• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 17
  • 17
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 72
  • 18
  • 15
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Blocage dipolaire de l'excitation d'atomes froids vers<br />des états de Rydberg :<br />Contrôle par champ électrique et par résonance de Förster

Vogt, Thibault 07 August 1980 (has links) (PDF)
Cette thèse traite des interactions à très longue portée entre atomes de Rydberg froids.<br />Elle présente les résultats de la première réalisation du blocage dipolaire, qui se traduit par<br />une limitation de l'excitation d'un ensemble d'atomes vers un état de Rydberg en raison du<br />déplacement des niveaux d'énergie lié aux interactions dipôle-dipôle entre atomes. L'importance<br />de l'implication du blocage dipolaire a été soulignée pour l'information quantique avec<br />la possible réalisation de portes quantiques conditionnelles à deux qubits. La mise en évidence<br />du blocage dipolaire est présentée dans le cadre de deux configurations expérimentales différentes<br />: en présence d'un champ électrique et à résonance de Förster. Parvenir à la maîtrise du<br />blocage dipolaire de l'excitation vers des états de Rydberg a demandé un contrôle important<br />des conditions expérimentales : compensation des champs parasites, contrôle des sources d'ionisation<br />d'atomes, contrôle de l'intensité laser d'excitation pour se placer en-dessous du seuil<br />de saturation par puissance. Des études complémentaires ont été réalisées, telle que celle des<br />forces dipolaires entre atomes de Rydberg responsables d'un phénomène d'ionisation Penning,<br />aussi à l'origine de la formation d'un plasma ultra-froid. Une autre étude concerne le processus<br />du transfert d'excitation à résonance de Förster, dont les propriétés de cohérence ont été<br />analysés par une technique spectroscopique originale dite de "creusement spectral".
62

Microscopie de fonction d’onde électronique / Microscopy of electronic wave function

Harb, Mahdi 15 September 2010 (has links)
Ce travail de thèse consiste à visualiser sur un détecteur sensible en position les oscillations spatiales des électrons lents (~ meV) émis par photoionisation au seuil en présence d’un champ électrique extérieur. La figure d’interférence obtenue représente quantiquement le module carré de la fonction d’onde électronique. Ce travail fondamental nous permet d’avoir accès à la dynamique électronique quelques µm autour de l’atome et donc de mettre en évidence plusieurs mécanismes quantiques (champ coulombien, interaction électron/électron..) se déroulant à l’échelle atomique. Malgré la présence d’un cœur électronique quoique limité dans Li, nous avons réussi, expérimentalement et pour la première fois, à visualiser la fonction d’onde associée aux états Stark quasi-discrets couplés au continuum d’ionisation. En outre, à l’aide des simulations quantiques de propagation du paquet d’ondes, basées sur la méthode de « Split-operator », nous avons réalisé une étude complète sur les atomes H, Li et Cs tout en dévoilant les effets significatifs des résonances Stark. Un très bon accord, sur et hors résonances, a été obtenu entre les résultats simulés et les résultats expérimentaux. Par ailleurs, nous avons développé un modèle analytique généralisable permettant de comprendre profondément le fonctionnement d’un spectromètre de VMI. Ce modèle repose sur l’approximation paraxiale, il est basé sur un calcul d’optique matricielle en faisant une analogie entre la trajectoire électronique et le rayon lumineux. Un excellent accord a été obtenu entre les prédictions du modèle et les résultats expérimentaux. / This work of thesis aims to visualize, on a position sensitive detector, the spatial oscillations of slow electrons (~meV) emitted by a threshold photoionization in the presence of an external electric field. The interference figure obtained represents the square magnitude of electronic wavefunction. This fundamental work allows us to have access to the electronic dynamics and thus to highlight several quantum mechanisms that occur at the atomic scale (field Coulomb, electron/electron interaction..). Despite the presence an electronic core in Li atom, we have succeeded, experimentally and for the first time, to visualize the wave function associated with the quasi-discrete Stark states coupled to the ionization continuum. Besides, using simulations of wave packet propagation, based on the "Split-operator” method, we have conducted a comprehensive study of the H, Li and Cs atoms while revealing the significant effects of the Stark resonances. A very good agreement, on and off resonances, was obtained between simulated and experimental results. In addition, we have developed a generalized analytical model to understand deeply the function of VMI spectrometer. This model is based on the paraxial approximation; it is based on matrix optics calculation by making an analogy between the electronic trajectory and the light beam. An excellent agreement was obtained between the model predictions and the experimental results.
63

