• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 19
  • 6
  • Tagged with
  • 63
  • 63
  • 35
  • 35
  • 31
  • 30
  • 23
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visual feature graphs and image recognition

Behmo, Régis 15 September 2010 (has links) (PDF)
La problèmatique dont nous nous occupons dans cette thèse est la classification automatique d'images bidimensionnelles, ainsi que la détection d'objets génériques dans des images. Les avancées de ce champ de recherche contribuent à l'élaboration de systèmes intelligents, tels que des robots autonomes et la création d'un web sémantique. Dans ce contexte, la conception de représentations d'images et de classificateurs appropriés constituent des problèmes ambitieux. Notre travail de recherche fournit des solutions à ces deux problèmes, que sont la représentation et la classification d'images. Afin de générer notre représentation d'image, nous extrayons des attributs visuels de l'image et construisons une structure de graphe basée sur les propriétés liées au relations de proximités entre les points d'intérêt associés. Nous montrons que certaines propriétés spectrales de ces graphes constituent de bons invariants aux classes de transformations géométriques rigides. Notre représentation d'image est basée sur ces propriétés. Les résultats expérimentaux démontrent que cette représentation constitue une amélioration par rapport à d'autres représentations similaires, mais qui n'intègrent pas les informations liées à l'organisation spatiale des points d'intérêt. Cependant, un inconvénient de cette méthode est qu'elle fait appel à une quantification (avec pertes) de l'espace des attributs visuels afin d'être combinée avec un classificateur Support Vecteur Machine (SVM) efficace. Nous résolvons ce problème en créant un nouveau classificateur, basé sur la distance au plus proche voisin, et qui permet la classification d'objets assimilés à des ensembles de points. La linéarité de ce classificateur nous permet également de faire de la détection d'objet, en plus de la classification d'images. Une autre propriété intéressante de ce classificateur est sa capacité à combiner différents types d'attributs visuels de manière optimale. Nous utilisons cette propriété pour formuler le problème de classification de graphes de manière différente. Les expériences, menées sur une grande variété de jeux de données, montrent les bénéfices quantitatifs de notre approche.
2

Méthodes asymptotiques et numériques pour le transport quantique résonnant

Faraj, Ali 04 December 2008 (has links) (PDF)
Le travail de cette thèse se place dans un contexte de modélisation et de simulation numérique du transport d'électrons dans un nano-composant. Ce transport est décrit en mécanique quantique à l'aide de systèmes de Schrödinger-Poisson. La majeure partie du travail se concentre sur le cas de la diode à effet tunnel résonnant (RTD) dont les puits quantiques donnent lieu à des résonances de l'Hamiltonien mis en jeu.<br />Dans une première partie, nous proposons des méthodes numériques pour la simulation de RTD. Pour résoudre le problème de Shrödinger-Poisson -- en une variable d'espace et en domaine non borné -- qui correspond, nous proposons une méthode de référence valide pour un maillage fin en fréquence autour des résonances. Le travail est motivé par l'écriture d'un algorithme permettant de retrouver les résultats de la méthode de référence en s'affranchissant de la contrainte de raffinement en fréquence qui rend les temps de calcul excessifs. Nous proposons une méthode consistant en la décomposition des fonctions d'onde en une partie non résonnante et une partie résonnante, la dernière nécessitant un calcul précis du mode résonnant et de la valeur de la résonance. En régime stationnaire, la totalité de l'information résonnante est captée sans avoir à raffiner le maillage en fréquence. La principale nouveauté a été d'adapter cette méthode en régime instationnaire.<br />Dans une deuxième partie, nous comparons notre algorithme de référence à l'algorithme de Bonnaillie-Noël, Nier et Patel basé sur un modèle réduit obtenu en réalisant la limite semi-classique h tend vers 0 et intéressant par son temps de calcul. En régime stationnaire, la comparaison a permis de vérifier l'existence de certaines branches de la courbe courant/tension de la RTD prévues par le modèle réduit. Dans le cas de deux puits, nous avons utilisé notre algorithme instationnaire dans une région de la différence de potentiel où un croisement des énergies résonnantes associées à chaque puits se produit donnant une évidence numérique de l'occurrence de phénomènes de battement de la charge d'un puits à l'autre.<br />En vue d'obtenir des modèles réduits similaires à celui étudié dans la deuxième partie, on réalise, dans une troisième partie, l'étude asymptotique d'un système de Schrödinger-Poisson stationnaire considéré sur un domaine borné inclus dans R^d, d<=3, avec un potentiel extérieur décrivant un puits quantique. L'Hamiltonien du système est composé de contributions -- le puits du potentiel extérieur plus un terme non linéaire répulsif -- qui s'étendent sur des échelles de longueurs différentes dont le rapport est donné en fonction du paramètre semi-classique h destiné à tendre vers 0. Avec une fonction de distribution en énergie qui force les particules à rester dans le puits quantique, la limite h tend vers 0 dans le système non linéaire conduit à différents comportements asymptotiques dont l'analyse nécessite une renormalisation spectrale et dépendant de la dimension d'espace d=1, 2 ou 3.
3

