• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 31
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 110
  • 31
  • 27
  • 25
  • 22
  • 21
  • 19
  • 17
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Activation de la voie NF-kB par les protéines Tax des HTLV : Rôles des modifications post-traductionnelles et de la localisation de Tax

Bonnet, Amandine 15 November 2012 (has links) (PDF)
Le virus T lymphotrope humain de type 1 (HTLV-1, Human T cell Leukemia Virus type 1) est l'agent responsable de la leucémie à cellules T de l'adulte, une prolifération maligne de lymphocytes T CD4+. L'activation constitutive de la voie NF-kB dans les lymphocytes T exprimant la protéine virale Tax s'est révélée primordiale pour la prolifération et la transformation induites par HTLV-1. Selon le modèle classique, Tax agit à deux niveaux de la voie NF-kB. Dans le cytoplasme, Tax active constitutivement le complexe IKK (IKB Kinase) en se liant à sa sous-unité régulatrice NEMO/IKKy. Dans le noyau, Tax interagit directement avec les dimères NF-kB dans des corps nucléaires Tax. L'ubiquitinylation et la SUMOylation de Tax ont été initialement décrites comme nécessaires pour l'activation de la phase cytoplasmique et de la phase nucléaire respectivement. Cependant, les mécanismes régulateurs des modifications post-traductionnelles de Tax restent difficiles à identifier car il n'a pas été possible d'étudier séparément l'ubiquitinylation et la SUMOylation de Tax.Au laboratoire, nous avons généré et caractérisé fonctionnellement un nouveau mutant de Tax qui nous a permis de découpler les rôles de l'ubiquitinylation et de la SUMOylation de Tax. Tax- P79AQ81A est ubiquitinylé de façon quantitativement similaire à Tax mais présente une forte réduction (80%) de SUMOylation. De plus, Tax-P79AQ81A ne forme pas de corps nucléaires. Néanmoins, ces deux défauts ne semblent pas préjudiciables pour la capacité du mutant à activer la voie NF-KB non seulement dans des lignées cellulaires mais également dans des lymphocytes T CD4+ primaires. En parallèle, nous avons montré que les corps nucléaires Tax sont rarement présents dans des lymphocytes T chroniquement infectés par HTLV-1, renforçant l'idée que ces structures ne sont pas requises pour l'activation de la voie NF-KB et probablement pas pour les autres fonctions de Tax. Enfin, nous avons démontré que les capacités d'activation de la voie NF-KB de différents mutants de Tax sont fortement corrélées à leur niveau d'ubiquitinylation mais pas de SUMOylation, confirmant que l'ubiquitinylation de Tax est la modification essentielle pour l'activation de la voie NF-KB.Le virus HTLV-2 ne possède pas les propriétés transformantes du virus HTLV-1 et les propriétés de la protéine Tax2 comparées à celles de Tax1 pourraient être à l'origine des différences de pathogénicité entre les deux virus. Notre étude a révélé que, de façon surprenante, l'activation de la voie NF-KB par la protéine Tax2 est non seulement indépendante de la SUMOylation et de la formation des corps nucléaires comme pour Tax1, mais également indépendante d'une quelconque ubiquitinylation, suggérant des mécanismes différents d'activation du complexe IKK parTax1 et Tax2.Nos études, aussi bien de la protéine Tax1 que de la protéine Tax2, nous ont donc permis de revisiter le modèle actuel d'activation de la voie NF-kB en démontrant l'impact mineur de la SUMOylation et en révélant une différence majeure en ce qui concerne le rôle de l'ubiquitinylation, distinguant les virus HTLV-1 et HTLV-2
72

