Spelling suggestions: "subject:"[een] CREDIT RISK"" "subject:"[enn] CREDIT RISK""
221 |
Dans quelle mesure une démarche d’intelligence économique permettrait-elle une réduction du risque de crédit bancaire ? / To what extent would an economic intelligence approach reduce the risk of bank credit ?N'damas, Henri-Blaise 03 July 2017 (has links)
Les systèmes d’information bancaires, outils incontournables de la stratégie des banques, sont devenus complets et complexes. Et les systèmes d’information décisionnels ou stratégiques deviennent de plus en plus présents.Or, il persiste encore des inefficacités en matière de conception des systèmes d’informations, dues à une conception sauvage ou plutôt une construction sauvage des systèmes d’informations stratégiques, avec une mise à l’écart systématique des utilisateurs finals.Une solution parait être de s’appuyer sur l’intelligence économique pour tenter de résoudre le problème de la construction de ces systèmes d’information stratégiques, et donc d’améliorer la prise de décision. Car, le système d’informations stratégique, noyau des systèmes décisionnels, est le cœur même du système d’intelligence économique.Notre thèse est qu’une démarche d’intelligence économique appliquée à la conception des systèmes d’informations bancaires permettrait de réduire le « risque prêt ». Ceci, précisément, dans le domaine de la banque de détail et pour la clientèle des particuliers, des professionnels et des entrepreneurs.- Risque pour le client qui ne doit pas se lancer dans des remboursements qu’il ne pourra assumer, s’engager dans un projet de prêt qui ne correspondrait pas aux enjeux qu’il s’est définis ;- Risque évidemment pour la banque qui ne tient pas à accumuler des clients non solvables et ce qui ne correspondrait pas non plus à des enjeux définis par les décideurs de la banque.Après avoir rappelé les particularités de la banque et la complexité de son environnement, nous montrerons en quoi l'approche actuelle de la gestion des risques au sein des banques nous paraît « incomplète » et segmentée, et de ce fait, perfectible notamment pour ce qui concerne la clientèle des particuliers et des professionnels. Ensuite, nous comptons proposer des règles méthodologiques pour la conception de systèmes d’informations stratégiques bancaires, ainsi qu’un modèle d’architecture d’un tel système prenant en compte les besoins de l’utilisateur final qui sera, dans le cas de notre thèse, le décisionnaire d’un dossier de crédit ou bien le conseiller bancaire, voire l’analyste du risque de crédit. Enfin, après avoir établi ce modèle d'architecture de système d’informations stratégiques, nous comparerons ce qu'il permettrait d'améliorer, relativement à l'existant. Notre thèse se situe au carrefour, au confluent, d'une thèse en sciences de gestion, plus particulièrement en finance bancaire, et d’une thèse en système d'informations et en informatique ; et elle s’appuie en grande partie sur notre expérience professionnelle dans le secteur bancaire en France.Ainsi, avec le domaine bancaire, nous souhaitons explorer un nouveau domaine d’application des recherches en intelligence économique, notamment en liaison avec les résultats issus des travaux de l’équipe de recherches SITE (« Modélisation et Développement de Systèmes d’Intelligence Economique ») du LORIA (Laboratoire Lorrain de Recherches en Informatique et ses Applications) pour ce qui concerne la conception de systèmes d’informations pour l’intelligence économique.Après avoir présenté le concept d’intelligence économique et le processus décisionnel, nous montrerons les spécificités de la banque et de son système d’informations. Ensuite, nous expliciterons les difficultés de la gestion du risque de crédit au sein des banques avant de présenter nos propositions pour la mise en place d’un système d’informations stratégiques permettant d’améliorer la gestion du risque de crédit bancaire. / Bank Information Systems, key tools in banking strategies, have become comprehensive and complex. And the decision-making or strategic information systems are playing an increasingly more important role.Nevertheless, some inefficiencies in the conception of information systems still continue to exist, due to the uncontrolled design or rather construction of strategic information systems, systematically alienating the end-user.One solution seems to be to rely on economic intelligence to attempt to solve the matter of the construction of those strategic information systems, and consequently to improve decision-making. Because, the strategic information system, the core of decision-making systems, is the heart itself of the economic intelligence system.Our theory is that an approach of economic intelligence applied to the conception of information systems in banking would allow the reduction of the “loan risk”. This specifically in the sector of retail banking and for the individual, professional and contractor customer.