• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 18
  • 9
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 46
  • 36
  • 25
  • 22
  • 19
  • 18
  • 18
  • 18
  • 17
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Polynomial root separation and applications / Séparation des racines des polynômes et applications

Pejkovic, Tomislav 20 January 2012 (has links)
Nous étudions les bornes sur les distances des racines des polynômes entiers et les applications de ces résultats. La séparation des racines complexes pour les polynômes réductibles normalisés de quatrième degré à coefficients entiers est examinée plus à fond. Différents lemmes sur les racines des polynômes en nombres p-adiques sont prouvés. Sont fournies les familles explicites de polynômes de degré général, ainsi que les familles dans certaines classes de polynômes quadratiques et cubiques avec une très bon separation des racins dans le cadre p-adique. Le reste de la thèse est dédié aux résultats liés aux versions p-adiques des fonctions de Mahler et de Koksma wn et w*n , ainsi qu'aux classifications correspondantes des nombres transcendants dans Cp. Le résultat principal est une construction des nombres pour lesquelles les deux fonctions wn et w*n sont différentes pour tous les n et puis l'intervalle de valeurs possibles pour wn-w*n est élargi. Les inégalités reliant les valeurs des fonctions de Koksma en nombres algébriquement dépendants sont prouvées. / We study bounds on the distances of roots of integer polynomials and applications of such results. The separation of complex roots for reducible monic integer polynomials of fourth degree is thoroughly explained. Lemmas on roots of polynomials in the p-adic setting are proved. Explicit families of polynomials of general degree as well as families in some classes of quadratic and cubic polynomials with very good separation of roots in the same setting are exhibited. The second part of the thesis is concerned with results on p-adic versions of Mahler's and Koksma's functions wn and w*n and the related classifications of transcendental numbers in Cp. The main result is a construction of numbers such that the two functions wn and w*n differ on them for every n and later on expanding the interval of possible values for wn-w*n. The inequalities linking values of Koksma's functions for algebraically dependent numbers are proved.
102

Exakte Moduln über dem von Manuel Köhler beschriebenen Ring / Exact modules over Manuel Köhler's ring

Grande, Vincent 12 September 2018 (has links)
No description available.
103

Forma traço sobre algumas extensões galoisianas de corpos p-Ádicos /

Prado, Janete do. January 2005 (has links)
Orientador: Clotilzio Moreira dos Santos / Banca: Ires Dias / Banca: Aparecida Francisco da Silva / Resumo: Seja K um corpo p-ádico, com p 6= 2 e F K uma extensão galoisiana de K de grau n: Então F pode ser visto como espa»co quadrático sobre K, com a forma quadrática dada por T(x) = trFjK(x2), para x 2 F: Determinaremos os invariantes determinante, dimensão e invariante de Hasse desta forma quadrática para n igual a 2,3 e 4. / Let K be a p-adic eld with p 6= 2 and F a Galois extension eld of K of degree n: Then F can be viewed as a quadratic space over K under the quadratic form T(x) = trFjK(x2) for x 2 F. The invariants of this quadratic form dimension, determinant and Hasse invariant are given in the case when n is equal to 2,3 and 4. / Mestre
104

Números p-ádicos e formas quadráticas / P-adic numbers and quadratic forms

Santana, Luiz Fernando Rodrigues 10 October 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-10-22T13:10:57Z No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-22T13:16:35Z (GMT) No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-10-22T13:16:35Z (GMT). No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-10-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This text presents the properties and definitions of p-adic numbers linked to the definition of quadratic forms. Hasse's theorem: “Every quadratic form, with 5 variables or more, has non-trivial p-adic zeros” exemplifies the Local- Global Principle, which in turn ensures that if a polynomial equation has non-trivial rational zeros if, and only if, It has non-trivial zeros over R and about Qp, p prime. / Este texto apresenta as propriedades e as definições de números p-ádicos atreladas à definição de formas quadráticas. O teorema de Hasse: “Toda forma quadrática, com 5 variáveis ou mais, possui zeros p-ádicos não triviais” exemplifia o Princípio Local Global, que por sua vez garante que se uma equação polinomial possui zeros racionais não triviais se, e somente se, possui zeros não triviais sobre R e sobre Qp, p primo.
105

Quantification de groupes p-adiques et applications aux algèbres d'opérateurs. / Quantization of p-adic groups and applications to operator algebras.