Spectre d'équations différentielles p-adiques / Spectrum of p-adic differential equations

Azzouz, Tinhinane Amina 11 June 2018 (has links)
Les équations différentielles constituent un important outil pour l'étude des variétés algébriques et analytiques, sur les nombres complexes et $p$-adiques. Dans le cas $p$-adique, elles présentent des phénomènes qui n'apparaissent pas dans le cas complexe. En effet, le rayon de convergence des solutions d'une équation différentielle linéaire peut être fini, et cela même en l'absence des pôles.La connaissance de ce rayon permet d’obtenir de nombreuses informations intéressantes sur l’équation. Plus précisément, depuis les travaux de F. Baldassarri, on sait associer un rayon de convergence à tout point d’une courbe p-adique au sens de Berkovich munie d’une connexion. Des travaux récents de F. Baldassarri, K. Kedlaya, J. Poineauet A. Pulita ont révélé que ce rayon se comporte de manière très contrainte. Afin de pousser l'étude, on introduit un objet géométrique qui raffine ce rayon, le spectre au sens de Berekovich d'une équation différentielle.Dans ce mémoire de thèse, nous définissons le spectre d'un module différentiel et donnons ses premières propriétés. Nous calculons aussi les spectres de quelques classes de modules différentiels: modules différentiels d'une équations différentielles à coefficients constants, modules différentiels singuliers réguliers et enfin modules différentiels sur un corps des séries de Laurent. / Differential equations constitute an important tool for theinvestigation of algebraic and analytic varieties, over thecomplex and the $p$-adic numbers. In the $p$-adic setting, theypresent phenomena that do not appear in the complex case. Indeed, theradius of convergence of the solutions of a linear differential equation,even without presence of poles.The knowledge of that radius permits to obtain several interestinginformations about the equation. More precisely, since the works ofF. Baldassarri, we know how to associate a radius of convergece to allpoint of a p-adic curve in the sense of Berkovich endowed with aconnexion. Recent works of F. Baldassarri, K.S. Kedlaya, J. Poineau, etA. Pulita have proved that this radius behave in a very controlledway. The radius of convergence can be refined using subsidiary radii,that are known to have similar properties. In order to push forward the study, we introduce a geometric object that refine this radius, thespectrum in the sense of Berkovich of a differential equation.In the present thesis, we define the spectrum of a differentialequation and provide its first properties. We also compute the spectraof some classes of differential modules: differential modules ofa differential équation with constant coefficients, singular regulardifferential modules and at last differential modules over the field ofLaurent power series.
4

