• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 36
  • 15
  • Tagged with
  • 184
  • 88
  • 53
  • 44
  • 34
  • 34
  • 29
  • 28
  • 25
  • 20
  • 20
  • 19
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Croissance directe de graphène par dépôt chimique en phase vapeur sur carbure de silicium et nitrures d'éléments III / Direct growth of graphene by chemical vapor deposition on silicon carbide and III-nitrides

Dagher, Roy 22 September 2017 (has links)
Le graphène est un matériau bidimensionnel appartenant à la famille des allotropes du carbone. Il consiste en une couche atomique restant stable grâce à des liaisons chimiques fortes dans le plan entre les atomes de carbone. C'est un semi-conducteur sans bande interdite (gap) avec une dispersion d'énergie linéaire près des points de Dirac, ce qui facilite le transport balistique des porteurs de charge. De plus, tout comme n'importe quel semi-conducteur, il est possible de contrôler ses propriétés électriques sous l'influence d'un champ électrique externe, ce qui permet de modifier la densité de porteurs et leur type (électrons ou trous). Le graphène peut être élaboré par différentes techniques, mais nous avons considéré la croissance directe sur le carbure de silicium (SiC) par dépôt chimique en phase vapeur (CVD) avec une source de carbone externe, technique développée dans notre laboratoire depuis 2010. Cette approche est attrayante car elle permet de contrôler les propriétés du graphène en modifiant les paramètres de croissance. Notre objectif dans ce manuscrit est de donner une idée plus approfondie de cette technique de croissance et d'étudier son potentiel pour la croissance du graphène. À cette fin, nous avons discuté en détail de différents aspects de la croissance, en commençant par des simulations thermodynamiques pour comprendre la chimie gouvernant cette méthode. Nous avons également étudié l'influence des différents paramètres de croissance sur la formation du graphène et sur ses propriétés, tels que le temps de croissance, le débit de propane et d'autres paramètres. Cependant, nous nous sommes principalement concentrés sur deux paramètres majeurs : la quantité d'hydrogène dans le mélange gazeux, surtout que la croissance se fait sous hydrogène et argon, et la désorientation du substrat. Nos recherches ont révélé que la structure du graphène peut être modifiée en fonction de la proportion de l’hydrogène dans le mélange des gaz utilisé pour la croissance. Pour une faible proportion d’hydrogène, la croissance du graphène est associée à une reconstruction d'interface de (6√3×6√3), alors que pour une proportion élevée d’hydrogène, la couche de graphène est désordonnée dans le plan. Ces observations sont liées à l'intercalation de l'hydrogène à l'interface entre la couche de graphène et le substrat SiC, ce qui peut favoriser ou interdire la formation de la reconstruction (6√3×6√3) comme nous l'avons discuté dans le manuscrit. On s'attend à ce que la présence des deux structures de graphène ait un effet sur la contrainte dans la couche de graphène. Pour cette raison, nous avons discuté en détail les origines de la contrainte dans le graphène et tenté de corréler l'intercalation de l'hydrogène à l’interface avec la contrainte. Aussi, nous avons montré que l'angle de désorientation du substrat a une influence directe sur la croissance du graphène, affectant principalement la morphologie mais également la contrainte dans la couche du graphène. Enfin, nous avons pu produire du graphène de haute qualité, tout en démontrant la possibilité de contrôler ses propriétés électriques avec les conditions de croissance. Dans la deuxième partie de ce travail, nous avons étendu notre étude à la croissance du graphène sur les semi-conducteurs de type nitrures d’éléments III et en particulier le nitrure d’aluminium (AlN) massif ainsi que des couches hétéroépitaxiées d’AlN/SiC et AlN/Saphir, ce qui ouvre de nouvelles opportunités pour des applications innovantes. La croissance du graphène a été précédée d'une étude de recuit sur les différents échantillons d’AlN, dans le but d'améliorer leur qualité de surface, mais aussi pour tester leur stabilité à la température nécessaire pour la croissance du graphène. Bien que le film d’AlN ait été incapable de résister à la température élevée dans certains cas, une amélioration de la qualité cristalline a été détectée, attribuée à l'effet de recuit. / Graphene is a two-dimensional material belonging to the family of carbon allotropes, consisting of a stable single atomic layer owing to strong in-plane chemical bonds between carbon atoms. It can be identified as a gapless semiconductor with a linear energy dispersion near the Dirac points, which facilitates ballistic carrier transport. In addition, similarly to any semiconductor, it is possible to control its electrical properties under the influence of an external electric field, resulting in the tuning of its carrier density and doping type, i.e. electrons or holes. Graphene can be elaborated by different techniques and approaches. In this present work, we have considered the direct growth on silicon carbide (SiC) by chemical vapor deposition (CVD) with an external carbon source. This approach which has started to be developed in our laboratory since 2010 is very promising since it allows to control the graphene properties by manipulating the growth parameters. Our objective in this manuscript is to give further insights into this growth technique and to study its potential for the growth of graphene. For this purpose, we have discussed in details different aspects of the growth, starting with thermodynamic simulations to understand the chemistry behind our distinct growth approach. We have also investigated the influence of the different growth parameters, such as the growth time, the propane flow rate and other parameters on the growth of graphene and its properties. However, we mainly focused on two major factors: the hydrogen amount in the gas mixture, especially since the growth is carried out under hydrogen and argon, and the substrate’s miscut angle. Our investigations revealed that the graphene structure can be altered depending on the hydrogen percentage in the gas mixture considered for the growth. For low hydrogen percentage, the graphene growth is associated with a (6√3×6√3) interface reconstruction, whereas for high hydrogen percentage, the graphene layer is dominated by in-plane rotational disorder. These observations are related to the hydrogen intercalation at the interface between the graphene layer and the SiC substrate, which can allow or prohibit the formation of the (6√3×6√3) interface reconstruction as we have discussed thoroughly in this manuscript. The presence of two graphene structures was expected to impact the strain within the graphene layer. For this reason, we have discussed in details the origins of the strain in graphene and attempted to correlate the hydrogen intercalation at the interface to the strain amount. Furthermore, the substrate’s miscut angle was also found to have a direct influence on the growth of graphene, mainly affecting the morphology but also the strain within the graphene layer. In light of the different studies and results, we were able to combine the ideal growth parameters to produce state-of-the art graphene, while demonstrating the possibility of tuning its electrical properties with the growth conditions. In a second part of this work, we extended our study to the growth of graphene on III-nitrides semiconductors. We have considered substrates and templates such as bulk aluminum nitride (AlN), AlN/SiC and AlN/sapphire, which opens new opportunities for innovative applications. The growth of graphene was preceded by an annealing study on the different AlN substrates, in an attempt to enhance their surface quality, but also to test their stability at the temperatures necessary for the growth of graphene. Although the AlN film was found to be unable to withstand the high temperature in some cases, an enhancement of the crystalline quality was detected, attributed to the annealing effect.
142

