• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 27
  • 11
  • Tagged with
  • 112
  • 72
  • 33
  • 33
  • 31
  • 29
  • 26
  • 23
  • 22
  • 21
  • 20
  • 19
  • 17
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Mécanismes moléculaires du contrôle de la masse musculaire sous l'action du β2-agoniste formotérol / Molecular mechanisms controlling muscle mass under β2-agonist formoterol stimulations

Joassard, Olivier 15 July 2013 (has links)
Les β2-agonistes sont couramment utilisés pour prévenir et réduire les symptômes de l'asthme et de la bronchoconstriction induite par l'exercice. Mais, pris en quantités supérieures aux doses thérapeutiques, les β2-agonistes ont un effet anabolisant qui a été clairement démontré in vivo. Un certain nombre d’acteurs sont mis en jeu dans la réponse biologique du tissu musculaire aux β2-agonistes. L’un de ces acteurs est la voie de signalisation PI3K/Akt/mTOR, voie d’initiation de la traduction, ayant un rôle majeur dans la synthèse protéique. Dans ce contexte, notre première étude avait pour objectif de déterminer la cinétique des événements moléculaires responsables de l’hypertrophie du muscle squelettique de rat après administration de formotérol pendant 1 jour (J1), 3 jours (J3) et 10 jours (J10). Nous avons montré que l’administration de formotérol induisait une hypertrophie musculaire à J3 et J10 associée à l’activation transitoire de la voie de signalisation PI3K/Akt/mTOR (J1 et J3), et à une diminution de l’expression de l’E3 ubiquitine ligase MAFbx/Atrogin-1 (J3). La voie autophagie lysosome ne semblait pas être affectée. Ainsi, l’ensemble de ces résultats suggère que l’activation de la voie PI3K/Akt/mTOR est associée à la voie ubiquitine-protéasome mais pas à la voie autophagie-lysosome. La régulation transitoire de la voie PI3K/Akt/mTOR suggère que d’autres voies de signalisation sont impliquées dans l’hypertrophie musculaire induite par le formotérol. Le 007-AM, analogue de l’AMPc, a été décrit comme pouvant stimuler la voie de signalisation PI3K/Akt/mTOR via l’activation de la protéine Epac, suggérant que le 007-AM puisse constituer une molécule de substitution à l’utilisation des β2-agonistes. Notre seconde étude avait pour but de déterminer si le 007-AM avait une action anabolisante sur le tissu musculaire, mais également de déterminer si la 007-AM était une molécule stable permettant d’envisager son usage dans un cadre pharmacologique. L’administration de 007-AM pendant 7 jours chez des souris n’engendrait pas d’hypertrophie musculaire. En revanche, in vitro sur cellules C2C12, le 007-AM activait la voie de signalisation PI3K/Akt/mTOR comme en témoignait l’augmentation de la phosphorylation des protéines rpS6 et 4E-BP1. Nos résultats montraient également que le 007-AM était instable dans le plasma alors que son produit de dégradation, le 007 était plus stable. Pris ensembles, ces résultats suggèrent qu’un traitement de 7 jours au 007-AM n’est pas suffisant pour induire une hypertrophie musculaire et que l’absence d’hypertrophie musculaire pourrait provenir de l’instabilité du 007-AM dans le plasma. Toutefois, des études supplémentaires seront nécessaires pour confirmer ces résultats / Β2-agonists are traditionally used to prevent and reduce asthma symptoms and bronchoconstriction induced by exercise. Nevertheless, when administrated in vivo, at relatively high, far away from therapeutic doses, β2-agonists induce anabolic effects. Numerous actors are involved in biological response of the skeletal muscle, induced by β2-agonists. PI3K/Akt/mTOR signaling pathway, which initiates translation, is one of these actors. In this context, our first study aimed at determined the kinetic of molecular events responsible for skeletal muscle hypertrophy after 1 day (D1), 3 days (D3) and 10 days (D10) of formoterol administration. We have shown that formoterol administration induced skeletal muscle hypertrophy at D3 and D10 associated with a transient activation of PI3K/Akt/mTOR signaling pathway (D1 and D3), and, with a decrease in E3 ubiquitin ligase MAFbx/atrogin-1 expression (D3). The autophagy-lysosome pathway seems not to be regulated by formoterol administration. Taken together, these results suggest that PI3K/Akt/mTOR activation is temporally associated with the regulation of ubiquitin-proteasome but not the autophagy-lysosome pathway. The transient nature of the regulation of PI3K/Akt/mTOR signaling pathway also indicates that other unidentified pathways are probably activated to sustain the increase in skeletal muscle mass. Recently, 007-AM synthetic molecule has been described to stimulate PI3K/Akt/mTOR signaling pathway through Epac protein activation, suggesting that 007-AM could be an alternative to the use of β2-agonists. The purpose of our second study was to determine whether 007-AM had an anabolic action on skeletal muscle and if 007-AM was stable allowing considering its use in pharmacology. 007-AM administration for 7 days to mice does not lead to muscle hypertrophy. Nonetheless, in vitro on C2C12 cells, 007-AM activated PI3K/Akt/mTOR signaling pathway by increasing phosphorylation of rpS6 and 4E-BP1. Our results showed that contrary to 007, 007-AM was instable in plasma. Altogether, these results suggest that a 7-day 007-AM treatment is not sufficient to induce skeletal muscle hypertrophy. This lack of hypertrophy could be due to 007-AM instability in plasma. However, supplemental studies are needed to confirm these results
102

