• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 190
  • 36
  • 20
  • 20
  • 17
  • 10
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 376
  • 376
  • 84
  • 50
  • 42
  • 39
  • 36
  • 31
  • 30
  • 29
  • 29
  • 29
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

De regionala framgångskriterierna i Bryssel : En kartläggning och analys av svenska subnationella aktörers EU-arbete och deras olika typer av organisering / The regional keys to success in Brussels : Unpacking Swedish subnational actors’ approach to EU and their different forms of organisation

Ericsson, Rickard January 2023 (has links)
Up until today, nearly all Swedish regions have decided to set up an EU office in Brussels. However, earlier research on the subject shows that there are big differences concerning what the regions are trying to achieve with their EU office. The aim for this study was therefore to analyse Swedish subnational actors’ EU work within three different arenas and dimensions: at the Brussel arena (upload), at home ground (download) and lastly, the coordination between these two arenas (crossload). To achieve this, an extensively material on the subject was gathered by interviewing key persons from both Brussels and the subnational actors’ home organizations. In order to analyse the material, the theoretical framework multi-level governance was put into practice. The theoretical framework offered a definition on how the regions interact within the EU, and it also provided the framework for the analyses.  The study was able to unpack three Swedish subnational actors’ EU approaches and their different forms of organization regarding their work with EU. In addition, the study could for each explored arena set up a collection of criteria’s that Swedish subnational actors must achieve in order to succeed with their strategic work with EU. Those criteria’s, with numerous important subheadings, were categorised as effectiveness, legitimacy, and strategical selection.
372

Key Success Factors for End-User Adoption of 5G Technology Within a Low-Middle Income Country : A case study in Malaysia / Nyckelfaktorer för möjliggörandet av 5G teknologier bland slutanvändare inom ett låg- medelinkomstland

Olofsgård, Markus, Göransson, Philip January 2022 (has links)
Recent breakthroughs within technology and data science have initiated talks of a new emerging industrial revolution, being the fourth of its kind. This revolution, titled as Industry 4.0, implies further digitalization with AI and machine learning helping pave the way for improved robotic interconnection, decentralized decisions and linking the physical world with the virtual world. An important enabler for the transformation is 5G which will allow higher data speed, lower latency of communication, and improved network resilience, compared to its precursor 4G. That being said, a successful 5G rollout and adoption is not an easy task, especially for low-middle income countries. The 5G technology and the innovations it enables, could act as major economical catalysts for these countries and thus it is important to understand the potential barriers they are facing. To help clarify the matter, this study included a conduction of semi-structured interviews with some of the most important actors in the Malaysian 5G ecosystem. The ambition was to uncover the biggest barriers impeding the adoption of 5G technologies, as well as key enabling factors accelerating it. The results showed that low fibre infrastructure development, obscure pricing of 5G spectrum, high trait of complexity among 5G technology and associated innovations, customer unawareness, potential hampering of innovation due to a Single Wholesale Network approach (SWN), and a “Chicken or Egg”-dilemma between infrastructure providers and 5G application providers, represent the main barriers for a successful 5G implementation in Malaysia. At the same time, enabling factors such as a strong governmental backing, increased demand amongst end-users, high competitiveness of the telecommunication industry, and the SWN potentially mitigating the "Chicken or Egg"-dilemma were also identified and presented. An external validity assessment showed that most of the barriers could also be applied to neighbouring countries within the Southeast Asia region, providing practical implications for policy makers and industry actors working with the adoption of 5G technology within low-middle income countries. / De senaste genombrotten inom teknik och datavetenskap har föranlett diskussioner om närmandet av en ny industriell revolution, som blir den fjärde av sitt slag. Denna revolution som