Variations autour de formes irrégulières et optimales

Lamboley, Jimmy 05 December 2008 (has links) (PDF)
Cette thèse s'inscrit dans le domaine des mathématiques appelé Optimisation de forme. Plus spécifiquement, on s'est attaché aux difficultés liées à l'écriture des conditions d'optimalité, et à leurs utilisations. Les deux obstacles majeurs qui ont été analysés sont les suivants :<br />- gérer des formes dont on ne connaît pas a priori la régularité,<br />- gérer des contraintes géométriques fortes, c'est-à-dire qui ne permettent que très peu de variations pour écrire l'optimalité (par exemple la convexité).<br /><br />Les résultats obtenus sont décrits dans les quatre chapitres de cette thèse :<br />- le premier vise à établir un cadre de différentiation de forme valable pour des formes presque sans régularité a priori,<br />- le chapitre 2 s'attache à l'analyse des conditions d'optimalité sous contrainte de convexité, en dimension 2, et leurs applications à une classe de problèmes où les formes optimales sont nécessairement des polygones,<br />- le troisième chapitre se focalise sur deux problèmes classiques de l'optimisation de forme des valeurs propres du laplacien, qui montrent bien les deux types de difficultés évoquées ci-dessus. On y démontre des résultats de régularité, et aussi de non-régularité, des formes optimales pour ces problèmes ; on obtient des limites de régularité en $\C^{1,1/2}$ qui sont nouvelles et optimales,<br />- le dernier chapitre est motivé par la question des problèmes elliptiques partiellement surdéterminés, et on construit des contre-exemples liés à l'optimisation de forme.
5

BAS DU SPECTRE ET GEOMETRIE DES VARIETES DE VOLUME INFINI

Tapie, Samuel 25 September 2009 (has links) (PDF)
Cette thèse étudie les variétés non compactes dont le bas du spectre du Laplacien est une valeur propre isolée. L'objectif général est de relier la géométrie de ces variétés à certaines propriétés spectrales.<br /><br />Au Chapitre 2, nous étudions les variétés $G$-périodiques, qui généralisent les variétés périodiques et les revêtements. Nous relions le bas du spectre d'une telle variété avec celui de sa cellule élémentaire et la combinatoire du graphe $G$ sous-jacent. Nous montrons que les deux bas du spectres sont égaux si et seulement si le graphe est moyennable.<br /><br />Au Chapitre 3, nous donnons une caractérisation du bas du spectre d'une variété à bord par ses fonctions $\lambda$-harmoniques positives. Puis nous montrons que pour une métrique générique, lorsque le bas du spectre est une valeur propre isolée la première fonction propre est de Morse. Enfin, nous montrons que pour un revêtement générique, on peut construire un domaine fondamental pour l'action du groupe de revêtement sur lequel le relevé de la première fonction propre vérifie les conditions de Neumann. Ceci nous permet d'appliquer les résultats du Chapitre 2 aux revêtements.<br /><br />Au Chapitre 4, nous présentons une conjecture due à R. Canary, qui prévoit que lorsque l'on déforme une variété hyperbolique de dimension 3 géométriquement finie et acylindrique, le bas du spectre est maximal lorsque le bord du coeur convexe est lisse. Au Chapitre 5, une étude de l'entropie des variétés à courbure négative pincée convexe cocompacte nous permet d'obtenir une formule de variation du bas du spectre dans le cas des déformations des variétés hyperboliques convexe cocompactes.
6

Guider, piéger, focaliser et contrôler les ondes. Une contribution mathématique et numérique.

Ramdani, Karim 19 October 2007 (has links) (PDF)
Ce mémoire constitue un résumé de mes travaux de recherche consacrés à l'analyse mathématique et la simulation numérique de quelques problèmes de propagation d'ondes linéaires. Le mémoire est structuré en 4 chapitres indépendants : <br />1. Guide d'Ondes Électromagnétique Supraconducteur<br />2. Diffraction par des Réseaux<br />3. Retournement Temporel<br />4. Méthodes Fréquentielles et Spectrales pour le Contrôle des EDP
7

Approche asymptotique pour l'étude mathématique et la simulation numérique de la propagation du son en présence d'un écoulement fortement cisaillé