Thermodynamic Models for the Analysis of Quantitative Transcriptional Regulation

Denis Bauer Unknown Date (has links)
Understanding transcriptional regulation quantitatively is a crucial step towards uncovering and ultimately utilizing the regulatory semantics encoded in the genome. Transcription of a gene is induced by the binding of site-specific transcription factors (TFs) to so-called cis-regulatory-modules (CRMs). The frequency and duration of the binding events are influenced by the concentrations of the TFs, the binding affinities and location of the transcription factor binding sites (TFBSs) in the CRM as well as the properties of the TFs themselves (e.g. effectiveness, competitive interaction with other TFs). Modeling these interactions using a mathematical approach, based on sound biochemical and thermodynamic foundations, enables the understanding and quantitative prediction of transcriptional output of a target gene. In the thesis I introduce the developed framework for modeling, visualizing, and predicting the regulation of the transcription rate of a target gene. Given the concentrations of a set of TFs, the TFBSs in a regulatory DNA region, and the transcription rate of the target gene, the method will optimize its parameters to generate a predictive model that incorporates the regulatory mechanism of the observed gene. I demonstrate the generalization ability of the model by subjecting it to standard machine learning and hypothesis testing procedures. Furthermore, I demonstrate the potential of the approach by training the method on a gene in D. melanogaster and predicting the output of the homologous genes in 12 other Drosophila species where the regulatory sequence has evolved substantially but the regulatory mechanism was conserved. Finally, I investigate the proposed role-switching behaviour of TFs regulating the development of D. melanogaster, which suggests that SUMOylation is the biological mechanism facilitating the switch.
73

Thermodynamic Models for the Analysis of Quantitative Transcriptional Regulation

Denis Bauer Unknown Date (has links)
Understanding transcriptional regulation quantitatively is a crucial step towards uncovering and ultimately utilizing the regulatory semantics encoded in the genome. Transcription of a gene is induced by the binding of site-specific transcription factors (TFs) to so-called cis-regulatory-modules (CRMs). The frequency and duration of the binding events are influenced by the concentrations of the TFs, the binding affinities and location of the transcription factor binding sites (TFBSs) in the CRM as well as the properties of the TFs themselves (e.g. effectiveness, competitive interaction with other TFs). Modeling these interactions using a mathematical approach, based on sound biochemical and thermodynamic foundations, enables the understanding and quantitative prediction of transcriptional output of a target gene. In the thesis I introduce the developed framework for modeling, visualizing, and predicting the regulation of the transcription rate of a target gene. Given the concentrations of a set of TFs, the TFBSs in a regulatory DNA region, and the transcription rate of the target gene, the method will optimize its parameters to generate a predictive model that incorporates the regulatory mechanism of the observed gene. I demonstrate the generalization ability of the model by subjecting it to standard machine learning and hypothesis testing procedures. Furthermore, I demonstrate the potential of the approach by training the method on a gene in D. melanogaster and predicting the output of the homologous genes in 12 other Drosophila species where the regulatory sequence has evolved substantially but the regulatory mechanism was conserved. Finally, I investigate the proposed role-switching behaviour of TFs regulating the development of D. melanogaster, which suggests that SUMOylation is the biological mechanism facilitating the switch.
74

Thermodynamic Models for the Analysis of Quantitative Transcriptional Regulation

Denis Bauer Unknown Date (has links)
Understanding transcriptional regulation quantitatively is a crucial step towards uncovering and ultimately utilizing the regulatory semantics encoded in the genome. Transcription of a gene is induced by the binding of site-specific transcription factors (TFs) to so-called cis-regulatory-modules (CRMs). The frequency and duration of the binding events are influenced by the concentrations of the TFs, the binding affinities and location of the transcription factor binding sites (TFBSs) in the CRM as well as the properties of the TFs themselves (e.g. effectiveness, competitive interaction with other TFs). Modeling these interactions using a mathematical approach, based on sound biochemical and thermodynamic foundations, enables the understanding and quantitative prediction of transcriptional output of a target gene. In the thesis I introduce the developed framework for modeling, visualizing, and predicting the regulation of the transcription rate of a target gene. Given the concentrations of a set of TFs, the TFBSs in a regulatory DNA region, and the transcription rate of the target gene, the method will optimize its parameters to generate a predictive model that incorporates the regulatory mechanism of the observed gene. I demonstrate the generalization ability of the model by subjecting it to standard machine learning and hypothesis testing procedures. Furthermore, I demonstrate the potential of the approach by training the method on a gene in D. melanogaster and predicting the output of the homologous genes in 12 other Drosophila species where the regulatory sequence has evolved substantially but the regulatory mechanism was conserved. Finally, I investigate the proposed role-switching behaviour of TFs regulating the development of D. melanogaster, which suggests that SUMOylation is the biological mechanism facilitating the switch.
75