har fått tituleringen ”Industry 4.0”, väntas innebära ytterligare framsteg inom digitalisering med hjälp av AI och maskininlärning, vilket banar vägen för förbättrad robotkoppling, decentraliserade beslut och sammanlänkning av den fysiska och virtuella världen. En viktig delkomponent för denna transformation är 5G som väntas möjliggöra högre datahastighet, lägre kommunikationsfördröjning och förbättrad nätverkselasticitet jämfört mot sin föregångare 4G. En framgångsrik utrullning av 5G är dock inte en lätt uppgift, särskilt för låg- och medelinkomstländer. Tekniken bakom 5G och de innovationer den möjliggör, kan agera viktiga ekonomiska katalysatorer för dessa länder och därför blir det viktigt att förstå de potentiella hinder som de står inför. För att bättre förstå problemet genomfördes i den här studien semistrukturerade intervjuer med några av de viktigaste aktörerna i Malaysias 5G-ekosystem. Ambitionen var att avslöja de största hindren som hämmar införandet av 5G-teknik, samt viktiga möjliggörande faktorer som påskyndar denna process. Resultaten visade att låg fiberutveckling, oviss prissättning av 5G-spektrum, hög komplexitet bland 5G-teknik och tillhörande innovationer, kundomedvetenhet, potentiella innovationshämningar till följd av en ”Single Wholesale Network”-strategi (SWN) samt ett "Kyckling eller ägg"-dilemma mellan infrastrukturleverantörer och leverantörer av 5G-applikationer, utgör de främsta barriärerna för en framgångsrik 5G-utrullning i Malaysia. Samtidigt identifierades de viktigaste möjliggörande faktorerna som statligt stöd, ökad efterfrågan bland slutanvändare, den höga konkurrenskraften inom telekommunikationsindustrin samt SWN-strategins potentiellt positiva påverkan på "Kyckling eller ägg"-dilemmat. En extern validitetsbedömning visade att de flesta av barriärerna även kunde tillämpas på närliggande inom Sydostasien, vilket genererade praktiska implikationer för beslutsfattare och branschaktörer som arbetar med införandet av 5G-teknik inom låg-och medelinkomstländer.
373

Untersuchung des Modularen Mehrpunktstromrichters M2C für Mittelspannungsanwendungen

Rohner, Steffen 07 June 2011 (has links) (PDF)
Die vorliegende Arbeit behandelt den Modularen Mehrpunktstromrichter M2C, der eine aufstrebende Mehrpunktstromrichtertopologie im Mittelspannungs- und Hochspannungsbereich ist. Die modulare Struktur des Stromrichters enthält in einem Stromrichterzweig eine Reihenschaltung aus identischen Submodulen (Zellen) und einer Spule. Der gesamte Stromrichter ist aus sechs Zweigen aufgebaut. Somit hängt die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen von der zunächst beliebigen Anzahl der Submodule ab. Zur Untersuchung dieser komplexen Stromrichtertopologie werden zwei Simulationsmodelle hergeleitet: das kontinuierliche Modell und das diskrete Modell. Dafür wird das elektrische Schaltbild durch ein gewöhnliches Differenzialgleichungssystem beschrieben, wobei die Schaltzustände der Leistungshalbleiter durch sogenannte Schaltfunktionen abgebildet werden. Das kontinuierliche Modell verwendet Schaltfunktionen, die Werte in einem kontinuierlichen Intervall annehmen können. Bei Vorgabe der Zweigströme und Sternpunktspannung können die Lösungen der anderen Systemgrößen analytisch berechnet werden. Für den allgemeinen Fall ist dies numerisch möglich. Im Gegensatz dazu verwendet das diskrete Modell diskrete Schaltfunktionen. Es wird durch numerische Integrationsverfahren mit dem Schaltungssimulator MATLAB/Plecs simuliert. Eine spezielle Eigenschaft dieses Stromrichters sind seine inneren, an den Ein- und Ausgangsklemmen nicht messbaren Ströme: die sogenannten Kreisströme. Diese Stromanteile werden erstmalig mathematisch im Zeitbereich definiert und die Harmonischen hergeleitet, die sich für einen symmetrischen Betrieb des Stromrichters ergeben. Für das diskrete Modell wird eine Zweigstromregelung implementiert. Die Anfangswerte der Spulen und Kondensatoren werden durch die analytischen Gleichungen des kontinuierlichen Modells so berechnet, dass sich der eingeschwungene Zustand ergibt. Der M2C besitzt keinen großen, sondern viele verteilte Energiespeicher: die Submodulkondensatoren. Die gespeicherte Energie sollte symmetrisch verteilt sein. Dafür werden drei Möglichkeiten der Energieänderung hergeleitet und deren Effektivität gezeigt. Eine andere Untersuchung betrifft die Stromaufteilung innerhalb der Submodule auf den jeweils oberen und unteren Leistungshalbleiter. Dabei wird die Stromaufteilung für verschiedene Phasenwinkel und Kreisströme gezeigt. Der Einfluss der schwankenden Kondensatorspannungen auf die Leiter-Leiter-Spannungen sowie