• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 14
  • 11
  • Tagged with
  • 43
  • 43
  • 31
  • 31
  • 28
  • 22
  • 14
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Propriété de Bogomolov pour les modules de Drinfeld à multiplications complexes

Bauchère, Hugues 16 September 2013 (has links) (PDF)
Notons A:=Fq[T] et k:=Fq(T). Soient φ un A-module de Drinfeld défini sur la clôture algébrique de k et h sa hauteur canonique. Soient K/k une extension finie et L/K une extension galoisienne infinie. Par analogie avec la terminologie utilisée par E. Bombieri et U. Zannier, on dit que L a la propriété (B,φ) s'il existe une constante strictement positive qui minore h sur L privé des points de torsion de φ. S. David et A. Pacheco ont montré que pour tout module de Drinfeld φ, la clôture abélienne de K a la propriété (B,φ). Dans cette thèse nous généralisons, dans le cadre des modules de Drinfeld à multiplications complexes, ce résultat.
12

On Z_p-extensions of real abelian number fields

Nuccio Mortarino Majno Di Capriglio, Fillipo A.E. 21 May 2009 (has links) (PDF)
Cette thèse s'articule autour de la Conjecture de Greenberg en théorie d'Iwasawa, qui prédit que les nombres de classes des corps de nombres appartenants à une Z_p extension d'un corps totalement réel sont bornés. On discute des critères de validité de la Conjecture et une application de la Conjecture à l'arithmétique des Unités Cyclotomiques.
13

Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie / Class group computations in number fields and applications to cryptology

Gélin, Alexandre 22 September 2017 (has links)
Dans cette thèse, nous nous intéressons au calcul du groupe de classes d'un corps de nombres. Nous débutons par décrire un algorithme de réduction du polynôme de définition d'un corps de nombres. Il existe une infinité de polynômes qui définissent un corps de nombres fixé, avec des coefficients arbitrairement gros. Notre algorithme calcule celui qui a les plus petits coefficients. L'avantage de connaître un petit polynôme de définition est qu'il simplifie les calculs entre éléments de ce corps de nombres, en impliquant des quantités plus petites. En outre, la connaissance d'un tel polynôme permet l'utilisation d'algorithmes plus efficaces que dans le cas général pour calculer le groupe de classes. L'algorithme général pour calculer la structure du groupe de classes repose sur la réduction d'idéaux, vus comme des réseaux. Nous décrivons et simplifions l'algorithme présenté par Biasse et Fieker en 2014 à ANTS et approfondissons l'analyse de complexité. Nous nous sommes aussi intéressés au cas des corps de nombres définis par un polynôme à petits coefficients. Nous décrivons un algorithme similaire au crible par corps de nombres (NFS) dont la complexité en fonction des paramètres du corps de nombres peut atteindre L(1/3). Enfin, nos algorithmes peuvent être adaptés pour résoudre un problème lié : le Problème de l'Idéal Principal. Étant donné n'importe quelle base d'un idéal principal (généré par un seul élément), nous sommes capables de retrouver ce générateur. Cette application de nos algorithmes fournit une attaque efficace contre certains schémas de chiffrement homomorphe basés sur ce problème. / In this thesis, we focus on class group computations in number fields. We start by describing an algorithm for reducing the size of a defining polynomial of a number field. There exist infinitely many polynomials that define a specific number field, with arbitrarily large coefficients, but our algorithm constructs the one that has the absolutely smallest coefficients. The advantage of knowing such a ``small'' defining polynomial is that it makes calculations in the number field easier because smaller values are involved. In addition, thanks to such a small polynomial, one can use specific algorithms that are more efficient than the general ones for class group computations. The generic algorithm to determine the structure of a class group is based on ideal reduction, where ideals are viewed as lattices. We describe and simplify the algorithm presented by Biasse and Fieker in 2014 at ANTS and provide a more thorough complexity analysis for~it. We also examine carefully the case of number fields defined by a polynomial with small coefficients. We describe an algorithm similar to the Number Field Sieve, which, depending on the field parameters, may reach the hope for complexity L(1/3). Finally, our results can be adapted to solve an associated problem: the Principal Ideal Problem. Given any basis of a principal ideal (generated by a unique element), we are able to find such a generator. As this problem, known to be hard, is the key-point in several homomorphic cryptosystems, the slight modifications of our algorithms provide efficient attacks against these cryptographic schemes.
14