- Risk for the customer who should not start loan payments which he cannot cover, or commit to loan projects which do not match the stakes he would have set himself.- Risk obviously for the bank which is not willing to accumulate uncreditworthy customers, and which would not match either the stakes set by the bank decision-makers.After putting emphasis on the distinctive features of the bank and the complexity of its environment, we will show the evidence that the current approach to risk management inside banks seems “incomplete” and fragmented, and consequently, where there is room for improvement particularly for individual and professional customers.Then, we intend to suggest some methodological rules for the conception of strategic information systems in banking, as well as a business model of such a system taking into account the needs of the end-user who will be, as shown in this present thesis, the decision-maker of a credit file or the bank adviser, or even the credit risk analyst. Finally, after drawing up this model of strategic information systems, we will compare how it could improve on the existing one. Our thesis is situated at a crossroads, at a confluence, of a thesis in management sciences, more particularly in bank finance, and of a thesis in information systems, and in computer science; and it leans largely on our professional experience in the banking sector in France.Thus, along with the banking sector, we wish to explore the new field of application of research in economic intelligence, particularly linked to the results stemming from the work by the research team SITE of LORIA as far as the conception of information systems for economic intelligence is concerned.After introducing the concept of economic intelligence and the decision-support process (chapter no. 1), we will outline the specificities of the banking sector and its information systems (chapter no. 2). Then we will clarify the difficulties of credit risk management within banks (chapter no. 3) before submitting our proposals for the implementation of a strategic information system enabling the improvement of credit risk management in banking (chapter no. 4).
|
222 |
Psicologia do risco de crédito: análise da contribuição de variáveis psicológicas em modelos de credit scoring / Psychology of credit risk: analysis of the contribution of psychological variables in credit scoring modelsSilva, Pablo Rogers 27 June 2011 (has links)
A presente tese objetivou investigar a contribuição de variáveis e escalas psicológicas sugeridas pela literatura de Psicologia Econômica, a fim de predizer o risco de crédito de pessoas físicas. Nesse sentido, através das técnicas de regressão logística, e seguindo todas as etapas para desenvolvimento de modelos de credit scoring, foram construídos modelos de application scoring para pessoas físicas com variáveis sociodemográficas e situacionais, comumente utilizadas nos modelos tradicionais, mais a inclusão de variáveis comportamentais e escalas psicológicas, tais como: variáveis de comparação social, variáveis relacionadas com educação financeira, variáveis de comportamento de consumo, proxies de autocontrole e horizonte temporal, escala do significado do dinheiro (ESD), escala de autoeficácia, escala de lócus de controle, escala de otimismo, escala de autoestima e escala de comprador compulsivo. Os resultados foram contundentes e direcionaram para uma significativa contribuição de algumas dessas variáveis em predizer o risco de crédito dos indivíduos. As variáveis oriundas da ESD mostraram que as dimensões negativas relacionadas com o dinheiro estão mais associadas a indivíduos com problemas com dívidas. Também foi possível constatar que indivíduos com altos escores na escala de autoeficácia, provavelmente