die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen werden mit dem diskreten Modell untersucht. Die Genauigkeit der Simulationsmodelle wird mit Hilfe eines Prototyps des M2Cs überprüft, der von der Fa. Siemens entwickelt wurde. Es werden charakteristische Strom- und Spannungsverläufe gemessen und den simulierten Verläufen der beiden Simulationsmodelle gegenübergestellt. Die Auslegung des Leistungsteils gliedert sich in die Auslegung der Submodulkondensatoren und die der Leistungshalbleiter. Zuerst wird die Kapazität der Submodulkondensatoren auf der Grundlage von drei verschiedenen Kondensatorspezifikationen mit Hilfe eines iterativen Algorithmus minimiert. Dies wird sowohl für kreisstromfreie als auch für optimierte kreisstrombehaftete Betriebsweisen mit dem kontinuierlichen Modell durchgeführt. Im nächsten Schritt werden die Leistungshalbleiter mit dem diskreten Modell dimensioniert. Dafür wird ein Stromfaktor definiert, der eine ideale Parallelschaltung von mehreren Leistungshalbleitern beschreibt. Die Verluste, die Verlustverteilung sowie die Sperrschichttemperaturen in den Leistungshalbleitern für verschiedene Phasenwinkel zeigen das Verhalten des Stromrichters in verschiedenen Arbeitspunkten. / This thesis deals with the Modular Multilevel Converter M2C, an emerging and highly attractive multilevel converter topology for medium and high voltage applications. One of the most significant benefits of the M2C is its modular structure - the converter is composed of six converter arms, where each arm consists of a series connection of identical submodules (cells) and an inductor. Thus, the number of distinct voltage levels available for the line-to-line voltages is proportional to the number of submodules, which is in principle arbitrary. For the investigation of this complex converter topology, two simulation models - a continuous model and a discrete model - are derived. For this purpose, the electrical circuit is described by a system of ordinary differential equations where the switching states of the power semiconductors are represented by the so-called switching functions. The continuous model results from the analytical solution of the differential equations with a continuous interpretation of the switching functions. In contrast, the discrete model uses discrete switching functions and is computed using numeric integration methods with MATLAB/Plecs. One aspect of particular significance with the M2C is the topic of inner currents: the so-called circulating currents. In this thesis, these current components are defined mathematically in the time domain for the first time and the harmonics of the circulating currents for symmetrical operation of the converter are derived. For the discrete model, closed-loop control of the arm currents is implemented. Initial values for the inductors and capacitors are derived using the analytical equations of the continuous model. The M2C has several distributed energy storage elements: the submodule capacitors. The stored energy must be distributed evenly amongst these capacitors. To achieve this, three methods of energy distribution are presented. Another focus of this investigation is the current sharing between the upper and lower power semiconductor within the submodules. For different load phase angles and circulating currents, the current distribution is depicted. The influence of the floating capacitor voltages on the line-to-line voltages as well as the of number of discrete voltage levels in the line-to-line voltages are investigated with the discrete model. The accuracy of the simulation models is verified by experimentation with a prototype of the M2C from the company Siemens. The experimental results are compared with simulation results from the two simulation models. The dimensioning of the power components of the elecrical circuit is divided into two parts: the first for the submodule capacitors and the second for the power semiconductors. Initially, the capacitance of the submodule capacitors are minimized by an iterative algorithm on the basis of three different capacitor specifications. This computation is done using the continuous converter model for converter operation neglecting circulating currents and with optimized circulating currents. In the next step, the power semiconductors are dimensioned using the discrete model and assuming a defined current factor, which describes the ideal parallel connection of several semiconductors. The losses, the loss distribution, and the junction temperatures in the power semiconductors for different load phase angles describe the behavior of the converter for different operating points.