Thermodynamic Models for the Analysis of Quantitative Transcriptional Regulation

Denis Bauer Unknown Date (has links)
Understanding transcriptional regulation quantitatively is a crucial step towards uncovering and ultimately utilizing the regulatory semantics encoded in the genome. Transcription of a gene is induced by the binding of site-specific transcription factors (TFs) to so-called cis-regulatory-modules (CRMs). The frequency and duration of the binding events are influenced by the concentrations of the TFs, the binding affinities and location of the transcription factor binding sites (TFBSs) in the CRM as well as the properties of the TFs themselves (e.g. effectiveness, competitive interaction with other TFs). Modeling these interactions using a mathematical approach, based on sound biochemical and thermodynamic foundations, enables the understanding and quantitative prediction of transcriptional output of a target gene. In the thesis I introduce the developed framework for modeling, visualizing, and predicting the regulation of the transcription rate of a target gene. Given the concentrations of a set of TFs, the TFBSs in a regulatory DNA region, and the transcription rate of the target gene, the method will optimize its parameters to generate a predictive model that incorporates the regulatory mechanism of the observed gene. I demonstrate the generalization ability of the model by subjecting it to standard machine learning and hypothesis testing procedures. Furthermore, I demonstrate the potential of the approach by training the method on a gene in D. melanogaster and predicting the output of the homologous genes in 12 other Drosophila species where the regulatory sequence has evolved substantially but the regulatory mechanism was conserved. Finally, I investigate the proposed role-switching behaviour of TFs regulating the development of D. melanogaster, which suggests that SUMOylation is the biological mechanism facilitating the switch.
76

Exploring the role of SUMOylation in cellular transformation and colorectal cancer / Étude du role de la SUMOylation dans la transformation cellulaire et le cancer colorectal

Chalatsi, Eleftheria 25 September 2017 (has links)
La modification post-traductionnelle par SUMO régule des mécanismes essentiels des fonctions protéiques comme leurs interactions avec des protéines ou des acides nucléiques, leurs localisations subcellulaires, leurs stabilités ou encore leurs activités enzymatiques. La SUMOylation est un processus réversible qui fait intervenir des enzymes spécifiques. À l’aide de modèles murins génétiquement modifiés déficient pour l’enzyme unique E2, UBC9, nous avons pu caractériser les conséquences de l’hypoSUMOylation sur la transformation des cellules et l’oncogenèse colorectal. Les résultats obtenus in vitro montrent qu’une perte totale de la SUMOylation n’a pas d’effet significatif sur la survie des cellules primaires mais affecte très fortement celle des cellules transformées. De manière surprenante, la réduction de moitié de la quantité d’UBC9 augmente la prolifération des cellules transformées mais n’a aucun effet sur la prolifération des cellules primaires. Dans les modèles animaux des résultats contradictoires ont été obtenus. En effet, la réduction de moitié de la quantité d’UBC9 augmente le nombre de polypes intestinaux dans un modèle murin de cancer colorectale induit génétiquement (APC). Par contre, dans un modèle chimio-induite en présence d’un agent inflammatoire (AOM-DSS), la réduction de la quantité d’UBC9 réduit le nombre de polypes dans les colons des souris. Ces résultats permettent d’affiner nos connaissances sur le rôle de la SUMOylation et d’envisager que des inhibiteurs de la SUMOylation pourraient être utilisées en thérapeutique. Néanmoins, le niveau de SUMOylation devra alors être très strictement et finement contrôlé en fonction du type de cancers. / The post-translational modification by the Small Ubiquitin-like MOdifier (SUMO) is an essential regulatory mechanism of protein function affecting the interactions of its substrates with their protein and nucleic acid partners, their localization, stability or enzymatic activity. SUMOylation is a reversible process involving specific enzymes. Using genetically modified models deficient for the unique E2 enzyme, UBC9, we characterized the consequences of hypoSUMOylation in cellular transformation and colorectal cancer. The results obtained in vitro demonstrate that a total loss of SUMOylation does not have significant effects in the survival of primary cells but strongly affects the survival of transformed cells. Surprisingly however, the reduction in half of the quantity of UBC9 increased the proliferation of transformed cells but had no effect in the proliferation of primary cells. In animal models, contradictory results were obtained. More specifically, the reduction in half of the quantity of UBC9 increased the number of intestinal polyps in a murine model of genetically induced colorectal carcinogenesis (APC). On the contrary, in a chemical model consisting of mutagenic and an inflammatory agent (AOM-DSS), the reduction in half of UBC9 decreases the number of polyps in the colon of the mice. On the whole, these results allow us to increase our knowledge of SUMOylation and to envisage a possible use of SUMOylation inhibitors for cancer therapy, however the level of SUMOylation would have to be strictly and finely controlled depending on the type of cancer.
77