Rôle de la voie de la SUMOylation dans les fonctions de la protéine TRIM55

Hammami, Nour El Houda January 2020 (has links) (PDF)
No description available.
103

Mécanismes de régulation post-traductionnelle de la sénescence cellulaire et leurs impacts sur la suppression tumorale

Fernandez Ruiz, Ana 07 1900 (has links)
La sénescence est un processus caractérisé par un arrêt stable du cycle cellulaire. Ce mécanisme peut être induit en réponse à de nombreux stress, comme l’activation d’un oncogène, le raccourcissement des télomères ou bien le traitement avec des composés génotoxiques. Cette réponse cellulaire est considérée comme une barrière antitumorale limitant la prolifération des cellules exposées au risque de transformation. La mise en place de la sénescence dépend de profonds changements au niveau moléculaire, dont l’activation d’un programme de dégradation sélective des protéines. Cette dégradation de protéines associée à la sénescence (SAPD) peut expliquer plusieurs caractéristiques des cellules sénescentes, notamment la présence de défauts dans la voie de synthèse des ribosomes (SARD). Ces derniers sont liés à un stress nucléolaire qui mène à l’accumulation de certaines protéines ribosomiques dans le noyau, où elles peuvent effectuer des fonctions indépendantes de leur rôle structurale dans les ribosomes. Parmi ces protéines ribosomiques, RPS14/uS11 peut s’accumuler dans le nucléoplasme et réguler le cycle cellulaire en inhibant CDK4. Ces mécanismes de régulation post-traductionnelle -le SAPD ainsi que les conséquences des SARD- contribuent de manière importante au phénotype sénescent. Nous avons émis l’hypothèse que la caractérisation des effecteurs dans ces voies pourrait mener à l’identification de nouvelles protéines importantes pour la sénescence et la suppression tumorale. Dans un premier temps, nous avons évalué le rôle de la protéine ribosomique RPL22/eL22 dans le cycle cellulaire et la sénescence. Tout comme RPS14, RPL22 a été identifié dans l’analyse de l’interactome de CDK4 lors de la sénescence induite par la perte du facteur de la ribogenèse RSL1D1. Nous avons pensé que RPL22 pourrait agir de manière similaire à RPS14 et ainsi effectuer des fonctions extra-ribosomiques impliquées dans la régulation du cycle cellulaire. Dans le premier article présenté dans cette thèse, nous montrons que la surexpression de RPL22 dans des fibroblastes humains induit un phénotype sénescent et que RPL22 peut lier et inhiber CDK4 afin d’activer la voie de RB. Ensemble, ces données indiquent un rôle suppressif de RPL22 dans le cycle cellulaire. En second lieu, nous nous sommes penchés sur la caractérisation des effecteurs du programme de dégradation sélective de protéines associé à la sénescence. Ce programme est mené à terme par le système ubiquitine-protéasome, un mécanisme finement régulé par différents types de protéines. Parmi celles-ci, les E3 ubiquitine ligases définissent la spécificité de ce système en interagissant avec les substrats à dégrader. Nous avons donc pensé que certaines E3 ubiquitine ligases spécifiques pourraient être importantes pour le mécanisme de dégradation protéique associé à la sénescence. Afin d’identifier celles-ci, nous avons effectué un criblage de shARN ciblant des gènes d’E3 ubiquitine ligases dans le contexte de la sénescence induite par les oncogènes. Ceci a mené à l’identification d’ASB14 comme un acteur important de la sénescence. Dans le deuxième article de cette thèse, nous montrons que la perte d’ASB14 produit un contournement de la sénescence induite par l’oncogène RAS dans plusieurs modèles cellulaires. ASB14 est une protéine peu caractérisée et nous avons généré des anticorps afin d’analyser son expression. Nous montrons ensuite qu’ASB14 s’exprime fortement dans le pancréas sain, tandis que ses niveaux diminuent dans les tumeurs pancréatiques. Enfin, nous avons identifié les partenaires d’interaction d’ASB14 dans le contexte de la sénescence induite par l’oncogène RAS. Globalement, les travaux présentés dans cette thèse nous ont permis d’identifier deux nouvelles protéines impliquées dans la sénescence cellulaire : la protéine ribosomique RPL22 et l’E3 ubiquitine ligase ASB14. Ces deux protéines contribuent à la régulation post-traductionnelle du phénotype sénescent. D’un côté, RPL22 peut inhiber l’activité de CDK4 afin d’activer la voie de RB et ainsi réguler le cycle cellulaire. D’une autre part, ASB14 est importante pour le maintien du phénotype sénescent et semble avoir un rôle dans la suppression tumorale du pancréas. Nos résultats suggèrent que RPL22 et ASB14 sont importants pour la sénescence et la suppression tumorale. / Cellular senescence is characterized by a stable cell cycle arrest. This process can be induced by a variety of cellular stresses, including oncogene activation, telomere shortening and genotoxic treatments. In fact, senescence is considered an antitumor barrier that prevents cellular transformation. Senescence is associated with widespread molecular changes, including the activation of a selective protein degradation program. This senescence-associated protein degradation (SAPD) could regulate some senescence-associated phenotypes, including the senescence-associated ribosome biogenesis defects (SARD). Senescence-associated ribosome biogenesis defects are linked to a nuclear accumulation of some ribosomal proteins such as RPS14/uS11 capable of carrying out extra-ribosomal functions. In particular, RPS14 can inhibit CDK4 and mediate senescence. Thus, we hypothesize that the proteins implicated in these pathways -SAPD and SARD- could be important for senescence and tumor suppression. First, we evaluated the ability of the ribosomal protein L22 (RPL22/eL22) to regulate cellular senescence and cell cycle progression. RPL22, as RPS14, was identified as a binding partner for CDK4 in senescent cells induced by depleting the ribosome biogenesis factor RSL1D1. Hence, we though that RPL22 could act in a manner similar to RPS14. In chapter two, we show that RPL22 overexpression induces a senescent phenotype in human fibroblasts. In addition, we show that RPL22 can interact with CDK4 inhibiting its activity and stimulating the RB tumor suppressor pathway. Taken together, these results indicate a suppressive role of RPL22 in cell cycle progression. Next, we focused on the characterization of SAPD effectors. This mechanism is mediated by the ubiquitin-proteasome system which is tightly regulated by E3 ubiquitin ligases. Thus, we thought that specific E3 ubiquitin ligases could be important for SAPD and for senescence. In order to discover E3 ubiquitin ligases that contribute to senescence, we performed an unbiased screening using shRNA libraries in Ras-induced senescent cells. This led to the identification of ASB14 as an important mediator of senescence. In chapter three, we show that ASB14 depletion leads to a bypass of Ras-induced senescence. ASB14 is a poorly characterized E3 ligase, and we generated antibodies in order to analyze its expression levels. We show that ASB14 is highly expressed in the normal pancreas whereas its expression is reduced in pancreatic cancer tissues. Finally, we uncovered the interactome of ASB14 in Ras-induced senescent cells. Overall, we have discovered two new senescence mediators: ribosomal protein L22 and E3 ubiquitin ligase ASB14. These proteins are implicated in the post-translational regulation of the senescent phenotype. RPL22 acts as a CDK4 inhibitor to activate RB pathway and regulate cell cycle arrest and ASB14 is an important mediator of senescence maintenance. Taken together, our results suggest that RPL22 and ASB14 are important for cellular senescence and tumor suppression.
104