indicando um maior grau de otimismo e excesso de confiança, estão mais associados ao grupo de mau pagador. Notou-se ainda que compradores classificados como compulsivos possui maior probabilidade de se encontrar no grupo de mau crédito. Indivíduos que consideram presentear crianças e amigos em datas comemorativas como uma necessidade, mesmo que muitas pessoas considerem um luxo, possuem maior chance de se encontrarem no grupo de mau crédito. Problemas de autocontrole identificados por indivíduos que bebem em média mais de quatro copos de bebida alcoólica no dia ou são fumantes, mostraram-se importantes para identificar tendências ao endividamento. A partir desses achados acredita-se que a presente tese avançou no entendimento do risco de crédito das pessoas físicas, de forma a suscitar variáveis que podem aumentar a precisão da previsão dos modelos de credit scoring, tendo como uma das implicações imediatas a consideração de algumas das variáveis significativas como uma pergunta no formulário cadastral para novos clientes, tais como: Você acha que presentear amigos em datas comemorativas é uma necessidade ou luxo? Você acha que presentear crianças em datas comemorativas é uma necessidade ou luxo? Na média, você bebe mais de 4 copos de bebida alcoólica no dia? Você fuma cigarros? As implicações dos resultados também podem ser discutidas no âmbito dos modelos de behavioral scoring e modelos de credit scoring para pessoas jurídicas. / This works aimed to investigate the contribution of variables and psychological scales, suggested by the literature of Economic Psychology, in order to predict the credit risk of individuals. Accordingly, through the techniques of logistic regression, and following all the steps for developing credit scoring models, application scoring models were built for individuals with socio demographic and situational variables, commonly used in traditional models, further the inclusion of behavioral variables and psychological scales, such as: variables of social comparison, variables related to financial education, variables in consumption behavior, proxies of self-control and temporal horizon, meaning of money scale (MMS), scale of self efficacy, locus of control scale, scale of optimism, scale of self-esteem and scale of compulsive buyer. The results were blunt, and directed a significant contribution to some of these variables in predicting the credit risk of individuals. The variables derived from the MMS showed that the negative dimensions related to money are more associated to individuals with debt problems. It was also noted that individuals with high scores on selfefficacy scale, probably indicating a higher degree of optimism and overconfidence, are the group most associated with bad credit. It was noted also that buyers classified as compulsive ones are more likely to find in the group of bad credit. Individuals who consider gifting children and friends on commemorative dates as a necessity, even though many people consider a luxury, have more chance in being found in the group of bad credit. Self-control problems, identified by individuals who drink more than four glasses of alcohol a day, or are smokers, were important to identify indebtedness trends. From these findings it is believed that this works has advanced the understanding of the credit risk of individuals, giving rise to variables that may increase the forecast accuracy of credit scoring models, having as one of the immediate implications, considering of some of the significant variables as one of the questions about the individual when he fills the new application form, such as: Do you think gifting friends in commemorative dates is a necessity or luxury? Do you think gifting children in commemorative dates is a necessity or luxury? On average, you drink more than four glasses of alcohol a day? Do you smoke cigarettes? The implications of these results can also be discussed in the context of behavioral scoring models and credit scoring models for corporations.
|
223 |
Versicherungen als Risikomanagementinstrumente in der Landwirtschaft - Über staatliche Unterstützung und die Beurteilung satellitenbasierter Indexversicherungen / Insurance as a risk management tool in agriculture - About public support and remotely-sensed index insuranceMöllmann, Johannes 09 May 2019 (has links)
No description available.