Sur le théorème de Schneider-Lang

Herblot, Mathilde 01 December 2011 (has links) (PDF)
Le théorème de Schneider-Lang est un critère classique de transcendance pour des nombres complexes. Il dit que des fonctions méromorphes d'ordre fini, vérifiant une équation différentielle polynomiale à coefficients dans un corps de nombres et algébriquement indépendantes ne peuvent prendre simultanément des valeurs dans ce corps de nombres qu'en un nombre fini de points. Dans cette thèse, nous démontrons des généralisations géométriques de ce critère, valables sur le corps des nombres complexes ou sur un corps p-adique. Ces résultats s'appuient sur des lemmes de Schwarz adaptés, que nous avons établis. En dimension 1, nous démontrons un théorème concernant des sous-schémas formels admettant une uniformisation par une courbe algébrique affine. En dimension supérieure, notre théorème s'applique à des sous-schémas formels admettant une uniformisation par un produit d'ouverts de la droite affine, sous l'hypothèse supplémentaire que l'ensemble des points étudiés est un produit cartésien. Les démonstrations de ces résultats reposent sur la méthode des pentes développée par J.-B. Bost et utilisent le langage de la géométrie d'Arakelov.
15

Étude de processus de recherche de chercheurs, élèves et étudiants, engagés dans la recherche d'un problème non résolu en théorie des nombres

Gardes, Marie-Line 25 November 2013 (has links) (PDF)
A l'articulation de la théorie des nombres et de la didactique des mathématiques, notre recherche vise à étudier la question de la transposition du travail du mathématicien, via l'analyse de processus de recherche de chercheurs, élèves et étudiants sur la recherche d'un même problème non résolu : la conjecture d'Erdös-Straus. Les analyses mathématiques et épistémologiques nous ont permis d'identifier différents aspects du travail du mathématicien et les éléments moteurs dans l'avancée de ses recherches. Cela nous a conduite à développer la notion de "geste" de la recherche pour décrire, analyser et mettre en perspective les processus de recherche des trois publics. Ces analyses ont mis en évidence les potentialités du problème pour créer une situation de recherche de problèmes en classe, plaçant les élèves dans une position proche de celle du mathématicien. Les analyses didactiques se sont appuyées sur la construction d'une telle situation puis sur sa mise à l'épreuve dans un contexte de laboratoire avec des élèves de terminale scientifique. Nous avons analysé finement les processus de recherche des élèves à l'aide des outils méthodologiques développés dans les analyses mathématiques et épistémologiques. Les analyses ont mis en évidence la richesse des procédures mises en oeuvre, un travail effectif de la dialectique entre les connaissances mathématiques et les heuristiques mobilisées, et selon les groupes, une mise en oeuvre de démarches de type expérimental, l'approfondissement de connaissances mathématiques notionnelles et une acquisition d'heuristiques expertes de recherche de problème non résolu. Elles montrent également la pertinence de la notion de "geste" de la recherche pour étudier la question de la transposition du travail des chercheurs.
16