Jondreville, David 26 June 2017 (has links)
Cette thèse est consacrée à l'étude des déformations des C*-algèbres munies d'une action de groupe, du point de vue de la quantification équivariante non-formelle, dans le cas non-archimédien. Nous construisons une théorie de déformation des C*-algèbres munies d'une action d'un espace vectoriel de dimension finie sur un corps local non-archimédien de caractéristique différente de 2 ainsi que pour des quotients du groupe affine d'un corps local dont le corps résiduel est de cardinal impair. Par ailleurs, nous construisons des familles de 2-cocycles unitaires afin de déformer des groupes quantiques localement compacts agissant sur ces C*-algèbres déformées. / This thesis is devoted to the study of deformation of C*-algebras endowed with a group action, from the perspective of non-formal equivariant quantization, in the non-Archimedean setting. We construct a deformation theory of C*-algebras endowed with an action of a finite dimensional vector space over a non-Archimedean local field of characteristic different from 2 and for quotients of the affine group of a local field whose residue field has cardinality not divisible by 2. Moreover, we construct families of dual unitary 2-cocycles in order to deform locally compact quantum groups acting on these deformed C*-algebras.
106

Bruhatovy-Titsovy budovy / Bruhat-Tits buildings

Lachman, Dominik January 2017 (has links)
Bruhat-Tits buildings are a fundamental concept in the study of linear algebraic groups over general fields. The general goal of this thesis is to introduce buildings in the basic case of SLd(Qp) and to explicitly describe some of their geometrical and combinatorial properties - building are abstract simplicial complexes. After the general construction (Chapter 1) we focus in detail to the case of SL2(Qp). We work with simplices using certain matrix representatives. We explicitly describe the building and give a formula for graph distance. In Chapter 3 we consider the general case SLd(Qp), d ≥ 2. There we introduce a new concept of distance formulas. In Chapter 4 we prove some theorems which are satisfied by buildings in general. Chapter 5 studies the problem of determining so-called gallery distance of two simplices. In the last Chapter 6 we generalize the distance formulas to the case of three vertices. 1
107

Deux résultats d'analyse harmonique sur un groupe P-adique tordu / Two results of Harmonic Anlysis on a twisted p-adic group

Cohen, Joël 10 December 2013 (has links)
Dans cette thèse, nous montrons deux résultats d'analyse harmonique sur un groupe réductif p-adique tordu.Le premier résultat est un analogue non connexe au théorème matriciel de Paley Wiener. Soit G réductif p-adique (non nécessairement connexe). L'algèbre de Hecke des fonctions complexes sur G localement constantes à support compact agit les représentations complexe lisses irréductibles de G. L'action d'une fonction est vue comme sa transformée de Fourier. Le théorème fournit une caractérisation de l'image de l'algèbre de Hecke par la transformée de Fourier, ainsi qu'une formule d'inversion.Le second résultat établit une identité spectrale sur le groupe GLn tordu (avec n pair, sur un corps p-adique) pour l'intégrale orbitale tordue sur la classe de conjugaison tordue stable des matrices antisymétriques inversibles. Cette dernière s'exprime comme une intégrale sur les représentations irréductibles tempérées auto-duales de GLn dont le paramètre de Langlands est symplectique. La preuve repose sur le transfert endoscopique. / In this thesis, we show tow results of Harmonic Analysis on réductive p-adic group.The first results extends the matrix Paley-Wiener theorem to the non-connected case. Let G be reductive (non necessarily connected) p-adic group. The Hecke algebra of compactly supported locally constant complex functions on G acts on complex smooth irreducible representations of G. The action of a given function is seen as its Fourier transform. The theorem characterizes the image of the Hecke algebra under the Fourier transform and provides an inversion formula.The second result is the proof of a spectral identity on the so-called twisted GLn group (where n is even, on a p-adic field) for the twisted orbital integral over the twisted stable conjugacy class of antisymetric invertible matrices. We express it as an integral over those irreducible tempered auto-dual representations of GLn whose Langlands' parameter is symplectic. Our proof uses endoscopic transfer.
108

Certains études sur la minimalité et la propriété chaotique de dynamiques p-adicques et la régularité locale des series de Davenport avec translation de phase

