Spelling suggestions: "subject:"p_laplacian"" "subject:"laplacian""
31 |
Minimax methods for finding multiple saddle critical points in Banach spaces and their applicationsYao, Xudong 01 November 2005 (has links)
This dissertation was to study computational theory and methods for ?nding multiple saddle critical points in Banach spaces. Two local minimax methods were developed for this purpose. One was for unconstrained cases and the other was for constrained cases. First, two local minmax characterization of saddle critical points in Banach spaces were established. Based on these two local minmax characterizations, two local minimax algorithms were designed. Their ?ow charts were presented. Then convergence analysis of the algorithms were carried out. Under certain assumptions, a subsequence convergence and a point-to-set convergence were obtained. Furthermore, a relation between the convergence rates of the functional value sequence and corresponding gradient sequence was derived. Techniques to implement the algorithms were discussed. In numerical experiments, those techniques have been successfully implemented to solve for multiple solutions of several quasilinear elliptic boundary value problems and multiple eigenpairs of the well known nonlinear p-Laplacian operator. Numerical solutions were presented by their pro?les for visualization. Several interesting phenomena of the solutions of quasilinear elliptic boundary value problems and the eigenpairs of the p-Laplacian operator have been observed and are open for further investigation. As a generalization of the above results, nonsmooth critical points were considered for locally Lipschitz continuous functionals. A local minmax characterization of nonsmooth saddle critical points was also established. To establish its version in Banach spaces, a new notion, pseudo-generalized-gradient has to be introduced. Based on the characterization, a local minimax algorithm for ?nding multiple nonsmooth saddle critical points was proposed for further study.
|
32 |
O método das sub e supersoluções para um sistema do tipo (p,q)-Laplaciano. / The method of sub and supersolutions for a (p, q) -Laplaciano type system.SILVA, José de Brito. 08 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-08T20:06:07Z
No. of bitstreams: 1
JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5) / Made available in DSpace on 2018-08-08T20:06:07Z (GMT). No. of bitstreams: 1
JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5)
Previous issue date: 2013-10 / Capes / Neste trabalho discutiremos a existência de soluções fracas positivas para um sistema
do (p, q)-Laplaciano com mudança de sinal nas funções de peso, com domínio limitado
e fronteira suave. Para garantir a existência de soluções fracas positivas primeiramente
asseguraremos a solução positiva de um problema calásico que é o problema de autovalor do p-laplaciano, e do problema "linear"do p-laplaciano com condição zero de
Dirichlet. Feito isto usaremos a existência destas soluções para assegurar que o problema
em questão admite solução fraca positiva, via o método das sub-super-soluções / In this work we discuss the existence of weak positive solutions for a system (p, q)-
Laplacian with change of sign in the weight functions with bounded domain and smooth
boundary. To ensure the existence of weak positive solutions first will ensure a positive
solution to a classic problem that is the problem eigenvalue p-Laplacian value, and the
"linear"problem with zero condition p-Laplacian Dirichelt. Having done this we use
the existence of these solutions to ensure that the problem in question admits a weak
positive solution via the method of sub-super-solutions.
|
33 |
Existência e Multiplicidade de Soluções Positivas para Algumas Classes de Problemas Envolvendo o p-LaplacianoAraújo, Yane Lísley Ramos 22 March 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:13Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 3111180 bytes, checksum: 6016827aa037226f3d419628a23b8daf (MD5)
Previous issue date: 2012-03-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, using variational methods and the sub and super solutions method we
study the existence and multiplicity of positive solutions for some classes of problems
involving the p-Laplacian operator in bounded domains of RN. Initially, we study a
result of existence of positive solution for a problem where the nonlinearity does not
satisfy the classical Ambrosetti-Rabinowitz condition, and then we study the existence
and multiplicity result of positive solutions for a class of problems where the considered
nonlinearity can change sign. / Neste trabalho, utilizando métodos variacionais e o método de sub e supersolução
estudamos a existência e multiplicidade de soluções positivas para algumas classes de
problemas envolvendo o operador p-Laplaciano em domínios limitados do RN: Inicial-
mente, estudamos um resultado de existência de solução positiva para um problema onde a
não-linearidade não satisfaz a clássica condição de Ambrosetti-Rabinowitz, e em seguida
estudamos um resultado de existência e multiplicidade de soluções positivas para uma
classe de problemas onde a não-linearidade pode mudar de sinal.