La régulation de Staufen1 dans le cycle et la prolifération cellulaires

Gonzalez Quesada, Yulemi 02 1900 (has links)
Staufen1 (STAU1) est une protéine de liaison à l’ARN essentielle dans les cellules non-transformées. Dans les cellules cancéreuses, le niveau d’expression de la protéine est critique et étroitement lié à des évènements d’apoptose et des altérations dans la prolifération cellulaire. Le dsRBD2 de STAU1 lie des facteurs protéiques qui sont fondamentaux pour les fonctions de la protéine, telles que la liaison aux microtubules qui garantit sa localisation au fuseau mitotique et l’interaction avec les coactivateurs de l’E3 ubiquitine-ligase APC/C, ce qui garantit la dégradation partielle de STAU1 en mitose. Nous avons cartographié un nouveau motif F39PxPxxLxxxxL50 (motif FPL) dans le dsRBD2 de STAU1. Ce motif est fondamental pour l’interaction de la protéine avec les co-activateurs de l’APC/C, CDC20 et CDH1, et sa dégradation subséquente. Nous avons ensuite identifié un total de 15 protéines impliquées dans le processus inflammatoire qui partagent cette séquence avec STAU1. Nous avons prouvé, par des essais de co-transfection et de dégradation, que MAP4K1, l’une des protéines qui partagent ce motif, est aussi dégradé via ce motif FPL. Cependant, le motif de MAP4K1 n’est pas la cible de l’APC/C. Des techniques de biotinylation des protéines à proximité de STAU1 nous ont permis d’identifier TRIM25, une E3 ubiquitine ligase impliquée dans la régulation immunitaire et l’inflammation, comme protéine impliquée dans la dégradation de STAU1 et de MAP4K1 via le motif FPL. Ceci suggère des rôles de STAU1 dans la régulation du processus inflammatoire, ce qui est consistent avec des études récentes qui associent STAU1 à ce processus. Nous considérons que le motif FPL pourrait être à la base de la coordination de la régulation des protéines impliquées dans l’inflammation et la régulation de la réponse immune. Nos études sur l’effet anti-prolifératif de STAU1 lorsque surexprimé dans les cellules transformées ont identifié le domaine dsRBD2 de STAU1 comme responsable de ce phénotype. Des mutants qui miment les différents états de phosphorylation de la serine 20, située dans le domaine dsRBD2, sont à la base des changements dans la régulation de la traduction et la dégradation des ARNm liés à STAU1. Ces changements dans la régulation des ARNm par STAU1 sont associés aux altérations dans la prolifération des cellules transformées observées lors de la surexpression de STAU1. Nous avons aussi découvert que, après la transfection de STAU1, la cellule déclenche rapidement des évènements d’apoptose, et que ces évènements sont aussi dépendants de l’état de phosphorylation de la sérine 20 dans dsRBD2 de STAU1. Ces résultats suggèrent que STAU1 est un senseur qui contrôle la balance entre la survie et la prolifération cellulaire et que l’état de phosphorylation de son dsRBD2 est à la base de ce contrôle. Nos résultats indiquent que le dsRBD2 de STAU1 est le domaine de régulation du niveau d’expression protéique et un modulateurs des rôles de la protéine comme facteur post-transcriptionnel. Nous pensons que cibler la régulation de STAU1 et ses fonctions situées dans son domaine dsRBD2, serait important dans l’étude des maladies qui impliquent des événements d’apoptose, d’inflammation et de prolifération cellulaire telles que le cancer. / Staufen1 (STAU1) is an RNA-binding protein essential in untransformed cells. In cancer cells, the level of expression of the STAU1 protein is critical and it has been closely linked to events of apoptosis and to cell proliferation impairments. STAU1's dsRBD2 binds protein factors that are fundamental for the protein's functions, such as microtubules components that ensure the protein localization to the mitotic spindle and its interaction with E3 ubiquitin-ligase APC/C coactivators, which guarantees the partial degradation of STAU1 during mitosis. By mapping a novel F39PxPxxLxxxxL50 motif (FPL motif) in the dsRBD2 of STAU1, responsible of the interaction with the co-activators of APC/C, CDC20 and CDH1, and its subsequent degradation, we were able to identify a total of 15 proteins mostly involved in the inflammatory process that share this sequence with STAU1. We proved, by co-transfection and degradation assays that, MAP4K1, one of the proteins that shares this motif, is also degraded via this FPL motif. However, we demonstrated that this motif on MAP4K1 is not the target of APC/C. Biotinylation techniques of proteins near STAU1 allowed us to identify TRIM25, an E3 ubiquitin ligase involved in immune regulation and inflammation, as a protein involved in the degradation of STAU1 and MAP4K1 via the FPL motif. This suggests roles of STAU1 in the regulation of the inflammatory events, which is consistent with recent studies that associate STAU1 with this process. We consider that the FPL motif could be at the basis of the coordination of the regulation of proteins involved in inflammation and the regulation of the immune response. Our studies on the anti-proliferative effect of STAU1 when overexpressed in transformed cells identified the domain dsRBD2 of STAU1 as responsible for this phenotype. Mutants 8 that mimic different phosphorylation states of serine 20, located in dsRBD2, underlie changes in the regulation of translation and degradation of STAU1-linked mRNAs. These STAU1-dependent changes in mRNA regulation are associated with the proliferation impairment of transformed cells that is observed upon overexpression of STAU1. We also discovered that, after STAU1 transfection, the cell rapidly triggers apoptotic events, and that these events are also dependent on the phosphorylation state of serine 20 in dsRBD2 of STAU1. These results suggest that STAU1 is a sensor that controls the balance between cell survival and cell proliferation and that the state of phosphorylation of its dsRBD2 is the basis of this control. Our results indicate that the dsRBD2 of STAU1 is the regulatory domain of the level of protein expression and a modulator of the protein roles as a post-transcriptional factor. We believe that targeting the regulation of STAU1 and its functions located in its dsRBD2 domain, would be important in the study of diseases that involve apoptosis, inflammation and cell proliferation events such as cancer.
105