Generation of intense terahertz sources by ultrashort laser pulses / Génération de sources térahertz intenses par des impulsions laser ultrabrèves / Generación de fuentes de radiación terahertz intensas mediante pulsos láser ultrabreves

González de Alaiza Martínez, Pedro 21 October 2016 (has links)
Le spectre électromagnétique possède une zone étroite, localisée entre les micro-ondes et l'infrarouge, appelée région des ondes térahertz (THz), qui est comprise entre 0.1 et 30 THz. Ces ondes, longtemps inaccessibles car situées à la frontière entre l'électronique et l'optique, connaissent aujourd'hui un intérêt grandissant et possèdent des applications prometteuses dans divers secteurs de la science comme l'imagerie médicale et l'identification des explosifs à distance. Cependant, la production de rayonnement THz intense, d'amplitude proche du GV/m, qui devrait permettre de sonder efficacement des matériaux à distance, reste encore une question en suspens. Cette thèse a précisément pour but d'étudier la génération d'un tel rayonnement THz par couplage de deux impulsions laser ultracourtes -une onde fondamentale et son harmonique deux- capables d'ioniser un gaz (par exemple, l'air ou l'argon). Le plasma ainsi créé joue le rôle de convertisseur nonlinéaire de fréquence, transformant une partie de l'énergie du champ laser dans la bande THz via une gamme riche de mécanismes physiques, notamment l'effet Kerr, la photoionization et les forces pondéromotrices induites dans le plasma. Grâce à un travail de modélisation analytique et numérique de ces principaux mécanismes, nous avons examiné de manière complète la génération d'impulsions THz pour des intensités allant de celles rencontrées en filamentation laser (10¹²-10¹⁴ W cm⁻²) jusqu'aux intensités relativistes (10¹⁵-10¹⁸ W cm⁻²), une fourchette d'intensités peu étudiée jusqu'à présent dans ce domaine. Il est déjà connu qu'à basses intensités la photoionization induite par le champ laser domine l'émission térahertz, laquelle dépend fortement de la configuration des couleurs (ou harmoniques) laser. Nous démontrons ici que, au-delà de la configuration laser ''classique'' à deux couleurs, coupler plusieurs fréquences laser suivant les harmoniques d'une forme d'onde en dents de scie est optimal pour renforcer la production de rayonnement. Les simulations prévoient une efficacité de conversion d'énergie THz de 2% avec quatre couleurs, valeur record inégalée à ce jour. De plus, en nous aidant d'une expérience faite dans l'air, nous identifions la signature de l'effet Kerr dans le spectre THz émis, qui, plus faible, se révèle complémentaire de la signature plasma. Quand l'intensité de l'impulsion laser est augmentée au-delà de 10¹⁵ W cm⁻², nous démontrons que le rayonnement térahertz émis croît de manière non-monotone, dû au fait qu'il existe une valeur d'intensité maximisant l'énergie THz produite par chaque couche électronique. Finalement, nous avons étudié en géométrie 2D l'effet combiné de la photoionization et des forces pondéromotrices plasma à des intensités proches de 10¹⁸ W cm⁻², nous permettant d'obtenir des champs THz excédant le GV/m dans l'argon. Ces dernières forces augmentent avec l'intensité laser et ouvrent des perspectives intéressantes pour la génération de champs térahertz très intenses dans le régime relativiste de l'interaction laser-matière. / The electromagnetic spectrum has a narrow frequency band, lying between microwaves and infrared, known as terahertz (THz) waves and extending from 0.1 to 30 THz. These waves, inaccessible until a recent past because they are situated at the boundary between electronics and optics, are raising interest because of their promising applications in several areas such as medical imaging and remote identification of explosives. However, producing intense THz radiation with amplitude belonging to the GV/m range should allow us to probe efficiently remote materials, which still remains an open issue. The goal of this thesis is precisely to study the generation of such intense THz radiation by coupling two ultrashort laser pulses -the fundamental and its second harmonic- able to ionize a gas target (for example, air or argon). The plasma created by photoionization then acts as a nonlinear frequency converter, transforming part of the laser energy into the THz band via a wide range of physical mechanisms including the Kerr effect, the photoionization and ponderomotive forces induced inside the plasma. By means of an analytical and numerical modeling of these key mechanisms, we have comprehensively examined the generation of THz pulses at laser intensities ranging from characteristic intensities met in laser filamentation (10¹²-10¹⁴ W cm⁻²) to sub-relativistic intensities (10¹⁵-10¹⁸ W cm⁻²), this latter intensity range having been little investigated so far in this domain. It is already known that at low intensities laser-induced photionization dominates in terahertzgeneration, which strongly depends on the configuration of the laser colours (or harmonics). We demonstrate here that, beyond the classical two-colour laser setup, coupling several laser frequencies following the harmonics of a sawtooth waveform is optimal to enhance THz production. Simulations predict a laser-to-THz energy conversion efficiency of 2% with four colours, a record value unequalled so far. Moreover, with an experiment realized in air, we identify the Kerr signature in the emitted THz spectrum, which, even weaker, looks complentary to the plasma signature. When the intensity of the laser pulse is increased beyond 10¹⁵ W cm⁻², we prove that the growth of the emitted terahertz radiation is nonmonotonic, due to the fact that that there exists an optimal intensity value that maximizes the THz energy produced by each electronic shell of the irradiated atom. Finally, we have studied in 2D geometry the combined effect of photoionization and ponderomotive forces at intensities close to 10¹⁸ W cm⁻², allowing us to obtain THz fields exceeding the GV/m threshold in argon. These latter forces increase with the laser intensity and thus open interesting perspectives for the generation of very intense terahertz fields in the relativistic regime of laser-matter interaction. / El espectro electromagnético posee una zona estrecha, localizada entre las microondas y la radiación infrarroja, llamada región de las ondas Terahertz (THz), que está comprendida entre 0.1 et 30 THz. Estas ondas, durante mucho tiempo inaccesibles debido a que se encuentran situadas en la frontera entre la electrónica y la óptica, están despertando un interés creciente por la gran cantidad de aplicaciones prometedoras que poseen en diversos sectores científicos, como la imagen médica y la identificación de explosivos a distancia. No obstante, la producción de radiación THz intensa, de amplitud cercana al GV/m, la cual debería permitir sondar materiales energéticos a distancia, sigue siendo una cuestión abierta. Esta tesis tiene precisamente como objetivo el estudio de la generación de dicha radiación THz intensa acoplando dos pulsos láser —una onda fundamental y su segundo armónico— capaces de ionizar un gas (por ejemplo, aire o argón). El plasma creado de este modo desempeña el papel de convertidor no lineal de frecuencia, transformando una parte de la energía del láser en la banda THz mediante una rica gama de mecanismos físicos, entre los que destacan el efecto Kerr, la fotoionización y las fuerzas ponderomotrices inducidas dentro del plasma. Gracias a un trabajo de modelización tanto numérico como analítico de estos mecanismos clave, hemos examinado de forma integral la generación de pulsos THz a intensidades láser yendo desde las encontradas en la filamentación láser (10¹²-10¹⁴ W cm⁻²) hasta las cercanas al límite relativista (10¹⁵-10¹⁸ W cm⁻²), habiendo sido este último rango de intensidades poco estudiado en este campo hasta el presente. Ya es sabido que a bajas intensidades la fotoionización inducida por el láser domina la emisión Terahertz, la cual depende enormemente de la configuración de los colores (o armónicos) del láser. Demostramos aquí que, más allá de la “clásica” configuración del láser en dos colores, acoplar varias fréquencias láser siguiendo los armónicos de una forma de onda en diente de sierra es óptimo para incrementar la producción THz. Las simulaciones predicen una eficacia de conversión de energía THz de 2% empleando cuatro colores, un valor récord inigualado hasta hoy. Además, ayudándonos de un experimento realizado en aire, identificamos la firma del effecto Kerr en el espectro THz emitido, la cual, pese a ser más débil, resulta complementaria a la firma del plasma. Cuando se aumenta la intensidad del láser más allá de 10¹⁵ W cm⁻², demostramos que la radiación Terahertz emitida crece de manera no monotóna, debido a que existe un valor de intensidad que maximiza la energía THz producida por cada capa electrónica. Finalmente, hemos estudiado en geometría 2D el efecto conjunto de la fotoionización y de las fuerzas ponderomotrices a intensidades próximas a 10¹⁸ W cm⁻², lo que nos permite obtenter campos THz cuyas amplitudes exceden el GV/m en argon. Estas últimas fuerzas aumentan con la intensidad láser y, por tanto, ofrecen perspectivas interesantes para la generación de campos Terahertz muy intensos en un régimen de interacción láser-materia relativista.
64