374

Untersuchung des Modularen Mehrpunktstromrichters M2C für Mittelspannungsanwendungen

Rohner, Steffen 25 February 2011 (has links)
Die vorliegende Arbeit behandelt den Modularen Mehrpunktstromrichter M2C, der eine aufstrebende Mehrpunktstromrichtertopologie im Mittelspannungs- und Hochspannungsbereich ist. Die modulare Struktur des Stromrichters enthält in einem Stromrichterzweig eine Reihenschaltung aus identischen Submodulen (Zellen) und einer Spule. Der gesamte Stromrichter ist aus sechs Zweigen aufgebaut. Somit hängt die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen von der zunächst beliebigen Anzahl der Submodule ab. Zur Untersuchung dieser komplexen Stromrichtertopologie werden zwei Simulationsmodelle hergeleitet: das kontinuierliche Modell und das diskrete Modell. Dafür wird das elektrische Schaltbild durch ein gewöhnliches Differenzialgleichungssystem beschrieben, wobei die Schaltzustände der Leistungshalbleiter durch sogenannte Schaltfunktionen abgebildet werden. Das kontinuierliche Modell verwendet Schaltfunktionen, die Werte in einem kontinuierlichen Intervall annehmen können. Bei Vorgabe der Zweigströme und Sternpunktspannung können die Lösungen der anderen Systemgrößen analytisch berechnet werden. Für den allgemeinen Fall ist dies numerisch möglich. Im Gegensatz dazu verwendet das diskrete Modell diskrete Schaltfunktionen. Es wird durch numerische Integrationsverfahren mit dem Schaltungssimulator MATLAB/Plecs simuliert. Eine spezielle Eigenschaft dieses Stromrichters sind seine inneren, an den Ein- und Ausgangsklemmen nicht messbaren Ströme: die sogenannten Kreisströme. Diese Stromanteile werden erstmalig mathematisch im Zeitbereich definiert und die Harmonischen hergeleitet, die sich für einen symmetrischen Betrieb des Stromrichters ergeben. Für das diskrete Modell wird eine Zweigstromregelung implementiert. Die Anfangswerte der Spulen und Kondensatoren werden durch die analytischen Gleichungen des kontinuierlichen Modells so berechnet, dass sich der eingeschwungene Zustand ergibt. Der M2C besitzt keinen großen, sondern viele verteilte Energiespeicher: die Submodulkondensatoren. Die gespeicherte Energie sollte symmetrisch verteilt sein. Dafür werden drei Möglichkeiten der Energieänderung hergeleitet und deren Effektivität gezeigt. Eine andere Untersuchung betrifft die Stromaufteilung innerhalb der Submodule auf den jeweils oberen und unteren Leistungshalbleiter. Dabei wird die Stromaufteilung für verschiedene Phasenwinkel und Kreisströme gezeigt. Der Einfluss der schwankenden Kondensatorspannungen auf die Leiter-Leiter-Spannungen sowie die Anzahl der Spannungsstufen in den Leiter-Leiter-Spannungen werden mit dem diskreten Modell untersucht. Die Genauigkeit der Simulationsmodelle wird mit Hilfe eines Prototyps des M2Cs überprüft, der von der Fa. Siemens entwickelt wurde. Es werden charakteristische Strom- und Spannungsverläufe gemessen und den simulierten Verläufen der beiden Simulationsmodelle gegenübergestellt. Die Auslegung des Leistungsteils gliedert sich in die Auslegung der Submodulkondensatoren und die der Leistungshalbleiter. Zuerst wird die Kapazität der Submodulkondensatoren auf der Grundlage von drei verschiedenen Kondensatorspezifikationen mit Hilfe eines iterativen Algorithmus minimiert. Dies wird sowohl für kreisstromfreie als auch für optimierte kreisstrombehaftete Betriebsweisen mit dem kontinuierlichen Modell durchgeführt. Im nächsten Schritt werden die Leistungshalbleiter mit dem diskreten Modell dimensioniert. Dafür wird ein Stromfaktor definiert, der eine ideale Parallelschaltung von mehreren Leistungshalbleitern beschreibt. Die Verluste, die Verlustverteilung sowie die Sperrschichttemperaturen in den Leistungshalbleitern für verschiedene Phasenwinkel zeigen das Verhalten des Stromrichters in verschiedenen Arbeitspunkten.:Kurzbeschreibung i Abstract iii Danksagung v Abbildungsverzeichnis xi Tabellenverzeichnis xvii Abkürzungsverzeichnis xix 0 Einleitung 1 1 Stand der Technik bei Mittelspannungsstromrichtern 3 1.1 Neutral-Point-Clamped Voltage Source Converter . . . . . . . . . . . . . . 5 1.2 Cascaded H-Bridge Voltage Source Converter . . . . . . . . . . . . . . . . 8 1.3 Flying Capacitor Voltage Source Converter . . . . . . . . . . . . . . . . . 10 2 Modularer Mehrpunktstromrichter 13 2.1 Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Prinzipielle Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Spannungserzeugung durch die Submodule . . . . . . . . . . . . . 15 2.2.2 Symmetrierung der Kondensatorspannungen . . . . . . . . . . . . 16 2.2.3 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Strukturelle Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Vorteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.2 Nachteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Motivation der Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Modellierung des Modularen Mehrpunktstromrichters 25 3.1 Verlust- und Sperrschichttemperaturberechnung von IGBT-Modulen . . . . 25 3.1.1 Stromfaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2 Verlustberechnung . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2.1 Durchlassverluste . . . . . . . . . . . . . . . . . . . . . 27 3.1.2.2 Schaltverluste . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Thermisches Ersatzschaltbild . . . . . . . . . . . . . . . . . . . . . 30 3.2 Modellierung eines Antriebs mit Modularem Mehrpunktstromrichter . . . . 31 3.2.1 Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . 31 3.2.2 Differenzialgleichungssystem für das Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.3 Das diskrete Modell . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Das kontinuierliche Modell . . . . . . . . . . . . . . . . . . . . . . 37 4 Analyse und Simulation des Modularen Mehrpunktstromrichters 43 4.1 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 Definition der Kreisströme . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 Harmonische der Kreisströme für den symmetrischen Betrieb . . . 45 4.2 Verfahren zur Erzeugung der Schaltsignale des diskreten Modells . . . . . . 49 4.3 Annahmen für die Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1 Daten des exemplarischen Simulationsmodells . . . . . . . . . . . 54 4.3.2 Anfangswertbestimmung . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2.1 Spulenströme . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2.2 Kondensatorspannungen . . . . . . . . . . . . . . . . . . 58 4.4 Analyse der Simulationsergebnisse . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 Verläufe charakteristischer Stromrichtergrößen . . . . . . . . . . . 61 4.4.2 Vergleich des kontinuierlichen und des diskreten Modells . . . . . . 69 4.4.3 Möglichkeiten der Verschiebung der gespeicherten Energie der Submodulkondensatoren . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.3.1 Änderung der gespeicherten Energie einer Stromrichterphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.3.2 Verschiebung der gespeicherten Energie innerhalb einer Stromrichterphase . . . . . . . . . . . . . . . . . . . . . 86 4.4.3.3 Änderung der gespeicherten Energien unter Verwendung der Sternpunktspannung . . . . . . . . . . . . . . . . . . 94 4.4.4 Stromaufteilung innerhalb der Submodule . . . . . . . . . . . . . . 95 4.4.5 Einfluss der schwankenden Kondensatorspannungen auf die Leiter- Leiter-Spannungen . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5 Messtechnische Überprüfung der Simulationsmodelle 109 5.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Messergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2.1 Modularer Mehrpunktstromrichter mit dreiphasiger induktiver Last 112 5.2.2 Modularer Mehrpunktstromrichter mit Maschinenlast . . . . . . . . 123 6 Auslegung des Leistungsteils 133 6.1 Kondensatorspezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2 Iterativer Algorithmus zur Bestimmung der minimalen Submodulkapazität . 135 6.3 Kreisstromfreier Betrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 136 6.3.1.1 Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 136 6.3.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 143 6.3.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 143 6.3.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 145 6.4 Betrieb mit optimierten Kreisströmen . . . . . . . . . . . . . . . . . . . . 148 6.4.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 148 6.4.1.1 Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . 148 6.4.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.4.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 157 6.4.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 157 6.4.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 159 7 Zusammenfassung der Dissertation 163 Literaturverzeichnis 169 / This thesis deals with the Modular Multilevel Converter M2C, an emerging and highly attractive multilevel converter topology for medium and high voltage applications. One of the most significant benefits of the M2C is its modular structure - the converter is composed of six converter arms, where each arm consists of a series connection of identical submodules (cells) and an inductor. Thus, the number of distinct voltage levels available for the line-to-line voltages is proportional to the number of submodules, which is in principle arbitrary. For the investigation of this complex converter topology, two simulation models - a continuous model and a discrete model - are derived. For this purpose, the electrical circuit is described by a system of ordinary differential equations where the switching states of the power semiconductors are represented by the so-called switching functions. The continuous model results from the analytical solution of the differential equations with a continuous interpretation of the switching functions. In contrast, the discrete model uses discrete switching functions and is computed using numeric integration methods with MATLAB/Plecs. One aspect of particular significance with the M2C is the topic of inner currents: the so-called circulating currents. In this thesis, these current components are defined mathematically in the time domain for the first time and the harmonics of the circulating currents for symmetrical operation of the converter are derived. For the discrete model, closed-loop control of the arm currents is implemented. Initial values for the inductors and capacitors are derived using the analytical equations of the continuous model. The M2C has several distributed energy storage elements: the submodule