|
34 |
Sistemas parabólicos singulares e o fenômeno da solidificação irreversível / Singular parabolic systems and the irreversible solidification phenomenonMiranda, Luís Henrique de 17 August 2018 (has links)
Orientadores: José Luiz Boldrini, Gabriela del Valle Planas / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T11:29:46Z (GMT). No. of bitstreams: 1
Miranda_LuisHenriquede_D.pdf: 3635408 bytes, checksum: a6e3a474ac371040a5d83a9b68f274e8 (MD5)
Previous issue date: 2011 / Resumo: O objetivo do presente trabalho é a análise matemática da influência das correntes de convecção em um processo de solidificação irreversível. A análise será feita quanto ao aspecto da existência de soluções de certos modelos matemáticos para a situação. Consideraremos dois modelos para este fenômeno que pode ser observado em diversos tipos de polímeros. Como veremos, em um dos modelos teremos o acoplamento entre uma Equação de Navier-Stokes Singular, responsável pela movimentação macroscópica da parte não sólida e uma inclusão diferencial responsável pela transição líquido/sólido. No outro, analisaremos a interação entre uma Equação de Stokes Singular e uma inclusão diferencial quase linear. As dificuldades matemáticas em cada um desses casos são consideráveis pois ambos são problemas de fronteira livre relacionados com inclusões diferenciais não lineares, sendo que uma delas envolve operadores degenerados (p-laplacianos). Para que nossa análise fosse possível, foi necessário que aprimorássemos as ferramentas matemáticas disponíveis. Essencialmente nossa contribuição foi adaptar alguns resultados já existentes no contexto de equações mais simples para sistemas de equações mais complexos. Dentre as contribuições paralelas, destacamos resultados sobre teoria de regularidade para equações degeneradas, estimativas de termos de fronteira 'non-standard', algumas estimativas a priori e um pouco sobre espaços de Sobolev fracionários / Abstract: The objective of this work is the mathematical analysis of the influence of convection currents in an irreversible solidification process. The analysis will be concentrated in the aspects of the existence of solutions of certain mathematical models for the situation. We will consider two models for this phenomenon which can be observed in several kinds of polymers. As we shall see, in one case we have a coupling between Singular Navier- Stokes Equations, which take into account for the macroscopic motion of the mushy region and a differential inclusion which is related to the liquid/solid transition. In the other, we analyze the interaction between a Singular Stokes equation and a quasi linear differential inclusion. The mathematical difficulties in each of these cases are considerable since both consist of free boundary problems associated with nonlinear differential inclusions, one of which involves degenerated operators (p-laplacians). In order to make our analysis possible, some improvements of the available mathematical tools were necessary. Essentially, our contribution was to adapt the existent results for equations in a simpler context to more complex systems of equations. Amongst the contributions, we highlight results on regularity theory for degenerate equations, estimates of non-standard boundary terms, some a priori estimates and some results about fractional Sobolev spaces / Doutorado / Analise / Doutor em Matemática
|
35 |
Existência e não existência de soluções globais para uma equação de onda do tipo p-Laplaciano / Existence and non-existence of global solutions for a wave equation with the p-Laplacian operatorFabio Antonio Araujo de Campos 15 March 2010 (has links)
Neste trabalho estudamos a equação de ondas do tipo p-Laplaciano \'u IND. tt\' - \'DELTA\' IND.p u + \'(- \'DELTA\' POT. alpha\' u IND. t\' = \' [u] POT.q - 2 u, definida num domínio limitado limitado do \'R POT. n\', com 2 \' > ou = \' p < q e 0 < \' alpha\' < 1. Utilizando o método de Faedo-Galerkin provamos a existência de soluções fracas globais para dados iniciais pequenos. Para essas soluções estudamos também o decaimento polinomial da energia associada. A questão da não existência de soluções globais é considerada para o caso em que a energia inicial do sistema é negativa / In this work we study the p-Laplacian wave equation \'u IND. tt\' - \' DELTA\' IND p u + \'(- \'DELTA\' POT. \'alpha\' \' u IND. t\' = \'[u] POT. q - 2 u, defined in a bounded domain of \'R POT n\', with 2 \'> or =\' p < q and 0 < \' alpha\' < 1. By using the Faedo-Galerkin method we prove the existence of weak global solutions for small initial data. We also study the polynomial decay of the associate energy. The blow-up of solutions in finite time is considered for negative initial energy