Composites SiC/SiC à interphase de type BN de compositions variables et réactivité optimisée / SiC/SiC composites with variable composition and optimized reactivity BN-type interphase

Carminati, Paul 30 November 2016 (has links)
Les composites SiC/SiC à renfort fibreux à base de SiC, et à matrice SiC sont développés pour applications aéronautiques. En vue d’améliorer leur durée de vie en atmosphère oxydante à haute température, l’utilisation d’interphase BN est préconisée,puisque l’oxyde de bore liquide permet de protéger le matériau. Cependant, sous atmosphère humide, la volatilisation de B2O3 sous forme d’hydroxyde HxByOz est non négligeable. L’objectif de ce travail est d’optimiser l’organisation structurale de BN élaboré par CVD/CVI, pour améliorer sa résistance à l’oxydation, et d’évaluer l’intérêt de l’ajout d’élément(s) au nitrure de bore permettant la stabilisation thermodynamique de B2O3 à haute température, en présence d’humidité. Ce travail a permis d’établir des liens entre composition chimique de la phase gazeuse, cinétique et mécanisme de dépôt, et degré d’organisation du nitrure de bore. Malheureusement, si la résistance à l’oxydation de BN augmente perpendiculairement à ses plans (002) avec son organisation structurale, elle est à peine améliorée le long des plans (002). Néanmoins, l’intérêt de l’ajout d’aluminium à l’interphase BN pour améliorer la stabilité chimique de B2O3 en présence d’humidité a été démontré à une température suffisamment élevée pour permettre la formation de cristauxAl4B2O9. Ainsi, il semble que ces cristaux permettent une cicatrisation efficace des fissures matricielles dans des composites SiC/SiC. Des essais supplémentaires d’oxydation dans des conditions plus complexes, comme sous cyclage thermique, sont nécessaires pour conclure catégoriquement en faveur de l’amélioration de la durée de vie de ces matériaux. / SiC/SiC composites with SiC-based fibres and SiC matrix are developed for aeronautic applications. In order to improve their life time in an oxidizing atmosphere at high temperature, the use of BN interphase is recommended, as far as liquid boron oxide can protect the material. However, this glassy material is known to be very sensitive to moisture because boron oxide volatilizes quickly under high temperature. The aims of this work are (i) to maximise the structural organization of BN deposited by CVD/CVI to improve its oxidation resistance and (ii) to assess the interest of elemental addition to boron nitride allowing thermodynamic retention for B2O3 under wet air. Relationships between gas phase composition, deposition rates, and microstructure have been established in this work. Unfortunately, if the oxidation resistance of BN perpendicular to its (002) crystal planes increases with its structural organization, it appears to be hardly improved along the (002) planes. Nevertheless, aluminium addition to BN has led to Al4B2O9 crystals generation, asAl2O3 reacts together with B2O3 under high temperature. These materials therefore appear tobe able to seal SiC matrix cracks. As a result, the global oxidation resistance under wet air of SiC/SiC composites with B(Al)N interphases can been significantly improved. Additional oxidation tests, especially under thermal cycling, are needed to definitively conclude about this point.
143