Joubert, Lauris 26 November 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre d'étude de la simulation de la propagation du son en écoulement. L'objectif de ces travaux est l'obtention de modèles approchés permettant une prise en compte aisée des zones de fortes variations de l'écoulement porteur (couche limite de paroi, couche de mélange...). Le modèle mathématique retenu pour l'étude est celui des équations de Galbrun. La première partie est consacrée à la propagation acoustique dans un tuyau mince bidimensionnel. Une analyse asymptotique qui s'apparente à une analyse basse fréquence est menée pour obtenir un problème approché original, faisant intervenir un terme intégral non local vis à vis de la coordonnée transverse. Du fait de son originalité, l'analyse de stabilité est complexe et nécessite une étude ad hoc. Cette approche nouvelle permet de retrouver des résultats sur la stabilité des écoulements incompressible, mais aussi d'en établir de nouveaux. Nous proposons ensuite une méthode de résolution numérique basée sur une expression quasi-explicite de la solution. La question de la prise en compte des couches limites de paroi fait l'objet de la deuxième partie. Nous considérons toujours un problème bidimensionnel à paroi plane. Les cas d'une paroi parfaitement rigide et d'une paroi sur laquelle on impose une condition d'impédance sont traités. Dans les deux cas nous remplaçons la couche limite par une condition aux limites approchée, au moyen d'une analyse asymptotique. Ces conditions font intervenir la résolution du problème limite du tube et l'analyse de stabilité repose sur les résultats de la première partie. Nous explorons ensuite les propriétés physiques et mathématiques de ces problèmes approchés.
8

Méthode d'éléments spectraux avec joints pour des géométries axisymétriques

Satouri, Jamil 09 November 2010 (has links) (PDF)
Dans cette thèse on s'est intéressé aux problèmes tridimensionnels de Laplace et de stokes dans des domaines axisymétriques. Ces problèmes sont réduits, sans approximation et par des développements en coefficients de Fourier en une famille dénombrable de problèmes bidimensionnels. Les domaines qu'on a considéré présentent des singularités géométriques et sont décomposés de façons non nécessairement conformes. Les non conformités sur les interfaces entre les sous domaines sont traités par la méthode des joints. La méthode de base de discrétisation est la méthode spectrale. On a montre alors des résultats d'approximation optimaux, proches de ceux trouves lors de l'approximation conformes avec des contraintes de continuités sur les interfaces. Ceci prouve encore une fois l'efficacité de la méthode des joints.
9

Visual feature graphs and image recognition / Graphes d'attributs et reconnaissance d'images

Behmo, Régis 15 September 2010 (has links)
La problèmatique dont nous nous occupons dans cette thèse est la classification automatique d'images bidimensionnelles, ainsi que la détection d'objets génériques dans des images. Les avancées de ce champ de recherche contribuent à l'élaboration de systèmes intelligents, tels que des robots autonomes et la création d'un web sémantique. Dans ce contexte, la conception de représentations d'images et de classificateurs appropriés constituent des problèmes ambitieux. Notre travail de recherche fournit des solutions à ces deux problèmes, que sont la représentation et la classification d'images. Afin de générer notre représentation d'image, nous extrayons des attributs visuels de l'image et construisons une structure de graphe basée sur les propriétés liées au relations de proximités entre les points d'intérêt associés. Nous montrons que certaines propriétés spectrales de ces graphes constituent de bons invariants aux classes de transformations géométriques rigides. Notre représentation d'image est basée sur ces propriétés. Les résultats expérimentaux démontrent que cette représentation constitue une amélioration par rapport à d'autres représentations similaires, mais qui n'intègrent pas les informations liées à l'organisation spatiale des points d'intérêt. Cependant, un inconvénient de cette méthode est qu'elle fait appel à une quantification (avec pertes) de l'espace des attributs visuels afin d'être combinée avec un classificateur Support Vecteur Machine (SVM) efficace. Nous résolvons ce problème en créant un nouveau classificateur, basé sur la distance au plus proche voisin, et qui permet la classification d'objets assimilés à des ensembles de points. La linéarité de ce classificateur nous permet également de faire de la détection d'objet, en plus de la classification d'images. Une autre propriété intéressante de ce classificateur est sa capacité à combiner différents types d'attributs visuels de manière optimale. Nous utilisons cette propriété pour formuler le problème de classification de graphes de manière différente. Les expériences, menées sur une grande variété de jeux de données, montrent les bénéfices quantitatifs de notre approche. / We are concerned in this thesis by the problem of automated 2D image classification and general object detection. Advances in this field of research contribute to the elaboration of intelligent systems such as, but not limited to, autonomous robots and the semantic web. In this context, designing adequate image representations and classifiers for these representations constitute challenging issues. Our work provides innovative solutions to both these problems: image representation and classification. In order to generate our image representation, we extract visual features from the image and build a graphical structure based on properties of spatial proximity between the feature points. We show that certain spectral properties of this graph constitute good invariants to rigid geometric transforms. Our representation is based on these invariant properties. Experiments show that this representation constitutes an improvement over other similar representations that do not integrate the spatial layout of visual features. However, a drawback of this method is that it requires a lossy quantisation of the visual feature space in order to be combined with a state-of-the-art support vector machine (SVM) classifier. We address this issue by designing a new classifier. This generic classifier relies on a nearest-neighbour distance to classify objects that can be assimilated to feature sets, i.e: point clouds. The linearity of this classifier allows us to perform object detection, in addition to image classification. Another interesting property is its ability to combine different types of visual features in an optimal manner. We take advantage of this property to produce a new formulation for the classification of visual feature graphs. Experiments are conducted on a wide variety of publicly available datasets to justify the benefits of our approach.
10