Étude de la dynamique électronique ultra-rapide suivant l’ionisation de la molécule de Caféine par la méthode TD-DFTB / Study of the ultrafast electronic dynamics following ionization of Caffeine molecule with the TD-DFTB method

Meziane, Mehdi 24 July 2019 (has links)
Depuis la fin des années 80 et l'avènement de la femto-chimie nous pouvons sonder la dynamique nucléaire à l’œuvre au cours de réactions chimiques à l'échelle de la femtoseconde. Plus récemment, la production d'impulsions lasers attosecondes isolées permet d'atteindre une résolution temporelle plus grande encore. Par elle, il devient possible de sonder la dynamique d'origine purement électronique induite par photo-excitation, et notamment photo-ionisation. Dans ce contexte, avec le développement des techniques de spectroscopie résolue en temps, il est important de disposer d'approches théoriques fiables aidant à l'appréhension de résultats toujours plus nombreux dans ce domaine. La tâche et néanmoins rendue difficile par le caractère profondément multi-électronique des processus en jeu. Traiter de tels effets précisément requiert une grande puissance de calcul, ce qui a limité les études disponibles aujourd'hui à de petits systèmes. Au cours de cette thèse, j'ai tenté d'expliquer les résultats d'une expérience de type "pompe-sonde" (UVX-IR) sur molécule de Caféine menée par une équipe de collaborateurs à l'Institut lumière matière. J'ai utilisé pour cela une méthode basée sur la théorie de la fonctionnelle de la densité dépendante du temps, la TD-DFTB dont le coût numérique réduit par rapport à cette dernière permet des calculs sur de gros systèmes en temps raisonnable. J'y présente une étude du paysage énergétique de la Caféine ainsi que le résultat de 2 approches distinctes pour simuler l'ionisation de ce composé. La première, l'approximation de l'ionisation soudaine cosiste à retirer "à la main" un électron à l'une des orbitales Kohn-Sham occupées du système neutre et ne tient pas compte du champ laser. La seconde à recours à un potentiel imaginaire (ou CAP - Complex Absorbing Potential) pour simuler la perte d'electrons, et tiens explicitement compte du champ laser / Since the advent of femtochemistry, at the end of 1980's, we are able to probe the nuclear dynamics underlying chemical reactions down to the scale of a femtosecond. More recently, the production of isolated attosecond pulses allows to reach an even bigger temporal resolution. It is now possible to probe the ultrafast electronic dynamics following a photo-excitation. In this context, with the developpement of time-resolved spectroscopy techniques, it is important to have reliable theorectical approaches in order to apprehend the increasing number of results in this field. This task is made difficult by the intrinsic multi-electronic nature processes at play. The precise treatment of such effects requires a considerable computing power, and have thus limited the availables studies to relatively small systems. In this thesis, I tried to explain the outcome of a "pump-probe" (XUV-IR) experiment on Caffeine molecule realized by our collaborators at the Insitut Lumière Matière. To do so, I used a method based on density functional theory, the TD-DFTB, which lower numerical cost with respect to TD-DFT allows calculation on bigger compounds. I present in the document a study of the energetical landscape of Caffeine, and 2 approaches to simulate ionization. The first one, the so called sudden-ionization approximation consist to retrieve "by hand" an electron from the occupied Kohn-Sham orbitals of the neutral system without taking the laser field into account. The other one is based on the introduction of a complex absorbing potential (CAP) to account for electron loss and take explicitely the laser field into account.
65