Caractérisation de nanosondes fluorescentes développées à partir de nanotubes de nitrure de bore

David, Carolane 12 1900 (has links)
La structure spécifique des nanotubes rend ce matériau très intéressant dans l’élaboration de nanohybrides. La cavité interne des nanotubes permet l’encapsulation de molécule laissant la paroi externe libre pour une fonctionnalisation. Les nanotubes de carbone sont déjà bien connus pour l’élaboration de nanosondes Raman. Les molécules de colorants encapsulé dans leurs cavité interne sont protégées de l’irradiation du laser. Les propriétés électroniques de cette structure en carbone permettent le transfert d’énergie entre le colorant et le nanotube engendrant ainsi une extinction de la fluorescence du colorant. La surface du nanotube de carbone est libre pour réaliser des fonctionnalisations permettant de modifier certaines propriétés de la nanosonde. L’élaboration de nanohybride à partir de cette structure permet les analyses de « multiplexage » en changeant simplement le colorant encapsulé dans la cavité interne du nanotube et la fonctionnalisation en surface. La structure des nanotubes de nitrure de bore (BNNTs) est très similaire à celle de leurs homologues en carbone. La cavité interne permet également l’encapsulation de colorant cependant les propriétés électroniques résultantes de cette structure ne permet pas le transfert d’énergie. Les molécules de colorant encapsulé dans les BNNTs conservent donc leurs fluorescences. Des études précédentes démontrent qu’après encapsulation, le spectre de fluorescence du colorant α-sexithiophène (6T) est élargi et décalé vers les longueurs d’ondes plus grandes, c.-à-d. vers le rouge. L’hypothèse la plus probable, quant à la raison de ce phénomène, est que la grande distribution de taille de diamètre de l’échantillon de BNNTs permet différentes agglomérations de 6T. Les nanosondes résultantes sont composées d’un mélange d’agglomération de colorant absorbant à différentes longueurs d’onde. Afin de confirmer cette hypothèse, nous allons procéder au triage en taille de diamètre des BNNTs. Pour cela, plusieurs étapes sont nécessaires, comme la fonctionnalisation de la surface des BNNTs pour les rendre dispersible dans l’eau, l’encapsulation du colorant de 6T selon un protocole déjà connus dans la littérature et enfin le test d’une méthode de triage de nanotubes en fonction de leurs diamètres et donc de leurs densités. La méthode de triage sélectionnée parmi les méthodes découvertes dans la littérature, a démontré son efficacité sur les nanotubes de carbone mais n’a cependant jamais été testée sur les BNNTs. Ce mémoire présente les premiers résultats d’une séparation de nanosondes fluorescentes en fonction de leurs tailles de diamètre. / The specific structure of nanotubes is interesting for the synthesis of nanohybrides. Molecules are encapsulated in the internal cavity of the tube while the external wall remain free for further manipulation. Carbon nanotubes are already known for synthesizing Raman nanoprobes. Dyes encapsulated inside the nanotube are protected from irradiation. The electronic properties of the carbon structure lead to energy transfer between the dyes and the nanotubes, this result by the the extinction of the dye’s fluorescence. The carbon nanotube’s surface is free for functionalisation that can add some properties to the nanoprobe. The preparation process of nanohybrides with that structures permit some analyse in « multiplexing » by easily change the dye encapsulated or the functionalisation on the surface of the nanotube. The structure of boron nitride nanotubes (BNNTs) is similar to the carbon one. The internal cavity can encapsulate dyes but the electronic properties don’t permit the energy exchange. Encapsulated dyes inside BNNTs emit some fluorescence. Previous studies show some changes in the fluorescence spectrum of α-sexithiophene (6T) after encapsulation inside BNNTs. The spectrum shows larger bands and a red shift. This caracteristic can come from a large distribution of diameter sizes in the BNNT sample. Différent diameter sizes of nanotubes results in different agglomeration of dyes inside their internal cavities, and these differents nanoprobes are absorbing at different wavelengths. To confirm this hypothesis, we will separate BNNTs into their diameter sizes. Before that some manipulation is necesary, like the functionnalisation of the nanotubes’ surfaces for a better dispersion in water, the encapsulation of 6T realized with the process already known and the experience of a new method to separate nanotubes by size. This separating method is chose from all the method of separating carbon nanotubes but has never been tested on BNNTs. This document shows the first results of separating fluorescents nanoprobes by diameter size.
144