Controlling senescence by PML and PML nuclear bodies

Acevedo Aquino, Mariana de la Cruz 02 1900 (has links)
La sénescence cellulaire est une réponse aux stresses selon laquelle des cellules pouvant proliférer optent pour entrer dans un arrêt du cycle cellulaire en réponse à une variété de stimulations intrinsèques et extrinsèques telle que, par exemple, le raccourcissement des télomères, un stress oxydatif, des dommages à l’ADN ou l’activation constitutive d’oncogènes. Toutes ces stimulations ont en commun le potentiel d’initier ou de promouvoir une transformation néoplasique qui peut dégénérer en cancer. En fait, la sénescence est maintenant acceptée comme un mécanisme cellulaire autonome pour empêcher le développement du cancer et elle est reconnue, particulièrement dans les cellules humaines, pour s’établir et se maintenir à l’aide d’au moins deux voies de suppression tumorale majeures : les voies de p53/p21CIP et de p16INK4A/pRB. Ces deux voies sont capables d’activer et d’augmenter l’expression d’un autre suppresseur tumoral : la protéine PML. En tant que suppresseur de tumeur, PML est suffisant pour induire la sénescence dans des cellules normales, mais il n’arrive généralement pas à activer une réponse complète de sénescence dans les cellules cancéreuses. Considérant ces faits, le premier objectif de cette thèse était d’étudier le mécanisme de résistance des cellules cancéreuses contre la sénescence induite par PML. Nous avons trouvé que, dans des cellules normales, la surexpression de CDK4 ou de CDK6 (CDK4/6) est suffisante pour contourner la sénescence induite par PML. De même dans les cellules cancéreuses, l’expression de ces kinases, souvent retrouvées augmentées dans de nombreux cancers, prévient probablement l’induction d’une sénescence par PML. Effectivement, grâce à l’inhibition de l’expression et/ou de la fonction kinase des CDK4/6, nous avons réussi à restaurer un programme de sénescence dans des cellules cancéreuses. En fait, l’utilisation de palbociclib, un inhibiteur spécifique de CDK4/6 maintenant en essais cliniques, permet d’augmenter l’habileté de PML à induire un arrêt de croissance plus fort et plus durable dans des cellules en cultures ainsi qu’une meilleure réduction de la progression de tumeurs dans des souris. Cette sénescence plus complète corrèle avec une augmentation de la présence de marqueurs d’autophagie, une meilleure répression des gènes cibles des E2F et une signature d’expression de gènes correspondant à l’inhibition de la méthylation de l’ADN. Ce dernier point découle du fait que l’inhibition de CDK4/6 par le palbociclib promeut une dégradation par autophagie de la DNA méthyltransférase DNMT1. Nous avons aussi démontré que CDK4 est capable d’interagir avec DNMT1 et de le phosphoryler in vitro. Ces résultats soulignent la valeur potentielle des inhibiteurs de CDK4/6 en tant que modulateurs épigénétiques pour faciliter l’activation de la sénescence dans des cellules cancéreuses. La sénescence induite par PML est fortement liée aux modifications post-traductionnelles. Parmi ces dernières, la SUMOylation joue un rôle important dans la fonction d’échafaudeur de PML et dans la formation des corps de PML. Les corps de PML sont des structures nucléaires dynamiques stimulées par des stresses, comme l’activation d’oncogènes menant à la sénescence, et dont la formation permet la séquestration de protéines spécifiques pour leur régulation et/ou pour leur modification post-traductionnelle. À travers le recrutement de protéines, les corps de PML régulent de nombreuses fonctions cellulaires telles que la sénescence, l’apoptose, la réponse antivirale, la réponse aux dommages à l’ADN et la régulation de l’expression de gènes. Compte tenu de cela, le deuxième objectif de cette thèse était de caractériser le rôle de la SUMOylation dans la sénescence induite par un oncogène, soit par l’expression de l’oncogène RAS. À l’aide d’une analyse du protéome de SUMO3 dans les cellules sénescentes versus des cellules en croissances, nous avons pu identifier 25 sites de SUMOylation dans 23 protéines dont l’incidence était significativement régulée par la sénescence. Il est à noter que la plupart de ces protéines (un tiers) sont connues pour être associées au corps de PML. Curieusement, UBC9 (la seule enzyme E2 pour la SUMOylation) a été retrouvée plus SUMOylée dans la