Étude des facteurs de régulation de la stabilité de la MAPK atypique ERK3 ainsi que de son rôle dans la progression tumorale du cancer du sein

Tesnière, Chloé 12 1900 (has links)
ERK3 est une protéine de la famille des MAP kinase (MAPK) classifiée comme atypique car elle présente des différences notables comparées aux propriétés redondantes des MAPK dites classiques. ERK3 est notamment une protéine très instable dégradée constitutivement par le système ubiquitine protéasome. Par conséquence, son activité biologique est principalement contrôlée par la régulation de sa dégradation. Pourtant, les facteurs impliqués dans la régulation de la stabilité de ERK3 restent mal compris. Ce travail de thèse vise ainsi à affiner notre compréhension des mécanismes de régulation de la stabilité de ERK3. De manière intéressante, nous avons montré dans une première étude qu’un pH acide stabilise fortement ERK3 alors qu’à l’inverse, un pH basique induit sa rapide dégradation par le protéasome. De plus, la déplétion génétique de NBCn1, un transporteur de bicarbonate impliqué dans la régulation du pH intracellulaire, augmente également la stabilité de ERK3. Ainsi, des variations de pH intracellulaire régulent finement la dégradation de ERK3. Nous avons également montré dans une deuxième étude l’importance de ERK3 dans la progression tumorale dans le cancer du sein. La surexpression de ERK3 au niveau transcriptionnel ou protéique est associée à un mauvais pronostic dans le cancer du sein, que ce soit au niveau de la survie globale ou de la survie sans métastase. Ainsi, la déplétion de ERK3 entraîne une diminution drastique du nombre de métastases au foie et aux poumons. ERK3 est également impliquée dans la migration cellulaire in vitro. Nous avons montré pour la première fois que la stabilité d’une kinase peut être modulée par le pH. Or, le pH est impliqué dans de nombreux processus biologiques comme, entre autres, la prolifération cellulaire, la migration, l’invasion et la mort cellulaire. Les résultats obtenus pendant ce doctorat ouvrent donc de nouveaux champs d’exploration pour étudier l’activité biologique de ERK3 dans des contextes dépendants du pH. / ERK3 is an atypical member of the MAP kinase (MAPK) family because its regulation differs from the canonical module of classical MAPK. ERK3 is also an unstable protein constitutively degraded by the ubiquitin proteasome system (UPS). Therefore, ERK3 stability regulation is an essential element in the control of its biological activity. However, the components implied in the regulation of its stability by the UPS are mainly unknown. This thesis aims to understand the regulation mechanisms controlling ERK3 degradation to better explore its biological function. In a first study, we showed that an acidic extracellular pH strongly stabilizes ERK3. At the opposite, a basic pH triggers its rapid degradation by the proteasome. Moreover, genetic depletion of NBCn1, a bicarbonate transporter involved in the regulation of the intracellular pH (pHi), also impacts ERK3 stability. We demonstrated that pHi variation finely regulates ERK3 degradation. We also explored the role of ERK3 in breast cancer progression in a second study. In breast cancer, high ERK3 expression correlates with a poor overall survival as well as a higher risk to develop metastases. ERK3 depletion triggers a severe decrease in the number of liver and lungs metastasis in a in vivo metastasis model. We also demonstrated that ERK3 is involved in cell migration in vitro. We showed for the first time that a kinase stability is modulated by pH variation. pH homeostasis is finely regulated in cells to assure important cellular functions such as proliferation, invasion, and survival. Therefore, ERK3 protein levels regulation by the pH raises new potential functions to explore for this kinase in a context pH dependent.
106