Convertisseurs continu-continu non isolés à haut rapport de conversion pour piles à combustible et électrolyseurs : apport des composants GaN / Non-isolated high voltage ratio DC-DC converter for fuel cell and electrolyzer : GaN transistors

Videau, Nicolas 05 May 2014 (has links)
Face aux enjeux énergétiques d’aujourd’hui et de demain, le développement des énergies renouvelables semble inéluctable. Cependant, la production électrique de sources renouvelables prometteuses comme le photovoltaïque ou l’éolien est intermittente et difficilement prévisible du fait de la dépendance de ces sources aux conditions météorologiques. Afin de s’affranchir du caractère discontinu de la production d’électricité et de l’inadéquation de la production avec la consommation, un moyen de stockage de l’énergie électrique est nécessaire. Dans ce contexte, la batterie hydrogène est une des solutions envisagées. Lors de périodes de surproduction d’énergie renouvelable, un électrolyseur produit de l’hydrogène par électrolyse de l’eau. Lorsque cela est nécessaire, une pile à combustible fournit de l’électricité à partir du gaz stocké. Couplé avec des sources d’énergie renouvelable, la batterie hydrogène produit de l’énergie électrique non carbonée, c’est-à-dire non émettrice de gaz à effet de serre. L’intérêt majeur de cette technologie est le découplage entre l’énergie et la puissance du système. Tant que la pile à combustible est alimentée en gaz, elle fournit de l’électricité, l’énergie dépend des réservoirs de gaz. La puissance, quant à elle, dépend des caractéristiques des composants électrochimiques et du dimensionnement des chaînes de conversions de puissance. Les chaînes de conversion de puissance relient les composants électrochimiques au réseau électrique. Dans le cas de la chaîne de conversion sans transformateur qui est ici envisagée, la présence d’un convertisseur DC-DC à haut rendement à fort ratio de conversion est rendue nécessaire de par la caractéristique basse tension fort courant des composants électrochimiques. Avec pour but principal l’optimisation du rendement, deux axes de recherche sont développés. Le premier axe développe un convertisseur multicellulaire innovant à haut rendement à fort ratio de conversion. Les résultats expérimentaux du convertisseur appelé « miroir » obtenus dans deux expérimentations ont démontré la supériorité de cette topologie en terme d’efficacité énergétique par rapport aux convertisseurs conventionnels. Le deuxième axe porte sur de nouveaux composants de puissance en nitrure de gallium (GaN) annoncés comme une rupture technologique. Un convertisseur buck multi-phases illustre les défis technologiques et scientifiques de cette technologie et montre le fort potentiel de ces composants. / Development of renewable energy seems inevitable to face the energy challenge of today and tomorrow. However, the power generation of promising renewable sources such as solar or wind power is intermittent and unpredictable due to the dependence of the these sources to the weather. In order to overcome the discontinuous nature of the electricity production and the mismatch between production and consumption, electrical energy storage is needed. In this context, hydrogen battery is one of the solutions. During periods of overproduction of renewable energy, an electrolyzer produces hydrogen gas by the electrolysis of water. When necessary, a fuel cell provides electricity from the stored gas. Coupled with renewable energy sources, the hydrogen battery produces carbon-free electricity, i.e. without any greenhouse gas emission. The major advantage of this technology is the decoupling between energy and power system. As long as the fuel cell is supplied with gas, it supplies electricity. Like so, the energy depends on the gas tanks and the system power depends on the characteristics of electrochemical components and the design of the power conversion chain. Power converters connect electrochemical components to the grid. In the case of the transformerless conversion system introduce here, a high efficiency high voltage gain DC-DC converter is required given the high-current low-voltage characteristic of electrochemical components. Since the main goal is to optimize the efficiency, two research approaches are developed. The first develops an innovating multicell converter with high efficiency at high voltage conversion ratio. The experimental results of the “mirror” converter obtained in two experiments have demonstrated the superiority of this topology in terms of energy efficiency compared to conventional converters. The second line of research focuses on new gallium nitride (GaN) transistors heralded as a disruptive technology. A multiphase buck converter illustrates the technological and scientific challenges of this technology and shows the potential of these transistors.
145

Synthèse et propriétés électrochimiques de nouveaux nitrures mixtes de lithium et métaux de transition pour électrodes négatives performantes d'accumulateurs lithium-ion