|
224 |
Measures and models of financial riskWeber, Stefan 01 December 2004 (has links)
Thema der Dissertation ist zum einen die Quantifizierung und zum anderen die endogene Modellierung von Finanzrisiken. Die mathematische Analyse führt unter anderem auf Zusammenhänge finanzmathematischer Probleme mit der Theorie großer Abweichungen, der Choquet-Theorie, der Theorie interagierender Teilchensysteme und der Theorie dynamischer Systeme. Die ersten zwei Kapitel der Arbeit beleuchten die Bemessung von Finanzrisiken aus zwei unterschiedlichen Perspektiven. In Kapitel 1 analysieren wir die Berechnung von Risikomaßen mittels Monte Carlo Methoden. In Kapitel 2 wird die Rolle von Information und Zeit bei der Bewertung von Finanzrisiken untersucht. Die Modellierung von Finanzrisiken auf Märkten interagierender Akteure wird in den beiden letzten Kapiteln der Arbeit in zwei Fallstudien betrachtet. In der ersten Fallstudie in Kapitel 3 befassen wir uns dabei mit dem Zusammenhang von Kreditrisiken und Ansteckungsprozessen von Firmen, die mit ihren Geschäftspartnern interagieren. In der zweiten Fallstudie in Kapitel 4 beleuchten wir die Marktinteraktion von eingeschränkt rationalen Investoren in einem evolutionären Marktselektionsmodell. / In this thesis, we study monetary measures and endogenous models of financial risk. The mathematical analysis identifies connections between problems in mathematical finance on the one hand and large deviations, Choquet-theory, interacting particle systems, and dynamical systems on the other hand. The first part of the thesis considers two aspects of the quantification of financial risk. In the first chapter, we focus on the calculation of risk measurements by Monte Carlo simulation. In the second chapter, we investigate a particular class of dynamic risk measures. In the second part we analyze two models of financial risk in economies with interacting agents. First, we focus in the third chapter on credit contagion of firms which interact with each other in a network of business partners. Second, we investigate in the fourth chapter the market interaction of investors with bounded rationality in an evolutionary selection market model.
|
225 |
Versicherungen als Risikomanagementinstrumente in der Landwirtschaft - Über staatliche Unterstützung und die Beurteilung satellitenbasierter Indexversicherungen / Insurance as a risk management tool in agriculture - About public support and remotely-sensed index insuranceMöllmann, Johannes 09 May 2019 (has links)
No description available.
|
226 |
Hållbarhet och kreditvärdering : En studie om ESG-betygens inverkan på nordiska bolags kreditbetygEkman, Dionne, Hertzberg, Nadja January 2018 (has links)
This study aims to investigate the relationship between ESG-scores and credit ratings for Large Cap companies listed on the Nasdaq Nordic Stock Exchange Market. The purpose of the study is also to achieve a deeper understanding of how Swedish banks incorporate sustainability in the credit process. Considering the purpose of the study, triangulation was chosen as the approach as it includes both quantitative and qualitative procedures. Inspired by prior research the variables has primarily been conducted using simple linear and logistic regressions. Compared to significant prior research illuminating the positive effects of sustainability on financial performance, as well as risk mitigation effects, the study provides surprising results. Positive correlation between ESG-scores and credit scores can only be confirmed for two of the studied years. Four of the years verifies a positive correlation between a high ESG-score and a high credit score. The result also reflect that the strength of the correlation varies across industries and countries. Insights from the qualitative part of the study confirms that banks take sustainability into account in the credit process. The result of the study goes both hand in hand with prior research and deviates from it, which creates interesting opportunities for future research. / Denna studie syftar till att undersöka eventuella samband mellan ESG-betyg och kreditbetyg för börsnoterade bolag på Nasdaq Nordic Large Cap för tidsperioden 2009–2017. Vidare eftersöks djupare förståelse för hur svenska banker integrerar hållbarhet i kreditbedömningsprocessen för företag. Med studiens syfte i beaktande föll metodvalet på triangulering då angreppssättet innefattar en kombination av kvantitativ och kvalitativ ansats. Med inspiration från tidigare forskning analyserades variablerna ESG-betyg och kreditbetyg med hjälp av linjära- och logistiska regressioner. I förhållande till omfattande tidigare forskning belysande hållbarhets positiva inverkan på finansiell prestation och reducering av risk förefaller studiens resultat förvånande. Ett positivt samband mellan ESG- betyg och kreditbetyg kan bara bekräftas för två av de undersökta åren. Ett positivt samband mellan ett högt ESG-betyg och ett högt kreditbetyg kan bekräftas för fyra år. Det råder även skillnader i korrelationens styrka beroende på bransch och land. Resultatet från den kvalitativa delen bekräftar att samtliga banker genomför en intern hållbarhetsanalys för företag i kreditbedömningen. Utfallet av studien går både i linje med och emot tidigare forskning vilket skapar intressanta möjligheter för vidare forskning.