Anatomy of smooth integers

Mehdizadeh, Marzieh 07 1900 (has links)
Dans le premier chapitre de cette thèse, nous passons en revue les outils de la théorie analytique des nombres qui seront utiles pour la suite. Nous faisons aussi un survol des entiers y−friables, c’est-à-dire des entiers dont chaque facteur premier est plus petit ou égal à y. Au deuxième chapitre, nous présenterons des problèmes classiques de la théorie des nombres probabiliste et donnerons un bref historique d’une classe de fonctions arithmétiques sur un espace probabilisé. Le problème de Erdos sur la table de multiplication demande quel est le nombre d’entiers distincts apparaissant dans la table de multiplication N × N. L’ordre de grandeur de cette quantité a été déterminé par Kevin Ford (2008). Dans le chapitre 3 de cette thèse, nous étudions le nombre d’ensembles y−friables de la table de multiplication N × N. Plus concrètement, nous nous concentrons sur le changement du comportement de la fonction A(x, y) par rapport au domaine de y, où A(x, y) est une fonction qui compte le nombre d’entiers y− friables distincts et inférieurs à x qui peuvent être représentés comme le produit de deux entiers y− friables inférieurs à p x. Dans le quatrième chapitre, nous prouvons un théorème de Erdos-Kac modifié pour l’ensemble des entiers y− friables. Si !(n) est le nombre de facteurs premiers distincts de n, nous prouvons que la distribution de !(n) est gaussienne pour un certain domaine de y en utilisant la méthode des moments. / The object of the first chapter of this thesis is to review the materials and tools in analytic number theory which are used in following chapters. We also give a survey on the development concerning the number of y−smooth integers, which are integers free of prime factors greater than y. In the second chapter, we shall give a brief history about a class of arithmetical functions on a probability space and we discuss on some well-known problems in probabilistic number theory. We present two results in analytic and probabilistic number theory. The Erdos multiplication table problem asks what is the number of distinct integers appearing in the N × N multiplication table. The order of magnitude of this quantity was determined by Kevin Ford (2008). In chapter 3 of this thesis, we study the number of y−smooth entries of the N × N multiplication. More concretely, we focus on the change of behaviour of the function A(x,y) in different ranges of y, where A(x,y) is a function that counts the number of distinct y−smooth integers less than x which can be represented as the product of two y−smooth integers less than p x. In Chapter 4, we prove an Erdos-Kac type of theorem for the set of y−smooth integers. If !(n) is the number of distinct prime factors of n, we prove that the distribution of !(n) is Gaussian for a certain range of y using method of moments.
17

Simplification polyédrique optimale pour le rendu

Charrier, Emilie 04 December 2009 (has links) (PDF)
En informatique, les images sont numériques et donc composées de pixels en 2D et de voxels en 3D. Dans une scène virtuelle 3D, il est impossible de manipuler directement les objets comme des ensembles de voxels en raison du trop gros volume de données. Les objets sont alors polyédrisés, c'est-à-dire remplacés par une collection de facettes. Pour ce faire, il est primordial de savoir décider si un sous-ensemble de voxels peut être transformé en une facette dans la représentation polyédrique. Ce problème est appelé reconnaissance de plans discrets. Pour le résoudre, nous mettons en place un nouvel algorithme spécialement adapté pour les ensembles de voxels denses dans une boite englobante. Notre méthode atteint une complexité quasi-linéaire dans ce cas et s'avère efficace en pratique. En parallèle, nous nous intéressons à un problème algorithmique annexe intervenant dans notre méthode de reconnaissance de plans discrets. Il s'agit de calculer les deux enveloppes convexes des points de Z2 contenus dans un domaine vertical borné et situés de part et d'autre d'une droite quelconque. Nous proposons une méthode de complexité optimale et adaptative pour calculer ces enveloppes convexes. Nous présentons le problème de manière détournée : déterminer le nombre rationnel à dénominateur borné qui approxime au mieux un nombre réel donné. Nous établissons le lien entre ce problème numérique et son interprétation géométrique dans le plan. Enfin, nous proposons indépendamment un nouvel algorithme pour calculer l'épaisseur d'un ensemble de points dans le réseau Zd. Notre méthode est optimale en 2D et gloutonne mais efficace en dimension supérieure
18

Autour du problème de Lehmer relatif dans un tore

Delsinne, Emmanuel 14 December 2007 (has links) (PDF)
Le problème de Lehmer consiste à minorer la hauteur de Weil d'un nombre algébrique en fonction de son degré sur Q. Si la question originelle de Lehmer reste aujourd'hui sans réponse, la conjecture optimale correspondante a été démontrée à un epsilon près. Par ailleurs, ce problème admet plusieurs généralisations. D'une part, on peut formuler le même type de conjecture en remplaçant le corps des rationnels par une extension abélienne d'un corps de nombres. D'autre part, on peut généraliser ces énoncés en dimension supérieure. Il s'agit alors de minorer la hauteur normalisée d'un point ou d'une sous-variété d'un tore ; dans ce cas, on substitue au degré un invariant plus fin : l'indice d'obstruction. Il est ensuite naturel de chercher à combiner ces deux généralisations : c'est le problème de Lehmer relatif dans un tore.<br /><br />Dans cette thèse, nous considérons tout d'abord le problème de Lehmer relatif unidimensionnel. Nous donnons une minoration pour la hauteur d'un nombre algébrique en fonction de son degré sur une extension abélienne d'un corps de nombres. Il s'agit d'une amélioration d'un théorème d'Amoroso et Zannier, obtenue à l'aide d'une démonstration techniquement plus simple. De plus, nous explicitons la dépendance de la borne inférieure en le corps de base. Puis nous abordons le problème de Lehmer relatif en dimension supérieure et minorons la hauteur d'une hypersurface en fonction de son indice d'obstruction sur une extension abélienne de Q. Enfin, nous obtenons un résultat analogue pour un point, sous réserve que celui-ci satisfasse une hypothèse technique. Nous montrons ainsi les conjectures les plus fines à un epsilon près.
19