Panabiere, Eddie 11 December 2013 (has links) (PDF)
Dans ce travail nous avons réalisé la synthèse de nitrures structure 2D Li3-2xCoxN et de structure 3D Li7MnN4 par méthode céramique, sous atmosphère contrôlée. Après avoir acquis la maîtrise des paramètres de synthèse, nous réalisons la caractérisation structurale et l'étude des propriétés électrochimiques de chaque matériau (capacité spécifique, rechargeabilité...). Dans le cas des matériaux 2D, des affinements par la méthode de Rietveld nous ont permis de déterminer précisément les formules de ces composés. Une étude par spectroscopie diélectrique met en évidence la présence d'une faible proportion de Co+ parmi les Co2+ à l'origine de propriétés de conduction électronique. Nous montrons pour une étude DRX in-operando que le volume de maille ne varie que de 1,5% lors de d'un cycle expliquant la stabilité des capacités de 180mAh g-1 à 300 mAh g-1 selon les conditions. Dans le cas des matériaux 3D, Li7MnN4 a montré les meilleures performances avec des capacités réversibles jusqu' 300mAh g-1. Une étude DRX in-operando a montré que le mécanisme de désinsertion du lithium se déroulé en deux biphasage et une étape de solution solide. Une optimisation des performances est possible en réduisant la taille des particules par mécanobroyage : des capacités de 250 et 120 mAh g-1 sont obtenus à régime C et 5c. L'ensemble de ces nitrures présentent une forte réactivité avec l'humidité mais leur structure a pu être préservée sous air sec
146

Caractérisations et modélisations physiques de contacts entre phases métalliques et Nitrure de Gallium semi-conducteur / Characterization and physical modelling of contacts between metallic phases and Gallium Nitride

Thierry-Jebali, Nicolas 14 December 2011 (has links)
Les composés III-N, et le Nitrure de Gallium (GaN) en particulier, sont devenus des matériaux semi conducteurs importants pour l’ensemble de l’humanité. Depuis la fin des années 1990, ils ont permis le développement de composants électroluminescents fiables, diodes LED et diodes laser, qui constituent une solution de remplacement à rendement énergétique amélioré par rapport aux composants à incandescence. Il est possible qu’ils jouent aussi un rôle dans les nouvelles générations de composants pour l’électronique de puissance. Lors du développement des composants, des recherches expérimentales permettent de trouver assez rapidement des solutions pour réaliser les briques technologiques indispensables, mais le temps manque pour comprendre les mécanismes physiques mis en jeu. Nos travaux ont eu pour objectif d’approfondir la compréhension de l’influence de la structure physico-chimique sur les propriétés électriques des contacts ohmiques et Schottky sur GaN de type N. / Group III nitride semiconductor materials (III-N), and especially gallium nitride (GaN), are now key materials for the whole human kind. Since years 1990, reliable and energy-efficient light emitting devices have been developed based on III-N compounds providing higher efficiency replacement solutions to incandescent bulbs. The same III-N materials may also provide higher performance device solutions for power electronics, allowing multi-functional on-chip integration. During the industrial development of devices, experimental work is focused on finding rapidly good enough solutions for each technology brick, and on the eventual integration of the bricks into a complete device processing flow. Very often, little time and effort can be devoted to the understanding of the underlying physical and chemical processes. The aim of this work has been to study the influence of the physical and chemical material structures on the electrical properties of metal - GaN Ohmic and Schottky contacts.
147

Etude des mécanismes de photoluminescence dans les nitrures et oxydes de silicium dopés aux terres rares (Er, Nd) / Study of photoluminescence mechanisms in rare-earth (Er, Nd) doped silicon nitride and silicon oxide

Steveler, Émilie 23 October 2012 (has links)
Ce travail de thèse est dédié à l'étude des transitions radiatives dans les matériaux de nitrure et d'oxyde de silicium dopés aux ions de terres rares (Er3+, Nd3+). La caractérisation optique des films minces élaborés par évaporation thermique est basée sur la spectroscopie de photoluminescence. Les études menées s'inscrivent dans la recherche de processus d'excitation indirecte des ions Er3+ et Nd3+ dans des matrices à base de silicium. Dans les nitrures et oxynitrures de silicium, un processus de transfert d'énergie permettant l'excitation indirecte des ions Er3+ est mis en évidence. Pour les couches minces amorphes, le couplage est attribué à des états électroniques localisés dans la bande interdite de la matrice. Pour les films recuits à haute température, les nanocristaux de silicium (nc-Si) jouent un rôle majeur dans l'excitation indirecte de l'erbium. Dans les matrices d'oxyde de silicium, l'existence de processus d'excitations directe et indirecte des ions Nd3+ est démontrée. Pour les films amorphes, l'excitation indirecte du Nd se fait via des états électroniques localisés dans la bande interdite de la matrice. Pour les films recuits au-delà de 1000 °C, les nc-Si jouent le rôle de sensibilisateurs pour les ions Nd3+. Les résultats suggèrent que l'excitation indirecte des ions Nd3+ grâce aux états localisés dans la bande interdite de la matrice pourrait être plus efficace que l'excitation via les nc-Si / This thesis is devoted to the study of radiative transitions in rare-earth (Er, Nd) doped silicon oxide and silicon nitride thin films. The optical characterization of thin films prepared by thermal evaporation is based on photoluminescence spectroscopy. In this work, we investigate indirect excitation processes of Er3+ and Nd3+ ions in silicon based materials. In silicon nitride and silicon oxinitride, an energy transfer leading to the indirect excitation of Er3+ ions is demonstrated. For amorphous samples, the sensitization of Er3+ ions is attributed to localized electronic states in the matrix bandgap. For samples annealed at high temperature, silicon nanocrystals play a major role in the indirect excitation of erbium. In silicon oxide thin films, we evidences that both direct and indirect excitation processes of Nd3+ ions occur. For amorphous samples, indirect excitation occurs thanks to localized electronic states in the matrix bandgap. For samples annealed at temperatures above 1000 °C, silicon nanocrystals are sensitizers of Nd3+ ions. Results suggest that indirect excitation thank to localized states in the matrix bandgap could be more efficient than indirect excitation thanks to silicon nanocrystals
148