|
227 |
Classificação de risco de crédito: modelos estruturais, modelos não estruturais, ratings das agências de classificação: convergências e/ou divergências?Pires, Vanessa Martins 11 January 2011 (has links)
Submitted by Mariana Dornelles Vargas (marianadv) on 2015-03-19T13:35:22Z
No. of bitstreams: 1
classificacao_risco.pdf: 1102040 bytes, checksum: 33359db86cf7431ae0f650e9d54aa9d8 (MD5) / Made available in DSpace on 2015-03-19T13:35:22Z (GMT). No. of bitstreams: 1
classificacao_risco.pdf: 1102040 bytes, checksum: 33359db86cf7431ae0f650e9d54aa9d8 (MD5)
Previous issue date: 2011-01-11 / Nenhuma / O risco de crédito empresarial é o risco ao qual a instituição credora está exposta caso alguma de suas contrapartes venha a falhar no cumprimento de suas obrigações contratuais de crédito. No mundo acadêmico, duas metodologias têm sido utilizadas para estimar o risco de crédito das empresas: os modelos estruturais e os modelos não estruturais. Esta pesquisa contempla o modelo estrutural KMV e os modelos não estruturais de Kanitz (1976), Altman, Baidya e Dias (1979), Minussi (2008) e Brito e Assaf Neto (2008), com o objetivo de verificar o nível de convergência entre os resultados estimados pelas referidas metodologias e comparar as classificações obtidas pelas mesmas com os ratings concedidos pelas agências de rating Moody?s e Standard & Poor?s. O estudo, realizado por meio de uma pesquisa explicativa, abrange o período de 2006 a 2009. Estimaram-se regressões lineares simples e múltiplas, a fim de verificar a convergência entre os modelos e realizou-se uma análise comparativa entre as classificações estimadas pelos modelos e os ratings das referidas agências. Concluiu-se que os resultados estimados pelo modelo não estrutural de Altman, Baidya e Dias (1979) são convergentes com os resultados obtidos pelo modelo estrutural KMV. Os resultados estimados pelo modelo de Brito e Assaf Neto (2008) apresentaram-se convergentes com o modelo KMV, quando analisados conjuntamente com os resultados dos demais modelos. Os resultados obtidos pelos modelos de Kanitz (1976) e Minussi (2008) não apresentaram convergência. No que tange à comparação entre os resultados estimados pelos modelos e os ratings das agências, o modelo estrutural KMV e os modelos não estruturais de Minussi (2008) e Altman, Baidya e Dias (1979) destacaram-se por terem os resultados mais semelhantes. / The corporate credit risk is the risk which the lending institution is exposed if some of its counterparties fail in fulfilling the contractual obligations for credit. For academics, a couple of methodologies have been used to estimate the credit risk of companies: the structural and the non structural models. This research focuses the KMV structural model and the non structural models from Kanitz (1976), Altman, Baidya and Dias (1979), Minussi (2008) and Brito & Assaf Neto (2008), in order to verifying the level of convergence between the results estimated through these methodologies and compare the classification obtained for them with the rating given by the Moody?s and Standart & Poor?s rating agencies. The study was developed through an explanatory research within the period of 2006 to 2009. Simple and multiples linear regressions were estimated in order to verify the convergence between the models and a comparative analysis between the classifications obtained through the models and the ratings from those agencies. It was concluded that the results estimated through non structural model of Altman, Baidya and Dias (1979) are convergent with the results obtained through the KMV structural model. The results estimated through the Brito and Assaf Neto (2008) model were convergent with the KMV model when analyzed together with the results from another models. The results obtained through the Kanitz (1976) and Minussi (2008) models did not show convergence. Regarding to the comparisons between the results obtained for the models and the ratings of agencies, the KMV structural model and the non structural models of Minussi (2008) and Altman, Baidya and Dias (1979) stood out for having the most similar results.