Dynamics of Highly Charged Finite Systems Induced by Intense X-ray Pulses

Camacho Garibay, Abraham 15 September 2016 (has links)
The recent availability of X-ray Free Electron Lasers (XFELs) has opened a completely new and unexplored regime for the study of light-matter interactions. The extremely bright intensities delivered by XFELs can couple many photons into the target, turning well known interactions such as photoionization and scattering into new, non-linear, complex many-body phenomena. This thesis reports theoretical investigations aiming to improve the understanding of the fundamental processes and dynamics triggered by intense X-ray pulses, with a special focus in finite systems such as molecules and clusters. Sequential multiple photoionization in atomic clusters was investigated, where previous observations were extended for higher charge states where direct photoionization is frustrated. Through a rate equation study and subsequent molecular dynamics simulations, it was found that frustrated ionization is partially responsible for the low-energy peak observed in the electron energy spectrum. The influence of plasma evaporation over the formation of the sequential low-energy peak was also investigated, identifying the effects of the system size and photon energy. Multiple channel ionization was also investigated for the case of fullerenes. This is done through a series of studies, starting from a simplified rate equation scheme, and culminating with full molecular dynamics simulations. From these results, a good insight was obtained over the origin, physical meaning, and relevant parameters that give rise to the complicated features observed in the electronic spectra. The mechanisms responsible of all these features are expected to be present in other systems, making these results quite general. Diffractive imaging of biomolecules was studied in a final step, with a particular focus on the influence of intramolecular charge transfer mechanisms. To this end a conformer of T4 Lysozyme was used, a representative enzyme with well known structure. Charge migration is found to allow for additional processes such as proton ejection, a mechanism which enables an efficient release of energy from the system. This mechanism considerably suppresses structural damage for heavy ions, improving the quality of the measured diffraction patterns.
66

Primäre Photoprozesse atmosphärischer Spurengase / Primary photoprocesses of atmospheric trace gases

Plenge, Jürgen 09 January 2003 (has links)
Halogenhaltigen atmosphärischen Spurengasen wird eine Schlüsselrolle bei lokalen, regionalen und globalen Veränderungen der Erdatmosphäre zugesprochen. Die Photolyse dieser Stoffe durch ultraviolette Strahlung der Sonne führt zum Eintrag reaktiver Atome und Radikale in die Atmosphäre. Dies betrifft vor allem den stratosphärischen Ozonabbau, der nach heutigem Kenntnisstand durch Reaktionszyklen katalysiert wird und bei dem die Photolyse halogenhaltiger Spurengase an zentraler Stelle beteiligt ist. Im Rahmen dieser Arbeit wurden primäre Photoprozesse halogenhaltiger atmosphärischer Spurengase in Laborexperimenten charakterisiert. Dabei bestand das Ziel in der Bestimmung von primären Quantenausbeuten und Verzweigungsverhältnissen konkurrierender Photolysekanäle. Hierfür wurde ein neuartiger experimenteller Ansatz genutzt, der die folgenden Komponenten beinhaltet: (a) Photolyse der Spurengase durch gepulste ultraviolette Laserstrahlung unter stoßfreien Bedingungen, (b) Ein-Photon-Ionisation der neutralen Photolyseprodukte mittels durchstimmbarer Vakuum-UV-Strahlung und (c) Identifizierung der gebildeten Photoprodukt-Ionen durch Flugzeit-Massenspektrometrie. Dieser Ansatz ermöglicht die Identifizierung aller gebildeten Photolyseprodukte, die Bestimmung des Anregungszustandes der Photoprodukte durch Ausnutzung von Autoionisationsprozessen und die Bestimmung von Verzweigungsverhältnissen und Quantenausbeuten konkurrierender Photoprozesse.Im einzelnen wurden die atmosphärischen Spurengase Chlormonoxid (ClO) und sein Dimer (Cl2O2), Nitrylchlorid (ClNO2), Brommonoxid (BrO) und Bromnitrat (BrONO2) untersucht. Die Resultate können zur Verfeinerung atmosphärischer Modelle und deren Prognosefähigkeit beitragen. Insbesondere können die Ergebnisse auch einen Beitrag zur zuverlässigen Interpretation von Ergebnissen aus Feldstudien leisten.
67

Photodissoziation von Polyhalogenmethanen in Fluiden: Kurzzeitdynamik und Mechanismen / Photodissociation of polyhalomethanes in fluids: Ultrafast dynamics and mechanisms