Etude des propriétés polaritoniques de ZnO et GaN. Application à l'étude de l'effet laser à polaritons dans une microcavité / Study of polaritonics properties of ZnO and GaN. Application to the study of polariton laser effect in a microcavity

Mallet, Emilien 03 September 2014 (has links)
Ce manuscrit est consacré à la physique des polaritons dans deux matériaux semiconducteurs à grand gap : ZnO et GaN. Les paramètres polaritoniques de ces matériaux ont été déterminés avec précision grâce à une étude combinant différentes techniques spectroscopiques linéaires et non-linéaires (réflectivité continue, autocorrélation, photoluminescence et mélange à quatre ondes dégénérées). L’interprétation de ces résultats conduit à une meilleure compréhension des processus d’interaction au sein du semiconducteur : le rôle important des interactions polariton-phonon LO dans l’élargissement polaritonique a notamment pu être mis en évidence. Ce travail effectué sur des échantillons massifs est indispensable pour mener au mieux l’étude de l’effet laser à polaritons dans des microcavités présentée dans la seconde partie de ce manuscrit. Pour cette étude, deux microcavités massives semblables, une à base de ZnO l’autre de GaN, ont été réalisées. Les qualités photoniques de ces structures sont à l’état de l’art : elles présentent un bon facteur de qualité (Q ≈ 1000) et un faible désordre photonique. Le régime de couplage fort ainsi que l’effet laser à polaritons sont observés jusqu'à température ambiante. Enfin, l’établissement de diagrammes de phases permet de mettre en exergue le rôle important des phonons LO dans l’abaissement du seuil laser. / This manuscript is devoted to the physics of polaritons in two wide band gap semiconductor : ZnO and GaN. The polaritonic parameters of these materials have been accurately determined through a study which combines linear and non-linear spectroscopies (continuous reflectivity, autocorrelation, photoluminescence and degenerate four-wave mixing). The interpretation of these results lead to a better understanding of the interaction processes in the semiconductor : the important role played by the polariton-LO phonon interactions in the polaritonic damping is highlighted and particularly for ZnO. This preliminary work on bulk samples is essential for a suitable study of polariton lasing in microcavities like it is presented in the second part of this manuscript. For this study, two similar microcavities, one based on ZnO and another on GaN. The photonic properties of these structures are at the state of the art : they have a good quality factor (Q ≈ 1,000) and have a low photon disorder. The strong coupling regime and the polariton lasing are observed to room temperature. Finally, the establishment of phase diagrams allows to highlight the important role of LO phonons in reduction of the laser threshold.
149

Caractérisations de matériaux et tests de composants des cellules solaires à base des nitrures des éléments III-V / Material characterizations and devices tests of solar cells based on III-V elements nitrides