Regulation of BAP1 tumor suppressor complex by post-translational modifications

Mashtalir, Nazar 04 1900 (has links)
Le régulateur transcriptionnel BAP1 est une déubiquitinase nucléaire (DUB) dont le substrat est l’histone H2A modifiée par monoubiquitination au niveau des residus lysines 118 et 119 (K118/K119). Depuis les dernières années, BAP1 emerge comme un gene suppresseur de tumeur majeur. En effet, BAP1 est inactivé dans un plethore de maladies humaines héréditaires et sporadiques. Cependant, malgré l’accumulation significative des connaissances concernant l’occurrence, la pénétrance et l’impact des défauts de BAP1 sur le développement de cancers, ses mécanismes d’action et de régulation restent très peu compris. Cette étude est dédiée à la caractérisation moléculaire et fonctionnelle du complexe multi-protéique de BAP1 et se présente parmi les premiers travaux décrivant sa régulation par des modifications post-traductionnelles. D’abord, nous avons défini la composition du corps du complexe BAP1 ainsi que ses principaux partenaires d’interaction. Ensuite, nous nous sommes spécifiquement intéressés a investiguer d’avantage deux principaux aspects de la régulation de BAP1. Nous avons d’abord décrit l’inter-régulation entre deux composantes majeures du complexe BAP1, soit HCF-1 et OGT. D’une manière très intéressante, nous avons trouvé que le cofacteur HCF-1 est un important régulateur des niveaux protéiques d’OGT. En retour, OGT est requise pour la maturation protéolytique de HCF-1 en promouvant sa protéolyse par O-GlcNAcylation, un processus de régulation très important pour le bon fonctionnement de HCF-1. D’autre part, nous avons découvert un mécanisme unique de régulation de BAP1 médiée par l’ubiquitine ligase atypique UBE2O. en effet, UBE2O se caractérise par le fait qu’il s’agit aussi bien d’une ubiquitine conjuratrice et d’une ubiquitine ligase. UBE2O, multi-monoubiquitine BAP1 au niveau de son domaine NLS et promeut son exclusion du noyau, le séquestrant ainsi dans le cytoplasme. De façon importante, nos travaux ont permis de mettre de l’emphase sur le rôle de l’activité auto-catalytique de chacune de ces enzymes, soit l’activité d’auto-déubiquitination de BAP1 qui est requise pour la maintenance de sa localisation nucléaire ainsi que l’activité d’auto-ubiquitination d’UBE2O impliquée dans son transport nucléo-cytoplasmique. De manière significative, nous avons trouvé que des défauts au niveau de l’auto-déubiquitination de BAP1 due à des mutations associées à certains cancers indiquent l’importance d’une propre regulation de cette déubiquitinase pour les processus associés à la suppression de tumeurs. / BAP1 is a nuclear deubiquitinating enzyme (DUB) that acts as a transcription regulator and a DUB of nucleosomal histone H2AK119. In the recent years, it has become clear that BAP1 is a major tumor suppressor, inactivated in a plethora of hereditary and sporadic human malignancies. Although, we now accumulated a significant body of knowledge in respect to the occurrence, penetrance and impact of BAP1 disruption in cancer, its mechanism of action and regulation remained poorly defined. This work is dedicated to the biochemical and functional characterization of the BAP1 multiprotein complex and presents one of the first cases regarding its regulation by post-translational modifications. First, we defined the initial composition of the BAP1 complex and its main interacting components. Second, we specifically focused on two aspects of BAP1 regulation. We described the cross regulation between the two major components of the complex namely HCF-1 and OGT. We found that HCF-1 is important for the maintenance of the cellular levels of OGT. OGT, in turn, is required for the proper maturation of HCF-1 by promoting O-GlcNAcylation-mediated limited proteolysis of its precursor. Third, we discovered an intricate regulatory mechanism of BAP1 mediated by the atypical ubiquitin ligase UBE2O. UBE2O multi-monoubiquitinates BAP1 on its NLS and promotes its exclusion from the nucleus. Importantly, our work emphasises the role of the autocatalytic activity of both enzymes namely the auto-deubiquitination activity of BAP1, required for the maintenance of nuclear BAP1 and the auto-ubiquitination of UBE2O implicated in its nucleocytoplasmic transport. Significantly, we found that auto-deubiquitination of BAP1 is disrupted by cancer-associated mutations, indicating the involvement of this process in tumor suppression.
107