sénescence sur sa Lys-49. Des études fonctionnelles d’un mutant d’UBC9 pour la Lys-49 ont démontré une diminution de son association aux corps de PML et la perte de la capacité d’UBC9 surexprimé à retarder la sénescence. De plus, la localisation forcée d’UBC9 dans les corps de PML gêne la sénescence induite par PML ou RAS. Ces résultats nous permettent de proposer des fonctions pro- et anti-sénescence de la SUMOylation des protéines, particulièrement pour UBC9. Mots-clés : Sénescence, PML, CDK4 et CDK6 (CDK4/6), méthylation de l’ADN, palbociclib, corps de PML, SUMOylation, UBC9 / Cellular senescence is a stress response wherein proliferating competent cells undergo a stable cell cycle arrest in response to a variety of intrinsic and extrinsic stimuli, including telomere shortening, oxidative stress, DNA damage or the constitutive activation of oncogenes among others. All these stimuli have in common the potential to initiate or promote neoplastic transformation that can degenerate in cancer. Senescence, particularly in human cells, is established and maintained by at least two major tumor suppressor pathways: the p53/p21CIP and p16INK4A/pRB pathways and is now accepted as a potent cell-autonomous mechanism for suppressing the development of cancer. Both pathways are able to activate and increase the expression of the tumor suppressor protein PML. As a tumor suppressor, PML is sufficient to induce senescence in normal cells; however, upon the same stimuli, cancer cells fail to engage a complete senescence response. Given this, the first aim of this thesis is to investigate the resistance mechanisms of cancer cells to PML-induced senescence. We found that overexpression of the CDK4 and CDK6 (which are often up-regulated in cancer) are sufficient to bypass PML-induced senescence in normal cells. In cancer cells the expression of these kinases impairs the PML-induced senescence. By inhibiting the expression and/or function of CDK4/6 we were able to restore the senescence program in cancer cells. Also, the specific CDK4/6 inhibitor palbociclib (currently used in clinical trials) increased the ability of PML to regulate a stronger and more permanent growth inhibition in cell culture and decreased tumor progression in mice. This complete senescence response correlated with an increase in autophagy markers, repression of E2F target genes and a gene expression signature of blocked DNA methylation. Furthermore, CDK4/6 inhibition by palbociclib promotes autophagy-dependant degradation of the DNA methyltransferase DNMT1. More important, we were able to demonstrate that CDK4 directly interacts and phosphorylates DNMT1 in vitro. These results highlight the potential value of CDK4/6 inhibitors as epigenetic modulators to facilitate activation of cellular senescence in cancer cells. PML-induced senescence is tightly regulated by post-translational modifications (PTMs). Among these PTMs, SUMOylation plays an important role in the scaffold function of PML and the formation of the PML-NBs (PML-Nuclear Bodies). PML-NBs are dynamic structures triggered by stress such as oncogene-induced senescence, and its formation allows the sequestration of target proteins for their regulation and/or its post-translational modification. By protein recruitment, PML-NBs regulate several cellular functions such as senescence, apoptosis, antiviral response, DNA repair and gene regulation. Given this; the second aim of this thesis is to characterize the role of SUMOylation in oncogene mediated cellular senescence, specifically by the expression of the oncogene RAS. By a SUMO3 proteome analysis of senescent cells we were able to identify 25 SUMO sites in 23 proteins that were significantly regulated during senescence. Importantly, most of these proteins were PML-NB associated. Interestingly, UBC9 (the only SUMO E2 enzyme), was found more SUMOylated in senescence on its Lys-49. Functional studies of a UBC9 mutant in Lys-49 showed a decreased association to PML-NBs and the loss of UBC9’s ability to delay senescence. Moreover, forced localization of UBC9 into PML-NBs counteracted RAS and PML-induced senescence. These results allowed us to propose a pro- and an anti-senescence function of protein SUMOylation, specifically for UBC9. Keywords: Senescence, PML, CDK4/6, DNA methylation, palbociclib, PML-NBs, SUMOylation, UBC9
78