Wagener, Philipp 29 April 2008 (has links)
No description available.
68

Rare-gas clusters in intense VUV laser fields

Georgescu, Ionut 09 January 2009 (has links) (PDF)
A hybrid quantum-classical approach to the interaction of atomic clusters with intense laser fields in the vacuum ultra-violet (VUV) has been developed. Much emphasis is put on localized electrons, those quasi-free electrons which localize about the ions and screen them. These electrons set a time scale, which is used to interpolate between the quantum, rate based description of photon absorption by bound electrons and the classical, deterministic description of the cluster nano-plasma. Typical observables such as total energy absorption, electron and ion spectra are in very good agreement with the experimental findings. A scheme to probe the multi-electron motion in clusters with attosecond laser pulses is introduced. Conventional final state measurements in the energy domain cannot provide information about earlier states of the system due to the incoherent nature of the dynamics. Time-delayed attosecond pulses in the extreme ultra-violet (XUV) are used to probe the transient charging of the cluster ions during the interaction with the laser by measuring the kinetic energy of the electrons detached by the probe pulse. This information is otherwise lost at later times due to recombination. Knowledge about the transient charging would also shed more light on the still controversial subject of the energy absorption mechanisms in the VUV regime. Moving to shorter duration of the excitation, the characteristic time-scales for ionization and plasma equilibration are inversed. An attosecond laser pulse in the VUV regime creates a dense, warm nano-plasma far from equilibrium. Time-delayed attosecond pulses in the XUV probe then both the creation and the relaxation. The latter shows the breakup of the Bogoliubov hierarchy of characteristic times, indicating strongly-coupled plasma dynamics and drawing parallels to the relaxation of extended ultra-cold neutral plasmas with millions of particles.
69

Dynamik endlicher Vielteilchen-Systeme in intensiven Röntgenlaserpulsen

Gnodtke, Christian 21 April 2011 (has links) (PDF)
Die Arbeit beschäftigt sich mit der neuartigen Wechselwirkung von intensiven und ultrakurzen Röntgenlaserpulsen mit atomaren endlichen Systemen, die derzeit durch eine neue Generation von Lichtquellen, sogenannter X-ray free-electron laser (XFEL) zugänglich gemacht wird. Eine der Vorzeigeanwendungen der XFELs ist die zukünftig potentiell mögliche Strukturbestimmung endlicher nicht-periodischer Systeme mit atomarer Auflösung durch Diffraktion. Hierbei stellt sich der durch die hohe notwendige Pulsintensität bedingte Strahlenschaden an dem System als limitierender Faktor heraus, der ein detailliertes Verständnis der durch Photoabsorption induzierten Dynamik voraussetzt, um diese Art der "Mikroskopie" zum Erfolg zu führen. Wir verwenden daher zur Beschreibung der laserinduzierten Dynamik ein mikroskopisches Modell in dem Photoionisation und inner-atomare Zerfallsprozesse durch quantenmechanische Raten behandelt werden und die Dynamik der Ionen und energetischen Elektronen in einer klassischen Molekulardynamik-Simulation erfasst wird. Eine Neuerung gegenüber bisherigen Modellen ist die Berücksichtigung der Ionisation von Atomen durch starke interne Felder in dem hoch-geladenen System. Durch eine Anwendung des Modells auf Neoncluster kann gezeigt werden, dass diese Feldionisation einen wichtigen Beitrag zur laserinduzierten Dynamik darstellt. Sie führt zur ultraschnellen Formation eines Nanoplasmas, welches sich im Kern des geladenen Clusters ansammelt und dort die Ladung der Clusterionen neutralisert. Hierdurch wird eine vorzeitige Coulomb-Explosion des Clusters vermieden. Es wird dargelegt, dass dieser Mechanismus der lokalen Schadensreduzierung durch die Einbettung des Clusters in ein Heliumtröpfchen auf den gesamten Cluster ausgeweitet werden kann, da durch Feldionisation und Migration von Elektronen die vollständige laserbedingte Aufladung des Clusters auf das Heliumtröpfchen transferiert wird. Eine Analyse der resultierenden Diffraktionsmuster bestätigt, dass der reduzierte Strahlenschaden am Cluster den Anwendungsbereich für Diffraktionsexperimente erheblich ausweitet. Kürzlich wurde am SLAC National Accelerator Laboratory der erste XFEL in Betrieb genommen. Eine Modifikation des Modells auf dort bereits erzielbare Wellenlängen wird genutzt um Vorhersagen über das Photoabsorptionsverhalten, aus dem alle weiteren Schäden folgen, an kleinen Neoncluster zu treffen. Hiermit lassen sich bereits jetzt durch den Vergleich zu Experimenten die wichtigen Schadensmechanismen und ihre theoretische Beschreibung testen. Es wird ferner das interessante Relaxationsverhalten des durch massive Photoionisation in XFEL-Strahlung erzeugten Elektronenplasmas untersucht. Diese neuartige Anregung erfolgt auf einer Femtosekunden-Zeitskala und produziert eine hohe Dichte an energetischen Elektronen. Wir beschreiben dieses Plasma durch ein generisches Modell seiner Vielteilchen-Dynamik. Hierbei kann der gesamte Parameterraum des Modells in vier Klassen unterteilt werden, die sich nach Anregungsgrad, der den Elektronenverlust des Plasmas regelt, und Anregungsdauer, die die transiente Dynamik beeinflusst, unterscheiden. Speziell der Bereich starker Anregung bei gleichzeitig kurzer Anregungsdauer zeigt ein interessantes neues Verhalten, bei dem sich eine Equilibrierung des Systems im Kontinuum andeutet.
70