Analyse de la localisation génomique et identification de nouvelles fonctions des sous-unités Rpb4/Rpb7 de l’ARN polymérase II et des facteurs TFIIF, TFIIS et UBR5

Cojocaru, Marilena 07 1900 (has links)
Grâce à un grand nombre d’études biochimiques, génétiques et structurales effectuées dans les dernières années, des avancements considérables ont été réalisés et une nouvelle vision du processus par lequel la machinerie transcriptionnelle de l’ARN polymérase II (Pol II) décode l’information génétique a émergé. De nouveaux indices ont été apportés sur la diversité des mécanismes de régulation de la transcription, ainsi que sur le rôle des facteurs généraux de transcription (GTFs) dans cette diversification. Les travaux présentés dans cette thèse amènent de nouvelles connaissances sur le rôle des GTFs humains dans la régulation des différentes étapes de la transcription. Dans la première partie de la thèse, nous avons analysé la fonction de la Pol II et des GTFs humains, en examinant de façon systématique leur localisation génomique. Les patrons obtenus par immunoprécipitation de la chromatine (ChIP) des versions de GTFs portant une étiquette TAP (Tandem-Affinity Purification) indiquent de nouvelles fonctions in vivo pour certains composants de cette machinerie et pour des éléments structuraux de la Pol II. Nos résultats suggèrent que TFIIF et l’hétérodimère Rpb4–Rpb7 ont une fonction spécifique pendant l’étape d’élongation transcriptionnelle in vivo. De plus, notre étude amène une première image globale de la fonction des GTFs pendant la réaction transcriptionnelle dans des cellules mammifères vivantes. Deuxièmement, nous avons identifié une nouvelle fonction de TFIIS dans la régulation de CDK9, la sous-unité kinase du facteur P-TEFb (Positive Transcription Elongation Factor b). Nous avons identifié deux nouveaux partenaires d’interaction pour TFIIS, soit CDK9 et la E3 ubiquitine ligase UBR5. Nous montrons que UBR5 catalyse l’ubiquitination de CDK9 in vitro. De plus, la polyubiquitination de CDK9 dans des cellules humaines est dépendante de UBR5 et TFIIS. Nous montrons aussi que UBR5, CDK9 and TFIIS co-localisent le long du gène  fibrinogen (FBG) et que la surexpression de TFIIS augmente les niveaux d’occupation par CDK9 de régions spécifiques de ce gène, de façon dépendante de UBR5. Nous proposons que TFIIS a une nouvelle fonction dans la transition entre les étapes d’initiation et d’élongation transcriptionnelle, en régulant la stabilité des complexes CDK9-Pol II pendant les étapes précoces de la transcription. / Biochemical, genetic and structural studies made over the last years bring a new view on the RNA polymerase II (Pol II) machinery and the process by which it decodes the genetic information. They provided new insights into the diversity of the transcriptional regulation mechanisms, and on the role played by the general transcription factors (GTFs). The studies presented in this thesis provide new evidence on the role of human GTFs in the regulation of different stages of transcription. In the first part of the thesis, we investigated the function of the human Pol II and GTFs in living cells, by systematically analyzing their genomic location. The location profiles obtained by chromatin immunoprecipitation (ChIP) of TAP (tandem-affinity purification) tagged versions of these factors indicate new in vivo functions for several components of this machinery, and for structural elements of the Pol II. These results suggest that TFIIF and the heterodimer Rpb4–Rpb7 have a specific function during the elongation stage in vivo. Additionally, our study offers for the first time a general picture of GTFs function during the Pol II transcription reaction in live mammalian cells, and provides a framework to uncover new regulatory hubs. Secondly, we report on the identification of a new function of the factor TFIIS in the regulation of CDK9, the kinase subunit of the Positive Transcription Elongation Factor b (P-TEFb). We identify two interaction partners for TFIIS, namely CDK9 and the E3 ubiquitin ligase UBR5. We show that UBR5 catalyzes the ubiquitination of CDK9 in vitro. Moreover, the polyubiquitination of CDK9 in human cells is dependent upon both UBR5 and TFIIS, and does not signal its degradation. We also show that UBR5, CDK9 and TFIIS co-localize along specific regions of the  fibrinogen (FBG) gene, and that the overexpression of TFIIS increases the occupancy of CDK9 along this gene in a UBR5 dependant manner. We propose a new function of TFIIS in the transition between initiation and elongation stages, by regulating the stability of the early CDK9-Pol II transcribing complexes. Key words: chromatin immunoprecipitation, general transcription factors, tandem-affinity purification, RNA polymerase II, Rpb4–Rpb7 heterodimer, transcription factor IIF (TFIIF), transcription factor IIS (TFIIS), UBR5 ubiquitin ligase, Positive Transcription Elongation Factor b (P-TEFb), CDK9 ubiquitination.
108

Étude par RMN de la créatine kinase musculaire et d’un nouveau domaine de liaison à l’ubiquitine dans la protéine STAM2 / NMR study of the creatine kinase muscle and a new binding domain in the protein ubiquitin STAM 2