Régulation de l'activité transcriptionnelle du récepteur nucléaire FXR par la ghréline et les modifications post-traductionnelles

Caron, Véronique 12 1900 (has links)
Le récepteur X des farnésoïdes (FXR) fait partie de la superfamille des récepteurs nucléaires et agit comme un facteur de transcription suite à la liaison d’un ligand spécifique. Le récepteur FXR, activé par les acides biliaires, joue un rôle essentiel dans le métabolisme des lipides et du glucose en plus de réguler l’homéostasie des acides biliaires. Notre laboratoire a récemment mis en évidence une nouvelle voie de régulation du récepteur PPARγ en réponse au récepteur de la ghréline. En effet, la ghréline induit l’activation transcriptionnelle de PPARγ via une cascade de signalisation impliquant les kinases Erk1/2 et Akt, supportant un rôle périphérique de la ghréline dans les pathologies associées au syndrome métabolique. Il est de plus en plus reconnu que la cascade métabolique impliquant PPARγ fait également intervenir un autre récepteur nucléaire, FXR. Dans ce travail, nous montrons que la ghréline induit l’activation transcriptionnelle de FXR de manière dose-dépendante et induit également la phosphorylation du récepteur sur ses résidus sérine. En utilisant des constructions tronquées ABC et CDEF de FXR, nous avons démontré que la ghréline régule l’activité de FXR via les domaines d’activation AF-1 et AF-2. L’effet de la ghréline et du ligand sélectif GW4064 sur l’induction de FXR est additif. De plus, nous avons démontré que FXR est la cible d’une autre modification post-traductionnelle, soit la sumoylation. En effet, FXR est un substrat cellulaire des protéines SUMO-1 et SUMO-3 et la sumoylation du récepteur est ligand-indépendante. SUMO-1 et SUMO-3 induisent l’activation transcriptionnelle de FXR de façon dose-dépendante. Nos résultats indiquent que la lysine 122 est le site prédominant de sumoylation par SUMO-1, quoiqu’un mécanisme de coopération semble exister entre les différents sites de sumoylation de FXR. Avec son rôle émergeant dans plusieurs voies du métabolisme lipidique, l’identification de modulateurs de FXR s’avère être une approche fort prometteuse pour faire face à plusieurs pathologies associées au syndrome métabolique et au diabète de type 2. / The farnesoid X receptor (FXR) is a ligand-activated transcription factor within the nuclear receptor superfamily. FXR is activated by bile acids and plays a crucial role in the regulation of glucose and lipid metabolism and in bile acid homeostasis. Our group has recently identified the contribution of the ghrelin receptor in the regulation of the nuclear receptor PPARγ. Indeed, ghrelin triggers transcriptional activation of PPARγ through a concerted signaling cascade involving Erk1/2 and Akt kinases. These results support the peripheral actions of ghrelin in diseases associated with the metabolic syndrome. It is recognized that there is interplay between PPARγ metabolic cascade and FXR. Here, we demonstrate that ghrelin promotes FXR transcriptional activity in a dose-dependent manner and also promotes its phosphorylation on serine residues. By using truncated ABC and CDEF constructs of FXR, we found that ghrelin induces FXR activity through the AF-1 and AF-2 activation domains. The ghrelin-induced FXR activity is additive to the induction by the selective agonist GW4064. Also, we demonstrate that FXR is the target of sumoylation, another post-translational modification. In particular, FXR is modified by SUMO-1 and SUMO-3 in a ligand-independent manner. SUMO-1 and SUMO-3 promote dose-dependent transcriptional activity of FXR. Our results show that lysine 122 is the prevalent site of sumoylation by SUMO-1, though a compensation mechanism seems to exist between the various sumoylation sites of FXR. With its emerging role in several metabolic cascades, identification of FXR modulators represents a promising approach for the treatment of the metabolic syndrome and type 2 diabetes.
79