Gorge, Vanessa 02 May 2012 (has links)
Parmi les nitrures III-V, le matériau InGaN a été intensément étudié depuis les années 2000 pour des applications photovoltaïques, en particulier pour des cellules multi-jonctions, grâce à son large gap modulable pouvant couvrir quasiment tout le spectre solaire. On pourrait alors atteindre de hauts rendements tout en assurant de bas coûts. Cependant, l’un des problèmes de l’InGaN est l’absence de substrat accordé en maille provoquant une grande densité de défauts et limitant ainsi les performances des composants. Nous avons donc étudié la faisabilité de cellules solaires simples jonctions à base d’InGaN sur des substrats alternatifs comme le silicium et le verre afin de baisser les coûts et d’avoir de larges applications. Afin d’adapter l’InGaN sur ces substrats alternatifs, nous avons utilisé une couche tampon en ZnO. Ce travail a été réalisé dans le cadre du projet ANR NewPVonGlass. Plus particulièrement, dans ce projet, mon travail avait pour objectifs de réaliser des caractérisations électriques et optiques des matériaux et des composants. Les deux premières parties de cette thèse introduisent le matériau InGaN et l’effet photovoltaïque. Les techniques de caractérisation utilisées sont expliquées dans le troisième chapitre. Ensuite, les résultats obtenus lors de la caractérisation cristalline du matériau InGaN sont présentés en fonction du substrat, de la concentration d’indium et de l’épaisseur de la couche. Puis, la cinquième partie développe les caractérisations des premières cellules à base d’InGaN sur saphir. Enfin, dans le dernier chapitre, des simulations de cellules solaires à base d’InGaN ont été réalisées. Le modèle développé nous a permis d’optimiser la structure et le dopage du composant et de déterminer les paramètres critiques. Nous montrons donc, dans ce travail, le développement d’une cellule solaire à base d’InGaN : des caractérisations des matériaux de base à celles des cellules solaires, en passant par la modélisation. / Among III-V nitrides, the InGaN material has intensively been studied since the year 2000 for photovoltaic applications, in particular for multi-junction solar cells, thanks to its large tunable band gap covering almost the entire solar spectrum. Then, it will be possible to reach high efficiency and low cost. However, one of the problems of InGaN material is the absence of lattice-matched substrate leading to high defect density which limits device performances. We have thus studied the feasibility of single junction InGaN based solar cells on alternative substrate such as silicon and glass in order to lower the price and to benefit from their wide application fields. To adapt InGaN material on these new substrates, we have utilized ZnO buffer layer. This work has been carried out within the framework of the ANR project NewPVonGlass. More particularly, in this project, I was in charge of the electrical and optical characterizations of the materials and devices. In the two first parts of this manuscript, the InGaN material and the photovoltaic effect are introduced. Then, the characterization techniques are explained in the third chapter. In the fourth part, the results obtained during crystalline characterization of the InGaN materials are presented depending on the substrate, the indium percentage and the InGaN layer thickness. Then, the fifth chapter presents the first InGaN-based solar cell characteristics on sapphire substrate. Finally, in the last part, simulations of InGaN-based solar cell have been performed. The developed model was able to optimize the structure and to determine the critical parameters. Thus, we have shown in this work the development of an InGaN-based solar cell from the base material characterizations to the device tests, through modeling.
150

Helium mobility in advanced nuclear ceramics / Helium mobility in advanced nuclear ceramics