Rivière, Gwladys 09 December 2011 (has links)
Au cours de cette thèse, nous avons étudié deux protéines par RMN : la créatine kinase musculaire (CK-MM) et le domaine UIM-SH3 de la protéine STAM2, seuls ou en interaction avec leurs partenaires. La CK-MM est une enzyme active sous forme dimérique. Elle appartient à la famille des guanidino-kinases et intervient dans le processus énergétique de la cellule. Le but de l’étude était d’élucider le mode de fonctionnement de la CK-MM. Pour cela, nous avons enregistré des expériences de relaxation R1, R2 et des expériences de perturbation de déplacement chimique sur la CK-MM libre et complexée avec MgADP et sous forme TSAC. Ces expériences montrent que la boucle 320s, spécifique à la reconnaissance des substrats, possède une dynamique rapide en absence de substrats et une dynamique ralentie en présence de substrats. La fixation des substrats dans les sites actifs de la CK-MM induit des modifications conformationelles importantes. La protéine STAM2 est composée de deux UBDs : VHS, et UIM et d’un domaine SH3 connu pour interagir avec des déubiquitinases UBPY et AMSH. Cette protéine est impliquée dans la voie de dégradation lysosomale. L’objectif de cette étude est la caractérisation du complexe SH3/ubiquitine. Pour cela, nous avons enregistré des expériences de perturbation de déplacement chimique et de relaxation R1, R2 et nOes sur le complexe UIM-SH3/ubiquitine. Ces expériences mettent en évidence que les domaines UIM et SH3 sont capables d’interagir chacun avec une ubiquitine, avec une affinité de l’ordre de la centaine de micromolaire. L’interface entre les UBDs et l’ubiquitine implique majoritairement des résidus hydrophobes et conservés / In this thesis, we study two proteins by NMR: the muscular creatine kinase (CK-MM) and the SH3 domain of STAM2 protein, in the free and complexed forms. CK-MM is an active homodimeric enzyme which belongs to the guanidino-phosphagen-kinase family. This enzyme is involved in energetic process in the cell. The aim of this study is to elucidate the functional mode of the CK-MM. For this purpose, we measured R1 and R2 relaxation rates and chemical shit perturbation experiments on the substrate-free CK-MM, the CK-MM/MgADP complex, and the inhibitory ternary complex CK-MM/MgADP-creatine-nitrate. The experiments show that the loop 320s, specific recognition of the substrates, possesses a fast dynamic in absence of substrates (in the order of nano-picosecond) and a slower dynamic in presence of creatine-MgADP-nitrate ion. The binding of the substrate in the two active sites induces of significant conformational modification of the CK-MM. STAM2 protein consists in two ubiquitin binding domains (VHS and UIM) and a SH3 domain which interacts with deubiquinating enzymes AMSH and UBPY. This protein is involved in the lysosomal degradation pathway. The aim of this study is the characterization of the interaction between SH3 domain of STAM2 and ubiquitin. For this, we recorded the R1, R2, nOes relaxation experiments and chemical shift perturbation experiments on the UIM-SH3/ubiquitin complex. These experiments show that SH3 and UIM domains interact each with a single ubiquitin, with affinity of the order of hundred micromolars. The interface between these UBDs and ubiquitin, involves mainly hydrophobic and conserved amino-acids
109

Caractérisation des fonctions des modifications post-traductionnelles de PCNA à l'aide d'un nouvel outil génétique / Characterization of PCNA’s post-translational modification functions using a new genetic tool

Dietsch, Frank 09 April 2019 (has links)
PCNA est une protéine essentielle qui intervient dans de nombreux mécanismes cellulaires et qui possède de nombreuses modifications post-traductionnelles (MPTs) dont les fonctions de certaines, restent encore inconnues. Afin d’étudier la fonction de ces MPTs, nous avons développé un nouvel outil génétique permettant in cellulo, de substituer la protéine endogène PCNA par une version mutée de la protéine appelée version de complémentation. La technique consiste à cotransfecter des cellules en culture avec deux types de plasmides. Un premier plasmide permet l’invalidation du gène de PCNA endogène dans les cellules transfectées par le système CRISPR-Cas9. Le deuxième plasmide dit de complémentation permet l’expression d’une forme mutée de PCNA. Sur l’ensemble d’une banque de mutants testés, deux mutants de PCNA se sont avérés être létaux (D122A et E124A). Nous avons démontré que ces deux sites sont impliqués dans l’initiation d’une voie de dégradation ubiquitine dépendante CRL4Cdt2 essentielle pour la mise en place de la protéolyse d’un cocktail de protéines (cdt1, p21, set8) durant la phase S. Nous avons démontré que les cellules mutantes pour PCNA (D122A et E124A) accumulent la protéine p21. Ce défaut de dégradation de p21 provoque alors des évènements de re-réplication menant à terme à la mort des cellules mutantes. / PCNA is an essential protein that is involved in many cellular mechanisms and has many post-translational modifications (PTMs). The functions of some PTMs, still remain unknown. In order to study the function of these PTMs, we have developed a new genetic tool allowing, in cellulo, the substitution of endogenous PCNA protein with a mutated version of the protein named complementation version. The technique involves cotransfection of the cells in culture with two types of plasmids. A first plasmid allows invalidation of the endogenous PCNA gene in transfected cells by the CRISPR-Cas9 system. The second plasmid, named complementation plasmid allows the expression of a mutated form of PCNA. In the whole bank of tested mutants, two PCNA mutants were found to be lethal (D122A and E124A). We have demonstrated that these two sites are involved in the initiation of an ubiquitin-dependent protein degradation CRL4Cdt2 pathway essential for the proteolysis of a protein cocktail (cdt1, p21, set8) during the S phase. We demonstrated that PCNA mutant cells (D122A and E124A) accumulate p21 protein. This lack of degradation of p21 then causes re-replication events leading ultimately to the mutant cells death.
110