|
228 |
Análise do risco de crédito no uso do cartão de créditoJantsch, Leonardo 22 February 2017 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-05-29T11:43:19Z
No. of bitstreams: 1
Leonardo Jantsch_.pdf: 653935 bytes, checksum: 68ed1b170adfa489130eb6ea553f2c75 (MD5) / Made available in DSpace on 2017-05-29T11:43:19Z (GMT). No. of bitstreams: 1
Leonardo Jantsch_.pdf: 653935 bytes, checksum: 68ed1b170adfa489130eb6ea553f2c75 (MD5)
Previous issue date: 2017-02-22 / Nenhuma / O objetivo deste trabalho foi mensurar a probabilidade de atraso nos pagamentos e posterior inadimplência como medida de análise do risco de crédito e de suporte a tomada de decisão em empréstimos de cartão de crédito para pessoas físicas em instituição financeira comercial. Como método de pesquisa buscou-se no Design Science Research a base para a prescrição de soluções e construção de artefatos, sendo que as análises foram efetivadas utilizando-se das cadeias de Markov. Os resultados encontrados evidenciam que indivíduos se comportam de forma distinta em termos de utilização e manutenção das carteiras, o que permite atribuir características próprias aos usuários de maior risco pelos atributos selecionados neste estudo. A principal contribuição deste trabalho está em evidenciar que o processo de entendimento prévio, contemplando o levantamento dos requisitos de negócio, necessidade de dados, tratamento de dados, modelagem, avaliação e implementação, pode se tornar um fator de sucesso no momento de definição e aplicação das análises de perfil por meio das cadeias de Markov. / The objective of this study was to measure the probability of late payment and subsequent delinquency as a measure of credit risk analysis and support decision making in credit card loans to individuals in a commercial financial institution. As a research method, Design Science Research was the basis for the prescription of solutions and the construction of artifacts, and the analyzes were carried out using Markov chains. The results show that individuals behave differently in terms of the use and maintenance of the portfolios, which allows to assign characteristics of the users of higher risk to the attributes selected in this study. The main contribution of this work is to show that the process of prior understanding, contemplating the survey of business requirements, data requirements, data processing, modeling, evaluation and implementation, can become a success factor when defining and applying of the profile analyzes through the Markov chains.
|
229 |
Fatores de influência à securitização bancária no BrasilFerabolli, Cristina 28 February 2014 (has links)
Submitted by Fabricia Fialho Reginato (fabriciar) on 2015-06-30T01:26:23Z
No. of bitstreams: 1
CristinaFerabolli.pdf: 1444963 bytes, checksum: 3a500787cd63e67d3ffdedda874efc97 (MD5) / Made available in DSpace on 2015-06-30T01:26:23Z (GMT). No. of bitstreams: 1
CristinaFerabolli.pdf: 1444963 bytes, checksum: 3a500787cd63e67d3ffdedda874efc97 (MD5)
Previous issue date: 2014 / Nenhuma / Esta pesquisa teve como objetivo analisar os principais fatores que levaram os bancos brasileiros a utilizarem instrumentos de securitização no período de 2005 a 2012. Avaliou-se ainda o cenário da crise financeira mundial e a se a mesma modificou o padrão da securitização no mercado brasileiro. Os resultados obtidos através da aplicação do modelo de regressão logística em uma amostra de 643 observações indicam que a liquidez é o principal fator determinante na opção pela securitização, seguido pelo capital regulatório. Além disso, o tamanho do banco também apresenta relevância estatística, sinalizando possíveis ganhos de escala nas operações de securitização. Não foram encontradas evidências de utilização da securitização por transferência de risco de crédito e por performance, nem evidências de mudanças no padrão da securitização, no Brasil, no período pré e pós crise. / This research aims to analyze the main factors leading Brazilian banks to use securitization instruments in the period of 2005-2012. It was also evaluated the scenario of the global financial crisis and whether it changed the pattern of securitization in Brazil. The results obtained by applying the logistic regression model in a sample of 643 observations indicate that liquidity is the main determining factor in the choice of securitization, followed by regulatory capital. Moreover, the size of the bank also presents statistical relevance, signaling possible economies of scale in securitization transactions. There is no evidence of the use of securitization for credit risk transfer and performance, nor evidence of changes in the pattern of securitization, in Brazil, in the pre and post crisis.