Mécanismes d'action des antioestrogènes totaux

Hilmi, Khalid 04 1900 (has links)
Le cancer du sein est le cancer qui a la plus forte fréquence au Canada. En 2012, on estime que 23 200 nouveaux cas de cancer du sein seront diagnostiqués. Deux tiers des tumeurs mammaires expriment ou surexpriment le récepteur des oestrogènes α (ERα). De même, les oestrogènes sont importants pour la croissance de ces tumeurs. La présence des récepteurs hormonaux est un critère qui détermine le choix de la thérapie; à cet égard, le ciblage des récepteurs des oestrogènes par les antioestrogènes a pour but d’inactiver ces récepteurs et diminuer leur contribution à la croissance tumorale. Les antioestrogènes sont des inhibiteurs compétitifs de ERα. Tamoxifene est le médicament le plus utilisé pour traiter les tumeurs mammaires ER+ de tous les stades, avant ou après la ménopause. Tamoxifene est antioestrogène partiel ou SERM qui a un profile mixte d’activités agonistes et antagonistes. Fulvestrant ou ICI 182, 780 est un antioestrogène de type total ou SERD dépourvu de toute activité agoniste. Ce composé est utilisé en clinique chez les femmes après la ménopause ayant des tumeurs mammaires avancées. Fulvestrant constitue, donc, une deuxième ligne thérapeutique en cas de rechute après à un traitement par Tamoxifene. Afin de comprendre le potentiel thérapeutique de Fulvestrant, il est primordial d’étudier son impact sur ERα. Actuellement, la polyubiquitination et la dégradation de ERα sont les mécanismes les plus connus pour expliquer l’inactivation de ERα par Fulvestrant. Par ailleurs, en utilisant des modèles cellulaires ER+ et ER-; nous avons montré que les antioestrogènes totaux induisent une insolubilité de ERα indépendamment de leur capacité à induire sa dégradation. L’insolubilité corrèle avec l’association de ERα avec la matrice nucléaire et avec l’inhibition de sa transactivation. L’hélice H12 du domaine de liaison du ligand joue un rôle important dans l’insolubilité et l’inactivation de ERα par les antioestrogènes totaux. Par ailleurs, les antioestrogènes totaux se distinguent par leur capacité à induire la SUMOylation de ERα par SUMO1 et SUMO2/3. La SUMOylation est rapide et précède la dégradation de ERα dans cellules ER+. À l’aide de dérivés de l’antioestrogène total ICI 164, 384, nous avons montré que la chaine latérale des antioestrogènes totaux est à la base de l’induction de la SUMOylation et de l’inactivation de ERα. De plus, la SUMOylation semble être une marque d’inhibition, car la déSUMOylation restaure une activité de ERα en présence des antioestrogènes totaux. L’hélice H12 du LBD et le domaine de liaison à l’ADN sont requis pour l’induction de la SUMOylation. La recherche de protéines impliquées dans l’inactivation et dans la SUMOylation a permis d’identifier le facteur de remodelage de la chromatine ACF dans le même complexe que ERα. De manière similaire à la SUMOylation, le recrutement de ACF est précoce et constitue une propriété spécifique des antioestrogènes totaux. D’autre part, Fulvestrant induit le recrutement de ACF au niveau du promoteur du gène cible des oestrogènes pS2, ce qui suggère une contribution du remodelage de la chromatine dans les mécanismes d’action des antioestrogènes totaux. La surexpression de la DéSUMOylase SENP1 abolit le recrutement de ACF ce qui indique un rôle de la SUMOylation dans le recrutement de ACF. De même, l’hélice H12 du LBD de ERα constitue un lien entre l’inactivation de ERα et le recrutement de ACF. L’insolubilité, la SUMOylation et l'interaction du complexe