Zhou, Dan 26 May 2009 (has links)
Dans cette thèse, nous étudions la minimalité et la propriété chaotique de systèmes dynamiques p-adiques. Nous étudions aussi des propriétés multifractales des séries de Davenport avec translation de phases. Dans la première partie, nous commençons par l'étude des systèmes dynamiques affines sur Zp. Nous trouvons une condition nécessaire et suffisante pour qu'un tel système soit minimal. En outre, nous exhibons toutes ses composantes strictement ergodiques si le système n'est pas minimal. De plus, nous étudions aussi les systèmes monômes sur le groupe 1+pZp. Ensuite nous étudions les polynômes localement dilatants et transitifs. Pour un tel polynôme, limité sur son ensemble de Julia, nous prouvons qu'il est conjugué à un sous-shift de type fini. Dans la deuxième partie, nous étudions les séries de Davenport avec translation de phases. Après avoir calculé le saut d'une telle série à chaque point, nous trouvons l'ensemble des points discontinus et obtenons une condition nécessaire et suffisante pour qu'une série de Davenport avec translation de phases soit continue sur R. La convergence ponctuelle de la série est aussi étudiée. Ensuite, nous estimons la borne inférieure de l'exposant hölderien de la série de Davenport avec de phase rationnelle et la borne supérieure du spectre de la singularité / In this thesis, we study the minimality and the chaotic property of p-adic dynamical systems and some multifractal properties of phase translated Davenport series. In the first part, we begin with the study of affine dynamical systems on Zp. We find a necessary and sufficient condition for such a system to be minimal. Furthermore, all its strictly ergodic components are exhibited when it is not minimal. In addition, we study monomial systems on the group 1 + pZp. Then transitive locally expanding polynomial systems are studied. It is proved that such a polynomial system, restricted to its Julia set, is conjugate to a subshift of finite type. In the second part, we study phase translated Davenport series. After having calculated the jump of the series at each point, we characterize the set of discontinuous points and get a sufficient and necessary condition for the series to be continuous on R. Furthermore, the pointwise convergence of the series is studied. Then we estimate the lower bound of the Hölder-exponent of rational translated Davenport series and get an upper bound estimation on the spectrum of singularity. The lower bound of the Hölder-exponent are also discussed for some irrational translated series
109

Modulo l-representations of p-adic groups SL_n(F) / Représentations modulo l des groupes p-adiques SL_n(F)

Cui, Peiyi 06 September 2019 (has links)
Fixons un nombre premier p. Soit k un corps algébriquement clos de caractéristique l différent que p. Nous construisons les k-types maximaux simples cuspidaux des sous-groupes de Levi M' de SL_n(F), où F est un corps local non archimédien de caractéristique résiduelle p. Nous montrons que le support supercuspidal des k-représentations lisses irréductibles de M' est unique à M'-conjugaison près, quand F est soit un corps fini de caractéristique p soit un corps local non-archimédien de caractéristique résiduelle p. / Fix a prime number p. Let k be an algebraically closed field of characteristic l different than p. We construct maximal simple cuspidal k-types of Levi subgroups M' of SL_n(F), where F is a non-archimedean locally compact field of residual characteristic p. And we show that the supercuspidal support of irreducible smooth k-representations of Levi subgroups M' of SL_n(F) is unique up to M'-conjugation, when F is either a finite field of characteristic p or a non-archimedean locally compact field of residual characteristic p.
110

P-adic local Langlands correspondence and geometry / Langlands p-adique : géometrie et programme

Chojecki, Przemyslaw 16 January 2015 (has links)
Cette these concerne la geometrie de la correspondance de Langlands p-adique. On donne la formalisation des methodes de Emerton, qui permettrait d'etablir la conjecture de Fontaine-Mazur dans le cas general des groupes unitaires. Puis, on verifie que ce formalism est satisfait dans la cas de U(3) ou on utilise la construction de Breuil-Herzig pour la correspondence p-adique. De point de vue local, on commence l'etude de cohomologie modulo p et p-adiques de tour de Lubin-Tate pour GL_2(Q_p). En particulier, on demontre que on peut retrouver la correspondence de Langlands p-adique dans la cohomologie completee de tour de Lubin-Tate. / This thesis concerns the geometry behind the p-adic local Langlands correspondence. We give a formalism of methods of Emerton, which would permit to establish the Fontaine-Mazur conjecture in the general case for unitary groups. Then, we verify that our formalism works well in the case of U(3) where we use the construction of Breuil-Herzig as the input for the p-adic correspondence.From the local viewpoint, we start a study of the modulo p and p-adic cohomology of the Lubin-Tate tower for GL_2(Q_p). In particular, we show that we can find the local p-adic Langlands correspondence in the completed cohomology of the Lubin-Tate tower.

Page generated in 0.0367 seconds