Open periodic waveguides : Theory and computation / Guides d'ondes périodiques ouverts : Théorie et calcul

Vasilevskaya, Elizaveta 07 July 2016 (has links)
Cette thèse porte sur la propagation des ondes acoustiques dans des milieux périodiques.Ces milieux ont des propriétés remarquables car le spectre associée à l’opérateur d’ondesdans ces milieux a une structure de bandes : il existe des plages de fréquences danslesquelles les ondes monochromatiques ne se propagent pas. Plus intéressant encore, enintroduisant des défauts linéiques dans ce type de milieux, on peut créer des modes guidésà l’intérieur de ces bandes de fréquences interdites. Dans ce manuscrit nous montrons qu’ilest possible de créer de tels modes guidés dans le cas de milieux périodiques particuliersde type quadrillage : plus précisément, le domaine périodique considéré est constitué duplan R2 privé d’un ensemble infini d’obstacles rectangulaires régulièrement espacés (d’unedistance ") dans deux directions orthogonales du plan, que l’on perturbe localement endiminuant la distance entre deux colonnes d’obstacles. Les résultats sont ensuite étendusau cas 3D.Ce travail comporte un aspect théorique et un aspect numérique. Du point de vue théoriquel’analyse repose sur le fait que, comme " est petit, le spectre de l’opérateur associé ànotre problème est "proche" du spectre d’un problème posé sur le graphe obtenu commela limite géométrique du domaine quand " tend vers 0. Or, pour le graphe limite, il estpossible de calculer explicitement le spectre. Ensuite, en utilisant des méthodes d’analyseasymptotique on étudie le spectre de l’opérateur non-limite. On illustre les résultats théoriquespar des résultats numériques obtenus à l’aide d’une méthode numérique spécialementdédiée aux milieux périodiques : cette dernière est basée sur la réduction du problèmede valeurs propres initial (linéaire) posé dans un domaine non-borné à un problème nonlinéaireposé dans un domaine borné (en utilisant l’opérateur de Dirichlet-to-Neumannexact). / The present work deals with propagation of acoustic waves in periodic media. Thesemedia have particularly interesting properties since the spectrum associated with theunderlying wave operator in such media has a band-gap structure: there exist intervals offrequences for which monochromatic waves do not propagate. Moreover, by introducinglinear defects in this kind of media, one can create guided modes inside the bands offorbidden frequences. In this work we show that it is possible to create such guidedmodes in the case of particular periodic media of grid type: more precisely, the periodicdomain in question is R2 minus an infinite set of rectangular obstacles periodically spacedin two orthogonal directions (the distance between two neighbour obstacles being "),which is locally perturbed by diminishing the distance between two columns of obstacles.The results are extended to the 3D case.This work has a theoretical and a numerical aspect. From the theoretical point of view theanalysis is based on the fact that, " being small, the spectrum of the operator associatedwith our problem is "close" to the spectrum of a problem posed on a graph which is ageometric limit of the domain as " tends to 0. However, for the limit graph the spectrumcan be computed explicitly. Then, we study the spectrum of the non-limit operatorusing asymptotic analysis. Theoretical results are illustrated by numerical computationsobtained with a numerical method developed for study of periodic media: this method isbased on the reduction of the initial (linear) eigenvalue problem posed in an unboundeddomain to a non-linear problem posed in a bounded domain (using the exact Dirichletto-Neumann operator).

Page generated in 0.0481 seconds