|
36 |
Ελλειπτικές εξισώσεις με υπερκρίσιμο εκθέτη σε συμπαγείς πολλαπλότητες με σύνοροΛαμπρόπουλος, Νίκος 30 July 2007 (has links)
Η παρούσα διατριβή ερευνητικά εντάσσεται στην περιοχή της Μη Γραμμικής Ανάλυσης και ειδικότερα στην επίλυση Μη Γραμμικών Ελλειπτικών Μερικών Διαφορικών Εξισώσεων (Μ.Δ.Ε.) με υπερκρίσιμο εκθέτη. Η μη γραμμικότητα δεν επιτρέπει την επίλυση των εξισώσεων αυτών χρησιμοποιώντας τις συμπαγείς εμφυτεύσεις. Αξιοποιώντας τις ιδιότητες συμμετρίας που παρουσιάζει η πολλαπλότητα, αφενός παρακάμπτουμε το εμπόδιο αυτό και αφετέρου επιτυγχάνουμε να επιλύσουμε εξισώσεις αυτού του τύπου με υπερκρίσιμο εκθέτη. Στο πρώτο μέρος της Διατριβής υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο στον στερεό τόρο, μελετάμε το φαινόμενο της συμπύκνωσης και επιλύουμε τα προβλήματα (P1) και (P2).
Στο δεύτερο μέρος υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο σε μια λεία, συμπαγή, n-διάστατη, n\geq 3, πολλαπλότητα Riemann (M,g) με σύνορο, που είναι αναλλοίωτη από τη δράση μιας οποιασδήποτε συμπαγούς υποομάδας G της ομάδας των ισομετριών Is(M,g) της Μ και της οποίας όλες οι G-τροχιές έχουν άπειρο πληθάριθμο και κάνουμε μια σύντομη παρουσίαση των λύσεων των προβλημάτων (P3) και (P4). / The present Thesis is incorporated in the research area of Nonlinear Analysis, especially solvability of Nonlinear Elliptic PDE’s with supercritical exponent.The nonlinear nature of the equations makes it impossible to be solved by means of compact imbeddings. Taking advantage of the symmetry properties of the manifold we overcome the obstacle as well as we succeed in solving equations of this type possessing supercritical exponent. In the first part of the Thesis we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on the solid torus, we study the phenomenon of concentration and solve problems (P1) and (P2).In the second part we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on a smooth, compact, n−dimensional Riemannian manifold (M, g), n _ 3, with boundary, which is invariant under the action of a subgroup G of the isometry group Is(M, g) of M, the orbits of which have infinity cardinality. We also present brief solutions of problems (P3) and (P4).
|
37 |
Contrôle de l'état hydraulique dans un réseau d'eau potable pour limiter les pertesJaumouillé, Elodie 04 December 2009 (has links)
Les fuites non détectées dans les réseaux d'eau potable sont responsables en moyenne de la perte de 30% de l'eau transportée. Il s'avère donc primordial de pouvoir contrôler ces fuites. Pour atteindre cet objectif, la modélisation de l'écoulement de l'eau dans les conduites en tenant compte des fuites a été formulée de différente manière. La première formulation est un système d'équations différentielles ordinaires représentant des fuites constantes, réparties uniformément le long des conduites. Le système peut s'avérer être numériquement raide lorsque des organes hydrauliques sont rajoutés. Deux méthodes implicites ont été proposées pour sa résolution : la méthode de Rosenbrock et la méthode de Gear. Les résultats obtenus montrent que le débit varie linéairement le long des conduites et que les pertes en eau par unité de longueur sont identiques sur chaque conduite. La seconde formulation prend en compte la relation entre les fuites et la pression. Un système de deux équations aux dérivées partielles a été proposé. L'EDP de transport-diffusion-réaction, contenant l'opérateur du p-Laplacien, est résolue par une méthode à pas fractionnaires. Deux méthodes ont été testées. Dans la première, la réaction est couplée avec la diffusion et dans la seconde, elle est couplée avec le transport. Les résultats indiquent que les pertes en eau ne sont pas réparties de façon homogène sur le réseau. Cette formulation décrit de manière plus réaliste les réseaux d'eau potable. Enfin, le problème du contrôle du volume des fuites par action sur la pression a été étudié. Pour cela, un problème d'optimisation est résolu sous la contrainte que la pression doit être minimale pour réduire les fuites et être suffisante pour garantir un bon service aux consommateurs. Les résultats trouvés confirment que la réduction de la pression permet de réduire le volume des fuites de façon significative et que le choix de l'emplacement du ou des points de contrôle est primordial pour optimiser cette réduction. / Leakage represents a large