capacitors. The stored energy must be distributed evenly amongst these capacitors. To achieve this, three methods of energy distribution are presented. Another focus of this investigation is the current sharing between the upper and lower power semiconductor within the submodules. For different load phase angles and circulating currents, the current distribution is depicted. The influence of the floating capacitor voltages on the line-to-line voltages as well as the of number of discrete voltage levels in the line-to-line voltages are investigated with the discrete model. The accuracy of the simulation models is verified by experimentation with a prototype of the M2C from the company Siemens. The experimental results are compared with simulation results from the two simulation models. The dimensioning of the power components of the elecrical circuit is divided into two parts: the first for the submodule capacitors and the second for the power semiconductors. Initially, the capacitance of the submodule capacitors are minimized by an iterative algorithm on the basis of three different capacitor specifications. This computation is done using the continuous converter model for converter operation neglecting circulating currents and with optimized circulating currents. In the next step, the power semiconductors are dimensioned using the discrete model and assuming a defined current factor, which describes the ideal parallel connection of several semiconductors. The losses, the loss distribution, and the junction temperatures in the power semiconductors for different load phase angles describe the behavior of the converter for different operating points.:Kurzbeschreibung i Abstract iii Danksagung v Abbildungsverzeichnis xi Tabellenverzeichnis xvii Abkürzungsverzeichnis xix 0 Einleitung 1 1 Stand der Technik bei Mittelspannungsstromrichtern 3 1.1 Neutral-Point-Clamped Voltage Source Converter . . . . . . . . . . . . . . 5 1.2 Cascaded H-Bridge Voltage Source Converter . . . . . . . . . . . . . . . . 8 1.3 Flying Capacitor Voltage Source Converter . . . . . . . . . . . . . . . . . 10 2 Modularer Mehrpunktstromrichter 13 2.1 Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Prinzipielle Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Spannungserzeugung durch die Submodule . . . . . . . . . . . . . 15 2.2.2 Symmetrierung der Kondensatorspannungen . . . . . . . . . . . . 16 2.2.3 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Strukturelle Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Vorteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.2 Nachteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Motivation der Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Modellierung des Modularen Mehrpunktstromrichters 25 3.1 Verlust- und Sperrschichttemperaturberechnung von IGBT-Modulen . . . . 25 3.1.1 Stromfaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2 Verlustberechnung . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2.1 Durchlassverluste . . . . . . . . . . . . . . . . . . . . . 27 3.1.2.2 Schaltverluste . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Thermisches Ersatzschaltbild . . . . . . . . . . . . . . . . . . . . . 30 3.2 Modellierung eines Antriebs mit Modularem Mehrpunktstromrichter . . . . 31 3.2.1 Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . 31 3.2.2 Differenzialgleichungssystem für das Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.3 Das diskrete Modell . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Das kontinuierliche Modell . . . . . . . . . . . . . . . . . . . . . . 37 4 Analyse und Simulation des Modularen Mehrpunktstromrichters 43 4.1 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 Definition der Kreisströme . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 Harmonische der Kreisströme für den symmetrischen Betrieb . . . 45 4.2 Verfahren zur Erzeugung der Schaltsignale des diskreten Modells . . . . . . 49 4.3 Annahmen für die Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1 Daten des exemplarischen Simulationsmodells . . . . . . . . . . . 54 4.3.2 Anfangswertbestimmung . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2.1 Spulenströme . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2.2 Kondensatorspannungen . . . . . . . . . . . . . . . . . . 58 4.4 Analyse der Simulationsergebnisse . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 Verläufe charakteristischer Stromrichtergrößen . . . . . . . . . . . 61 4.4.2 Vergleich des kontinuierlichen und des diskreten Modells . . . . . . 69 4.4.3 Möglichkeiten der Verschiebung der gespeicherten Energie der Submodulkondensatoren . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.3.1 Änderung der gespeicherten Energie einer Stromrichterphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.3.2 Verschiebung der gespeicherten Energie innerhalb einer Stromrichterphase . . . . . . . . . . . . . . . . . . . . . 86 4.4.3.3 Änderung der gespeicherten Energien unter Verwendung der Sternpunktspannung . . . . . . . . . . . . . . . . . . 94 4.4.4 Stromaufteilung innerhalb der Submodule . . . . . . . . . . . . . . 95 4.4.5 Einfluss der schwankenden Kondensatorspannungen auf die Leiter- Leiter-Spannungen . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5 Messtechnische Überprüfung der Simulationsmodelle 109 5.