Agarwal, Shradha 22 September 2014 (has links)
Cette thèse a pour objectif d’apporter des informations quantitatives sur la mobilité de l’hélium dans des céramiques nucléaires avancées comme TiC, TiN et ZrC, soumises à des traitements thermiques ou bien en présence de dommages d’irradiation. L’approche expérimentale développée au cours de ce travail est basée sur l’implantation ionique d’ions d’hélium-3 de 3 MeV en profondeur dans les trois matériaux précédemment cités et sur la mesure du profil de concentration en profondeur de l’isotope 3He au moyen d’une réaction nucléaire spécifique induite par des deutérons, 3He(d, p0)4He. La microscopie électronique à transmission et la spectrométrie Raman sont couplées à l’analyse par réaction nucléaire.Parmi les principaux résultats obtenus :- aucun relâchement d’hélium n’est observé à température ambiante pour les trois composés. Les valeurs d’énergie d’activation associée au relâchement d’hélium après un recuit thermique dans l’intervalle 1100 – 1600°C sont comprises entre 0,77 et 1,2 eV et semblent étroitement liées à la microstructure initiale du composé (stoéchiométrie et taille de grains). La capacité de rétention de l’hélium-3 dans des carbures ou nitrures de métaux de transition soumis à des traitements thermiques en conditions contrôlées croît dans l’ordre ZrC < TiC < TiN.- la formation de blisters n’et observée qu’à la surface de ZrC.- les profils d’implantation d’hélium présentent deux composantes pour les trois matériaux, l’une située au voisinage de la fin de parcours des ions et la seconde plus proche de la surface. Cette dernière résulte probablement du piégeage d’atomes d’hélium par les lacunes natives présentes.- les valeurs obtenues pour le coefficient apparent de diffusion de l’hélium varient dans l’intervalle 3,58E-19 – 5,296E-18 m^2s^-1 pour TiN et 4,20E-18 – 2,59E-17 m^2s^-1 pour TiC.Les valeurs correspondantes obtenues pour l’énergie d’activation sont respectivement de 2,50 eV pour TiC et de 1,05 eV pour TiN. Le mécanisme impliqué repose sur une dissociation des amas atomes d’hélium – lacunes au voisinage de la fin de parcours des ions. Plus en surface, la diffusion est plutôt du type substitutionnel.- l’observation au MET de sections transverses de TiN préparées par la technique FIB révèlent la présence de bulles d’hélium dès recuit à 1100°C et montrent la croissance des bulles avec la température. L’énergie d’activation de croissance des bulles a été estimée à 0,38 eV. A partir de 1400°C, cette croissance résulte vraisemblablement de l’absorption de lacunes par les amas.- la pression interne des bulles a été calculée à l’aide du modèle de Trinkaus, et nous avons montré qu’à partir de 1500°C, cette pression tendait à s’approcher de la valeur du module de cisaillement de TiN (240 GPa) et qu’elle atteignait la pression d’équilibre de 2 GPa à 1600°C.- à 1100°C, il semble que la densité des bulles présentes dans TiN varie linéairement avec la fluence d’implantation. A 1500°C, la taille des bulles est d’autant plus grande que la fluence est faible.- pour ZrC, l’effet de la fluence sur la mobilité de l’hélium est comparable à celui observé pour TiN. A la plus basse fluence, le relâchement d’hélium est très faible. Il croît avec la température de recuit et avec la fluence d’implantation.- la pré-Irradiation des trois composés par des auto-Ions avant implantation d’hélium provoque une augmentation de la dureté au moins =jusqu’à une dose de 27 dpa. Une très faible augmentation du paramètre de maille est alors détectée (≤ 0.5%).- dans le cas de ces matériaux non amorphisables sous irradiation aux ions, le recuit par perte d’énergie électronique ou bien le pré-Endommagement balistique ne jouent a priori aucun rôle sur la mobilité de l’hélium, étudiée sous l’angle d’une activation thermique. / While the current second and third generation nuclear plant designs provides an economically, technically, and publicly acceptable electricity supply in many markets, further advances in nuclear energy system design can broaden the opportunities for the use of nuclear energy. The fourth generation of nuclear reactors is under development. These new reactors are designed with the following objective in mind: sustainability, safety and reliability, economics, proliferation resistance. Out of six Generation IV systems namely, Gas-Cooled Fast Reactor (GFR), Lead-Cooled fast reactor (LFR), Molten Salt Reactor (MSR), Sodium-Cooled Fast Reactor (SFR), Supercritical-Water-Cooled Reactor (SCWR), Very-High-Temperature Reactor (VHTR), this work is dedicated to identify specific fuel type that is compatible with gas-Cooled fast reactor (GFR) in-Core service conditions and could be extended to diagnose potential cladding material for SFR. The French strategy is mainly oriented towards the development of sodium-Cooled fast reactors (SFR) and very slightly focused on GFR. This dissertation is focused on the study of transition metal ceramics which are candidates for fuel coatings in GFR and have been considered as potential cladding materials for SFR. The specific fuel type in GFR should consists of spherical fuel particle made up of UC or UN, surrounded by a ceramic coating which provides structural integrity and containment of fission products. The most promising candidates for ceramic coatings are ZrN, ZrC, TiN, TiC & SiC due to a combination of neutronic performance, thermal properties, chemical behavior, crystal structure, and physical properties. It is obvious that these ceramics would be exposed to energetic fission products from fuel such as heavy ions and neutrons. These high-Energy neutron will knock the atoms in the surrounding materials and can induce (n, α) reactions, thus producing high concentration of helium atoms during and after reactor operation. The helium atoms produced are energetic and can easily penetrate into the surrounding material. Helium atoms are considered to be highly insoluble in previously studied structural nuclear materials. The accumulation of helium into solid matrix, can lead to the formation of bubbles, cavity, swelling, embrittlement etc. Helium can strongly induce grain boundary cavitation that can produce formation of inter-Granular channels, which may serve as pathways for release of radioactive elements to the environment or lead to grain-Boundary weakening and de-Cohesion. Particularly in ceramics, large quantities of helium can also lead to dimensional changes and cracks due to over-Pressurized helium bubbles. Therefore, study of helium behavior in advanced nuclear ceramics under high operating temperatures and extreme radiation conditions predicted for GFRs is viewed as crucial. In this thesis, ion-Implantation technique and material characterization techniques are used to study diffusion of helium in transition metal ceramics under thermal and extreme irradiation environments. Our main aim during this thesis is: 1) To calculate diffusion and migration energies of helium under different experimental conditions by applying theoretical models on experimental data.2) To investigate the role of microstructure such as grain boundaries, native vacancies and porosity on helium accumulation and its evolution after helium accumulation.3) To know the role of helium introduction conditions on helium diffusion. 4) To establish and validate an approach to calculate pressure built by helium gas inside the bubbles and to verify if the pressure approaches mechanical stability limit.

Page generated in 0.0533 seconds