part, in average more than 30%, of the water supplied. Consequently, it is important to control leakage in Water Distribution System (WDS). For this purpose different methods, which take leakage into account, are proposed to model the hydraulics of WDS. The first formulation considers constant leakage in a network and leads to an ordinary differential equation. It turns out to be a hydraulic stiff problem due to valve and pump operations. This equation is solved using two methods: the first one is a generalised Runge-Kutta method and the second one the Gear method. The results show that the flow rate varies linearly along a pipe and that the water loss per unit of length is identical for each pipe. Magnitude of inertia terms has also been studied. The second formulation takes pressure-dependent leakage into account. We propose to introduce partial differential equations in order to predict more accurately hydraulic flows in WDS. Thus, the physical advection-diffusion-reaction model is presented. A nonlinear operator, called p-Laplacian, related to the diffusion is included into the model. Two resolutions of this model based on a splitting method are detailed. The results confirm that losses vary nonlinearly with pressure. Finally, the leakage-control problem is studied. For this purpose, we solve an optimisation problem with the objective to minimize the distributed volume in order to reduce leakage. The condition of sufficient pressure to satisfy consumers is imposed in this optimisation. The results prove that pressure control significantly reduces leakage and that the emplacement of the valve is important to optimise this reduction.
|
38 |
Modelagem matemática e métodos numéricos para simulação da condução do calor no hélio líquido / Mathematical modeling and numeriacal methods for simulation of the heat conduction in liquid heliumSenger, Erasmo 03 April 2009 (has links)
Made available in DSpace on 2015-03-04T18:51:11Z (GMT). No. of bitstreams: 1
tese_erasmo_digital.pdf: 2003361 bytes, checksum: 220a10261604ff1d47174ccfbcec41a9 (MD5)
Previous issue date: 2009-04-03 / Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior / The element helium, found mainly in natural gas reserves, condenses at temperature of 4.2K, and is the unique known substance that remains in liquid to absolute zero. In the liquid phase, the helium presents still another phase change in 2.19K, where passes of common liquid to superfluous liquid, with almost zero viscosity. These properties give the helium important applications. One of the major applications is as a coolant in superconductors, such as in the particle accelerator LHC, which is being built in the French border with Switzerland, in magnetic resonance devices, artificial satellites, etc..
In this paper, we present two mathematical models for heat transfer in liquid helium. The first model, considering only macroscopic movements, is derived based on constitutive laws of Fourier and Gorter-Mellink. The second model, based on techniques of Fremond, includes microscopic movements and can be seen as a regularization of the first model. Both models are governed by highly nonlinear differential equations resulting from the nonlinearity of the law of Gorter-Mellink and change of phase. Both models can be considered special cases of the Stefan problem in two phases, with phase one of the heat flux is governed by non-linear equation of the problem known as p-Laplacian, with p = 4/3.
We also presented techniques to efficiently solve the problem of p-Laplacian, both for large values of p, p>> 2, and for values of p close to 1, which are major numerical challenges. Are proposed two simple iterative methods, one based on the method of quasi-Newton, with the relaxation term and the other by the Helmholtz decomposition, creating a system of equations whose matrices are constant, which reduces significantly the computational cost. Numerical experiments are conducted to test the efficiency of numerical models proposed and the algorithms developed for solving systems of nonlinear algebraic equations arising from approximations by finite elements. Are also presented results of studies of convergence, showing rates of optimal or near optimal convergence, comparable to that of interpolates.
For the problem with phase change, due to the discontinuity of the gradient of temperature on the interface separating the two phases of liquid helium, the rate of convergence is not optimal. Using adaptive mesh, it is also great rates to the problem with change of phase.