Deux applications arithmétiques des travaux d'Arthur

Taïbi, Olivier 19 September 2014 (has links) (PDF)
Nous proposons deux applications à l'arithmétique des travaux récents de James Arthur sur la classification endoscopique du spectre discret des groupes symplectiques et orthogonaux. La première consiste à ôter une hypothèse d'irréductibilité dans un résultat de Richard Taylor décrivant l'image des conjugaisons complexes par les représentations galoisiennes p-adiques associées aux représentations automorphes cuspidales algébriques régulières essentiellement autoduales pour le groupe GL_{2n+1} sur un corps totalement réel. Nous l'étendons également au cas de GL_{2n}, sous une hypothèse de parité du caractère multiplicatif. Nous utilisons un résultat de déformation p-adique. Plus précisément, nous montrons l'abondance de points correspondant à des représentations galoisiennes (quasi-)irréductibles sur les variétés de Hecke pour les groupes symplectiques et orthogonaux pairs. La classification d'Arthur est utilisée à la fois pour définir les représentations galoisiennes et pour transférer des représentations automorphes autoduales (pas nécessairement cuspidales) de groupes linéaires aux groupes symplectiques et orthogonaux. La deuxième application concerne le calcul explicite de dimensions d'espaces de formes automorphes ou modulaires. Notre contribution principale est un algorithme calculant les intégrales orbitales aux éléments de torsion des groupes classiques p-adiques non ramifiés, pour l'unité de l'algèbre de Hecke non ramifiée. Cela permet le calcul du côté géométrique de la formule des traces d'Arthur, et donc celui de la caractéristique d'Euler du spectre discret en niveau un. La classification d'Arthur permet l'analyse fine de cette caractéristique d'Euler, jusqu'à en déduire les dimensions des espaces de formes automorphes. De là il n'est pas difficile d'apporter une réponse à un problème plus classique: déterminer les dimensions des espaces de formes modulaires de Siegel à valeurs vectorielles.
20

Calculs explicites en théorie d'Iwasawa / Explicit computing in Iwasawa theory

Varescon, Firmin 11 June 2014 (has links)
Dans le premier chapitre de cette thèse on rappelle l'énoncé ainsi que des équivalents de la conjecture de Leopoldt puis l'on donne un algorithme permettant de vérifier cette conjecture pour un corps de nombre et premier donnés. Pour la suite on suppose cette conjecture vraie pour le premier p fixé Et on étudie la torsion du groupe de Galois de l'extension abélienne maximale p-ramifiée. On présente une méthode qui détermine effectivement les facteurs invariants de ce groupe fini. Dans le troisième chapitre on donne des résultats numériques que l'on interpréte via des heuristiques à la Cohen-Lenstra. Dans le quatrième chapitre, à l'aide de l'algorithme qui permet le calcul de ce module, on donne des exemples de corps et de premiers vérifiant la conjecture de Greenberg. / In the first chapter of this thesis we explain Leopoldt's conjecture and some equivalent formulations. Then we give an algorithm that checks this conjecture for a given prime p and a number field. Next we assume that this conjecture is true, and we study the torsion part of the Galois group of the maximal abelian p-ramified p-extension of a given number field. We present a method to compute the invariant factors of this finite group. In the third chapter we give an interpretation of our numrical result by heuristics “à la” Cohen-Lenstra. In the fourth and last chapter, using our algorithm which computes this torsion submodule, we give new examples of numbers fields which satisfy Greenberg's conjecture.

Page generated in 0.0653 seconds