|
230 |
Kredithantering : Rådgivares syn på riskhantering vid bostadslån / Credit Management : adviser's view of risk management for mortgageCarlsson, Jens, Karlsson, Sofie January 2014 (has links)
En bostad kan ses som en investering och finansieras oftast med ett bostadsslån från en bank. Finansinspektionen som fungerar som ett tillsynsorgan till bankverksamheterna har agerat mot en osund kredithantering med hjälp av införandet av ett bolånetak. Tidigare finansiella kriser har visat på svårigheterna att i förväg föreställa sig effekterna av framtida osäkerheter. Vid ett bostadslån kommer kreditgivaren och kredittagaren behöva resonera kring framtida osäkerhet som medföljer skuldsättningen. En ökad skuldsättning i förhållande till disponibel inkomst för varje enskild låntagare skulle innebära en ökad risk för bankens stabilitet. En kris i en bank kan skapa stora ekonomiska konsekvenser för samhällsekonomin. Bankerna arbetar för att motverka de risker med deras verksamhet genom att kvalitetssäkra krediterna. Vad som utgör risk och osäkerhet är en uppskattning som görs av varje individ då det kan ses som något unikt. Det gör att man ofta agerar på ofullständig information och trots bristen på fullständig information ska parterna ingå ett avtal där framtiden kan vara osäker.Genom att fördjupa oss i kredithanteringsprocessen vill vi undersöka hur bankerna arbetar med risk och osäkerhet genom rådgivning till deras bostadslånskunder. Vi har även haft till syfte att undersöka privatrådgivarens uppfattning och förhållningssätt till kredittagarens skuldsättning. Vi har undersökt hur banken ser på kredithantering genom att granska deras årsredovisningar och fördjupat oss i denna arbetsprocess genom att intervjua en privatrådgivare från respektive utvald bank. Dialogen mellan kreditgivare och kredittagare ger en inblick hur aktörerna arbetar för att vara proaktiva i kredithanteringen inför den osäkerhet som är förknippad med ett bostadslån.Vi kan konstatera från vår empiri och teori att det är svårt att kalkylera och bedöma den risk som är förknippad med ett bostadslån. Den totala risken med skuldsättningen beror på marknadsmekanismer som kan vara svåra att förutse. De inblandade aktörerna gör enbart prognoser vilket betonar att det inte finns någon definitiv säkerhet i parternas relation. Riskhanteringen vid krediter handlar om att försöka skapa en förståelse för potentiella händelser. Rådgivarens förmåga att skapa en förståelse hos kunderna om innebörden med ett bostadslån är av stor vikt.Vi kan konstatera att rådgivarna möter risker och osäkerheter genom att försöka vara proaktiva. Rågivarna agerar proaktivt genom att kalkylera faktiska förhållanden och samtidigt föra ett resonemang för att vara trygga i att kunden uppfattar att omständigheter kan förändras. Rådgivarna vill således möta kunderna genom att försäkra att det finns en förståelse i deras beslut. Proaktiviteten i bemötandet yttrar sig i faktorer så som försäkringar, men också amortering och framför allt buffertsparande. Vi kan konstatera att amortering är en god ekonomisk syn och sunt ur ett risk- eller osäkerhetsperspektiv. Sparande kan användas för att hantera oförutsedda utgifter. Buffertsparandet ger kunden möjligheten att vara flexibel för att inte vara beroende av sin inkomst på kort sikt. / Program: Civilekonomprogrammet
|
Page generated in 0.0775 seconds