Using experimental data found in literature, for the parameters of thermal conductivity, density and specific heat, temperature dependent, are also presented for validation testing of the model and examples of possible applications. In tests for validating the model, compared to the numerical solution of the mathematical model with experimental results for the temperature found in literature. / O elemento hélio, encontrado principalmente em reservas de gás natural, entra em condensação à temperatura de 4,2K, e é a única substância conhecida que permanece no estado líquido até o zero absoluto. Na fase liquida, o hélio apresenta ainda, em K, outra mudança de fase, onde passa de líquido comum à superfluido, com viscosidade praticamente nula. Estas propriedades conferem ao hélio importantes aplicações. Uma hdas principais aplicações é como agente refrigerante em supercondutores, como por exemplo, no acelerador de partículas LHC, que está sendo construído na fronteira da França com a Suíça, em aparelhos de ressonância magnética, satélites artificiais, etc.
Neste trabalho, são apresentados dois modelos matemáticos para a transferência de calor no hélio líquido. O primeiro modelo, considerando apenas movimentos macroscópicos, é derivado com base nas leis constitutivas de Fourier e de Gorter-Mellink. O segundo modelo, baseado nas técnicas de Fremond, inclui movimentos microscópicos e pode ser visto como uma regularização do primeiro modelo. Os dois modelos são governados por equações diferenciais fortemente não lineares resultantes da não linearidade da lei de Gorter-Mellink e da mudança de fase. Ambos os modelos podem ser considerados casos particulares do problema de Stefan de duas fases, sendo que em uma das fases o fluxo de calor é governado pela equação não-linear do problema conhecido como p-laplaciano, com p=4/3.
São também apresentadas técnicas para resolver de forma eficiente o problema do p-laplaciano, tanto para valores grandes de p, p>>2, quanto para valores de p próximos à 1, que constituem importantes desafios numéricos. Para tanto são propostos dois métodos iterativos simples, um baseado no método de quase-Newton, com termo de relaxação e, outro através da decomposição de Helmholtz, gerando um sistema de equações cujas matrizes são constantes, o que diminui significativamente o custo computacional. Experimentos numéricos são realizados para testar a eficiência dos modelos numéricos propostos bem como dos algoritmos desenvolvidos para resolver os sistemas de equações algébricas não lineares resultantes das aproximações por elementos finitos. São apresentados resultados de estudos de convergência, mostrando taxas de convergência ótimas ou quase ótimas, comparáveis às das interpolantes.
Para o problema com mudança de fase, devido à descontinuidade do gradiente da temperatura sobre a interface que separa as duas fases do hélio líquido, as taxas de convergência não são ótimas. Usando malhas adaptativas, consegue-se taxas ótimas também para o problema com mudança de fase.
Usando dados experimentais, encontrados na literatura, para os parâmetros de condutividade térmica, densidade e calor específico, dependentes da temperatura, são também apresentados testes de validação do modelo e exemplos de possíveis aplicações. Nos testes de validação do modelo, compara-se a solução numérica do modelo matemático com resultados experimentais para a temperatura, encontrados na literatura.
|
39 |
Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités / Study of some quasilinear and singular elliptic and parabolic problemsSauvy, Paul 04 December 2012 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non-linéaires. Plus précisément, nous avons fait ici l’étude de problèmes quasi-linéaires singuliers. Le terme "singulier" fait référence à l’intervention d’une non-linéarité qui explose au bord du domaine où ’équation est posée. La présence d’une telle singularité entraîne un manque de régularité et donc de compacité des solutions qui ne nous permet pas d’appliquer directement les méthodes classiques de l’analyse non-linéaire pour démontrer l’existence de solutions et discuter des propriétés de régularité et de comportement asymptotique de ces solutions. Pour contourner cette difficulté, nous sommes amenés à établir des estimations a priori très fines au voisinage du bord du domaine en combinant diverses méthodes : méthodes de monotonie (reliée au principe du maximum), méthodes variationnelles, argument de convexité, méthodes de point fixe et semi-discrétisation en temps. A travers, l’étude de trois problèmes-modèle faisant intervenir l’opérateur p-Laplacien, nous avons montré comment ces différentes méthodes pouvaient être mises en œuvre. Les résultats que nous avons obtenus sont décrits dans les trois chapitres de cette thèse : Dans le Chapitre I, nous avons étudié un problème d’absorption elliptique singulier. En utilisant des méthodes de sur- et sous solutions et des méthodes variationnelles, nous établissons des résultats d’existence de solutions. Par des méthodes de comparaison locale, nous démontrons également la propriété de support compact de ces solutions, pour de fortes singularités. Dans le Chapitre II, nous étudions le cas d’un système d’équations quasi-linéaires singulières. Par des arguments de point fixe et de monotonie, nous démontrons deux résultats généraux d’existence de solutions. Dans un deuxième temps, nous faisons une analyse plus détaillée de systèmes du type Gierer-Meinhardt modélisant des phénomènes biologiques. Des résultats d’unicité ainsi que des estimations précises sur le comportement des solutions sont alors obtenus. Dans le Chapitre III, nous faisons l’étude d’un problème d’absorption, parabolique singulier. Nous établissons par une méthode de semi-discrétisation en temps des résultats d’existence de solutions. Grâce à des inégalités d’énergie, nous démontrons également l’extinction en temps fini de ces solutions. / This thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching".