Dynamik endlicher Vielteilchen-Systeme in intensiven Röntgenlaserpulsen

Gnodtke, Christian 08 December 2010 (has links)
Die Arbeit beschäftigt sich mit der neuartigen Wechselwirkung von intensiven und ultrakurzen Röntgenlaserpulsen mit atomaren endlichen Systemen, die derzeit durch eine neue Generation von Lichtquellen, sogenannter X-ray free-electron laser (XFEL) zugänglich gemacht wird. Eine der Vorzeigeanwendungen der XFELs ist die zukünftig potentiell mögliche Strukturbestimmung endlicher nicht-periodischer Systeme mit atomarer Auflösung durch Diffraktion. Hierbei stellt sich der durch die hohe notwendige Pulsintensität bedingte Strahlenschaden an dem System als limitierender Faktor heraus, der ein detailliertes Verständnis der durch Photoabsorption induzierten Dynamik voraussetzt, um diese Art der "Mikroskopie" zum Erfolg zu führen. Wir verwenden daher zur Beschreibung der laserinduzierten Dynamik ein mikroskopisches Modell in dem Photoionisation und inner-atomare Zerfallsprozesse durch quantenmechanische Raten behandelt werden und die Dynamik der Ionen und energetischen Elektronen in einer klassischen Molekulardynamik-Simulation erfasst wird. Eine Neuerung gegenüber bisherigen Modellen ist die Berücksichtigung der Ionisation von Atomen durch starke interne Felder in dem hoch-geladenen System. Durch eine Anwendung des Modells auf Neoncluster kann gezeigt werden, dass diese Feldionisation einen wichtigen Beitrag zur laserinduzierten Dynamik darstellt. Sie führt zur ultraschnellen Formation eines Nanoplasmas, welches sich im Kern des geladenen Clusters ansammelt und dort die Ladung der Clusterionen neutralisert. Hierdurch wird eine vorzeitige Coulomb-Explosion des Clusters vermieden. Es wird dargelegt, dass dieser Mechanismus der lokalen Schadensreduzierung durch die Einbettung des Clusters in ein Heliumtröpfchen auf den gesamten Cluster ausgeweitet werden kann, da durch Feldionisation und Migration von Elektronen die vollständige laserbedingte Aufladung des Clusters auf das Heliumtröpfchen transferiert wird. Eine Analyse der resultierenden Diffraktionsmuster bestätigt, dass der reduzierte Strahlenschaden am Cluster den Anwendungsbereich für Diffraktionsexperimente erheblich ausweitet. Kürzlich wurde am SLAC National Accelerator Laboratory der erste XFEL in Betrieb genommen. Eine Modifikation des Modells auf dort bereits erzielbare Wellenlängen wird genutzt um Vorhersagen über das Photoabsorptionsverhalten, aus dem alle weiteren Schäden folgen, an kleinen Neoncluster zu treffen. Hiermit lassen sich bereits jetzt durch den Vergleich zu Experimenten die wichtigen Schadensmechanismen und ihre theoretische Beschreibung testen. Es wird ferner das interessante Relaxationsverhalten des durch massive Photoionisation in XFEL-Strahlung erzeugten Elektronenplasmas untersucht. Diese neuartige Anregung erfolgt auf einer Femtosekunden-Zeitskala und produziert eine hohe Dichte an energetischen Elektronen. Wir beschreiben dieses Plasma durch ein generisches Modell seiner Vielteilchen-Dynamik. Hierbei kann der gesamte Parameterraum des Modells in vier Klassen unterteilt werden, die sich nach Anregungsgrad, der den Elektronenverlust des Plasmas regelt, und Anregungsdauer, die die transiente Dynamik beeinflusst, unterscheiden. Speziell der Bereich starker Anregung bei gleichzeitig kurzer Anregungsdauer zeigt ein interessantes neues Verhalten, bei dem sich eine Equilibrierung des Systems im Kontinuum andeutet.

Page generated in 0.1179 seconds