ACF sont le reflet des mécanismes d’action des antioestrogènes totaux. Ces observations peuvent être utilisées comme des critères fonctionnels pour identifier d’autres composés avec de meilleures propriétés pharmacologiques que Fulvestrant. / Approximately 70% of breast tumors express or overexpress estrogen receptor alpha (ERα) and are treated with antiestrogens (AEs), which act as competitive inhibitors of this receptor. Tamoxifen has been widely used for the treatment of ERα-positive tumors, but intrinsic or acquired resistance can lead to tumor recurrence. Full AEs such as Fulvestrant (ICI182, 780) are currently used to treat postmenopausal women with ERα-positive breast cancers with disease progression following Tamoxifen therapy. Unlike Tamoxifen and other Selective estrogen receptor modulators (SERMs), full AEs (SERDs) are devoid of any agonistic activity. It is currently thought that the capacity of full AEs to induce rapid polyubiquitination and degradation of ERα underlies their complete suppression of ERα signalling. On the one hand, we show a correlation between ICI 182, 780 induced ERα inhibition and its association with the insoluble fraction. This insolubility corresponds to an immobilization within the nuclear matrix and takes place in the absence of an accelerated turn over. The helix 12 in the ligand binding domain is important in the induction of insolubility and inactivation. On the other hand, we identify ERα as a target for Small Ubiquitin-like Modifier (SUMO) posttranslational modification by SUMO1 and SUMO2/3 specifically when liganded with full AEs. Induction of SUMOylation is rapid and precedes receptor degradation in ERα-positive breast cancer cells. On the other hand, the SERMs do not induce SUMOylation. The helix 12 in the ligand binding domain and the DNA binding domain play a role in the induction of SUMOylation in the presence of full AEs. Structure activity relationship experiments with full AE derivatives showed that the induction of SUMOylation is correlated with the degree of inhibition of ERα-mediated transcription. In addition, preventing SUMOylation by overexpression of a SENP1 deSUMOylase abolished the inverse agonist properties of full AEs without increasing activity in the presence of agonists or of Tamoxifen. In our attempt to screen for factors with a possible role in SUMOylation and inactivation, we show that the treatment with SERDs but not SERMs, induces a rapid interaction between ERα and the human ATP-utilizing chromatin assembly and remodeling factor (ACF) in ERα-negative and ERα-positive cell lines. The helix 12 is important since introducing single point mutations in this helix lead to an increased solubility and abrogate ACF recruitment. Using ChIP, we find an increase of ACF1 subunit association with proximal promoter of estrogen target gene pS2 suggesting a possible role of ACF in remodeling in this promoter. ACF recruitment is SUMOylation dependant since the overexpression of DeSUMOylase SENP1 abolishes the interaction between ERα and ACF. Together, induction of insolubility, SUMOylation and ACF recruitment are characteristic properties of full antiestrogens that contribute to their specific activity profile. They can be used to screen for new compounds with an improved therapeutic potential.
80

SUMOylation modulates α-synuclein toxicity and fibril formation / SUMOylierung verändert die Toxizität und Fibrillenbildung von α-Synuklein

Krumova, Petranka 03 June 2009 (has links)
No description available.

Page generated in 0.0751 seconds