|
40 |
Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates / Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimatesEvangelista, Israel de Sousa 04 July 2017 (has links)
EVANGELISTA, I. S. Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates. 2017. 75 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-10T12:41:32Z
No. of bitstreams: 1
2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-10T14:06:18Z (GMT) No. of bitstreams: 1
2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) / Made available in DSpace on 2017-07-10T14:06:18Z (GMT). No. of bitstreams: 1
2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Previous issue date: 2017-07-04 / The present thesis is divided in three different parts. The aim of the first part is to prove that a compact almost Ricci soliton with null Cotton tensor is isometric to a standard sphere provided one of the following conditions associated to the Schouten tensor holds: the second symmetric function is constant and positive; two consecutive symmetric functions are non null multiple or some symmetric function is constant and the quoted tensor is positive. The aim of the second part is to study the critical metrics of the total scalar curvature funcional on compact manifolds with constant scalar curvature and unit volume, for simplicity, CPE metrics. It has been conjectured that every CPE metric must be Einstein. We prove that the Conjecture is true for CPE metrics under a suitable integral condition and we also prove that it suffices the metric to be conformal to an Einstein metric. In the third part we estimate the p-fundamental tone of submanifolds in a Cartan-Hadamard manifold. First we obtain lower bounds for the p-fundamental tone of geodesic balls and submanifolds with bounded mean curvature. Moreover, we provide the p-fundamental tone estimates of minimal submanifolds with certain conditions on the norm of the second fundamental form. Finally, we study transversely oriented codimension one C 2-foliations of open subsets Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean curvature of the leaves in terms of the p-fundamental tone of Ω. / A presente tese está dividida em três partes diferentes. O objetivo da primeira parte é provar que um quase soliton de Ricci compacto com tensor de Cotton nulo é isométrico a uma esfera canônica desde que uma das seguintes condições associadas ao tensor de Schouten seja válida: a segunda função simétrica é constante e positiva; duas funções simétricas consecutivas são múltiplas, não nulas, ou alguma função simétrica é constante e o tensor de Schouten é positivo. O objetivo da segunda parte é estudar as métricas críticas do funcional curvatura escalar total em variedades compactas com curvatura escalar constante e volume unitário, por simplicidade, métricas CPE. Foi conjecturado que toda métrica CPE deve ser Einstein. Prova-se que a conjectura é verdadeira para as métricas CPE sob uma condição integral adequada e também se prova que é suficiente que a métrica seja conforme a uma métrica Einstein. Na terceira parte, estima-se o p-tom fundamental de subvariedades em uma variedade tipo Cartan-Hadamard. Primeiramente, obtém-se estimativas por baixo para o p-tom fundamental de bolas geodésicas e em subvariedades com curvatura média limitada. Além disso, obtém-se estimativas do p-tom fundamental de subvariedades mínimas com certas condições sobre a norma da segunda forma fundamental. Por fim, estudam-se folheações de classe C 2 transversalmente orientadas de codimensão 1 de subconjuntos abertos Ω de variedades riemannianas M e obtêm-se estimativas por baixo para o ínfimo da curvatura média das folhas em termos do p-tom fundamental de Ω.
|
Page generated in 0.0512 seconds