa 2 nm SiO2. Vier relevante Al2O3-Abscheidetechnologien werden untersucht: Atomlagenabscheidung, Kathodenzerstäubung, Sprühpyrolyse und Rotationsbeschichtung, wobei die erstgenannte dominiert. Es werden Nanolaminate verglichen, die aus Al2O3 und TiO2, HfO2 oder SiO2 mit subnanometerdicken Zwischenschichten bestehen. Während letztgenannte die Oberflächenrekombination nicht vermindern, beeinflussen TiO2- und HfO2-Nanolaminate die Passivierungswirkung. Ein dynamisches Wachstumsmodell, das initiale und stationäre Wachstumsraten der beteiligten Metalloxide berücksichtigt, beschreibt die physikalischen Parameter. Schichtsysteme mit 0,2 % TiO2 oder 7 % HfO2 sind konventionellen Al2O3-Schichten überlegen. In beiden Fällen überwiegt die veränderte Feldeffekt- der chemischen Passivierung, die mit einer Grenzflächenzustandsdichte von maximal 5·1010 eV−1·cm−2 unverändert auf hohem Niveau verbleibt. Die Ladungsdichte beider Schichtsysteme wird entweder über die Änderung ihrer Polarität der festen Ladungen oder der Fähigkeit zum Ladungseinfang bestimmt. Das Tunneln von Elektronen wird durch ein mathematisches Modell erklärt, dass eine bewegliche Ladungsfront innerhalb der Oxidschicht beschreibt. / High-efficiency solar cells rely on excellent passivation of the surface to ensure minimal recombination losses. In the last decade, Al2O3 became the material of choice for p-type Si in the photovoltaic industry. A remarkable surface passivation with effective minority carrier lifetimes close to the AUGER–limit was demonstrated with different deposition techniques. The excellent passivation effect of Al2O3 is attributed to two effects: Firstly, recombination centers at the Si−SiO2 interface get chemically passivated when hydrogen, for instance from the Al2O3 layer, saturates dangling bonds. Secondly, Al2O3 presents an outstanding level of field effect passivation due to its high concentration of intrinsic negative charges close to the SiO2 interface. The generated electrical field effectively repels electrons from surface recombination centers. Negative charges in Al2O3 are generally termed fixed charges. However, Al2O3 incorporates a high density of trap sites, too, that can be occupied by electrons. It was shown that the negative charge density in Al2O3 passivation layers depends on the electrical field and on the illumination intensity. The goal of this work is to systematically investigate dielectric passivation layer stacks for application on Si solar cells. The SiO2 interface quality and thickness plays a major role in this context, enabling or inhibiting carrier tunneling. Since the electron transport is a function of the oxide thickness, the balance between charge trapping and retention is achieved with approximately 2 nm of SiO2. Additionally, four relevant Al2O3 deposition techniques are compared: atomic layer deposition, sputtering, spray pyrolysis and spin–on coating, whereas the former is predominant. Using its flexibility, laminates comprising of Al2O3 and TiO2, HfO2 or SiO2 with subnanometer layers are compared. Although the latter do not show decreased surface recombination, nanolaminates with TiO2 and HfO2 contribute to the passivation. Their physical properties are described with a dynamic growth model that considers initial and steady–state growth rates for the involved metal oxides. Thin films with 0.2 % TiO2 or 7 % HfO2 are superior to conventional Al2O3 layers. In both cases, the modification of the field effect prevails the chemical effect, that is, however, virtually unchanged on a very high level with a density of interface traps of 5·1010 eV−1·cm−2 and below. The density of charges in both systems is changed via modifying either the polarity of intrinsic fixed charges or the ability of trapping charges within the layers. The observations of electron tunneling are explained by means of a mathematical model, describing a charging front, which moves through the dielectric layer.

Page generated in 0.0494 seconds