Analyse de la localisation génomique et identification de nouvelles fonctions des sous-unités Rpb4/Rpb7 de l’ARN polymérase II et des facteurs TFIIF, TFIIS et UBR5

Cojocaru, Marilena 07 1900 (has links)
Grâce à un grand nombre d’études biochimiques, génétiques et structurales effectuées dans les dernières années, des avancements considérables ont été réalisés et une nouvelle vision du processus par lequel la machinerie transcriptionnelle de l’ARN polymérase II (Pol II) décode l’information génétique a émergé. De nouveaux indices ont été apportés sur la diversité des mécanismes de régulation de la transcription, ainsi que sur le rôle des facteurs généraux de transcription (GTFs) dans cette diversification. Les travaux présentés dans cette thèse amènent de nouvelles connaissances sur le rôle des GTFs humains dans la régulation des différentes étapes de la transcription. Dans la première partie de la thèse, nous avons analysé la fonction de la Pol II et des GTFs humains, en examinant de façon systématique leur localisation génomique. Les patrons obtenus par immunoprécipitation de la chromatine (ChIP) des versions de GTFs portant une étiquette TAP (Tandem-Affinity Purification) indiquent de nouvelles fonctions in vivo pour certains composants de cette machinerie et pour des éléments structuraux de la Pol II. Nos résultats suggèrent que TFIIF et l’hétérodimère Rpb4–Rpb7 ont une fonction spécifique pendant l’étape d’élongation transcriptionnelle in vivo. De plus, notre étude amène une première image globale de la fonction des GTFs pendant la réaction transcriptionnelle dans des cellules mammifères vivantes. Deuxièmement, nous avons identifié une nouvelle fonction de TFIIS dans la régulation de CDK9, la sous-unité kinase du facteur P-TEFb (Positive Transcription Elongation Factor b). Nous avons identifié deux nouveaux partenaires d’interaction pour TFIIS, soit CDK9 et la E3 ubiquitine ligase UBR5. Nous montrons que UBR5 catalyse l’ubiquitination de CDK9 in vitro. De plus, la polyubiquitination de CDK9 dans des cellules humaines est dépendante de UBR5 et TFIIS. Nous montrons aussi que UBR5, CDK9 and TFIIS co-localisent le long du gène  fibrinogen (FBG) et que la surexpression de TFIIS augmente les niveaux d’occupation par CDK9 de régions spécifiques de ce gène, de façon dépendante de UBR5. Nous proposons que TFIIS a une nouvelle fonction dans la transition entre les étapes d’initiation et d’élongation transcriptionnelle, en régulant la stabilité des complexes CDK9-Pol II pendant les étapes précoces de la transcription. / Biochemical, genetic and structural studies made over the last years bring a new view on the RNA polymerase II (Pol II) machinery and the process by which it decodes the genetic information. They provided new insights into the diversity of the transcriptional regulation mechanisms, and on the role played by the general transcription factors (GTFs). The studies presented in this thesis provide new evidence on the role of human GTFs in the regulation of different stages of transcription. In the first part of the thesis, we investigated the function of the human Pol II and GTFs in living cells, by systematically analyzing their genomic location. The location profiles obtained by chromatin immunoprecipitation (ChIP) of TAP (tandem-affinity purification) tagged versions of these factors indicate new in vivo functions for several components of this machinery, and for structural elements of the Pol II. These results suggest that TFIIF and the heterodimer Rpb4–Rpb7 have a specific function during the elongation stage in vivo. Additionally, our study offers for the first time a general picture of GTFs function during the Pol II transcription reaction in live mammalian cells, and provides a framework to uncover new regulatory hubs. Secondly, we report on the identification of a new function of the factor TFIIS in the regulation of CDK9, the kinase subunit of the Positive Transcription Elongation Factor b (P-TEFb). We identify two interaction partners for TFIIS, namely CDK9 and the E3 ubiquitin ligase UBR5. We show that UBR5 catalyzes the ubiquitination of CDK9 in vitro. Moreover, the polyubiquitination of CDK9 in human cells is dependent upon both UBR5 and TFIIS, and does not signal its degradation. We also show that UBR5, CDK9 and TFIIS co-localize along specific regions of the  fibrinogen (FBG) gene, and that the overexpression of TFIIS increases the occupancy of CDK9 along this gene in a UBR5 dependant manner. We propose a new function of TFIIS in the transition between initiation and elongation stages, by regulating the stability of the early CDK9-Pol II transcribing complexes. Key words: chromatin immunoprecipitation, general transcription factors, tandem-affinity purification, RNA polymerase II, Rpb4–Rpb7 heterodimer, transcription factor IIF (TFIIF), transcription factor IIS (TFIIS), UBR5 ubiquitin ligase, Positive Transcription Elongation Factor b (P-TEFb), CDK9 ubiquitination.

Page generated in 0.0446 seconds