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Messergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2.1 Modularer Mehrpunktstromrichter mit dreiphasiger induktiver Last 112 5.2.2 Modularer Mehrpunktstromrichter mit Maschinenlast . . . . . . . . 123 6 Auslegung des Leistungsteils 133 6.1 Kondensatorspezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2 Iterativer Algorithmus zur Bestimmung der minimalen Submodulkapazität . 135 6.3 Kreisstromfreier Betrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 136 6.3.1.1 Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 136 6.3.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 143 6.3.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 143 6.3.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 145 6.4 Betrieb mit optimierten Kreisströmen . . . . . . . . . . . . . . . . . . . . 148 6.4.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 148 6.4.1.1 Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . 148 6.4.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.4.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 157 6.4.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 157 6.4.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 159 7 Zusammenfassung der Dissertation 163 Literaturverzeichnis 169
375

Hyperloop in Sweden : Evaluating Hyperloops Viability in the Swedish Context / Hyperloop i Sweden : Utvärdering av Hyperloops Möjligheter i den Svenska Kontexten

Magnusson, Fredrik, Widegren, Fredrik January 2018 (has links)
Transportations role in society is increasingly important and today it has a prominent role in business, citizens lives as well as in the world economy. The increasing globalization and urbanization puts significant pressure on the existing transport system, with increasing demand for high-speed travel. However, this comes with implications on the environment, and the environmental concerns constitutes one of the biggest pressures in transport. And as the contemporary modes are bound by their technologies, enabling marginal rather than radical improvements, a possible window of opportunity for new radical technologies to enter the market can emerge. One new technology emerging within transportation today is called hyperloop, a technology that could prove to meet demand for faster, cheaper, safer and more environmentally efficient transportation. However, the technology is still in an early stage of development and hence surrounded by major uncertainties. Further, the nature of the technology necessitates overcoming several obstacles before it can reach commercial practice. And this together with a limited knowledge of the concept in Sweden makes it difficult to predict if hyperloop can become a viable transport alternative on the Swedish market. Which condensed lays the foundation to the purpose of this paper: "To give an overarching understanding of the Swedish transport market dynamics, together with a comprehensive evaluation of the hyperloop concept. And hence contribute to more inclusive knowledge and understanding of hyperloop’s viability in the Swedish context." Since the phenomenon has not been comprehensively studied previously, the elected research design is that of an exploratory case study, with an inductive, qualitative approach. To address the purpose, a literary review of the theoretical field was conducted. Looking in to previous research on disruptive innovation, diffusion of innovations, technical transitions, transformational pressure as well as window of opportunity. The empirical material gathered during the research process was derived from two main channels. Firstly, an extensive review of scientific articles about the hyperloop technology was conducted, providing insights on the technology and its surroundings. This was complemented by qualitative interviews to obtain material on the dynamics of the Swedish transport market as well as for understanding hyperloop in the Swedish context. The empirical study was further accompanied by a review of news articles and websites to map the most recent progress in the hyperloop development. By analyzing the empirical material through three frameworks; Characteristics of Diffusion, the Multi-Level Perspective (MLP) and Technology Readiness Level (TRL), interesting findings and conclusions were drawn. These together points towards that hyperloop, if the technology reaches its predicted performance, will have significant relative advantages and observable effects in the relation to the contemporary modes of transportation. Further, a noticeable window of opportunity, sprung from capacity shortages and pressure towards environmental sustainability, seems to exist on the Swedish market. A window which could be capitalized upon and justify hyperloop in the Swedish context. The current state of the technology does however come with implications as it so far is insufficient to decrease uncertainty amongst the potential adopters. Factors that likely will prolong the adoption of the technology in Sweden relates to the relative complexity of the system, its limited compatibility with existing practices and the low maturity of the technology. Hence, the hyperloop companies must prove the concept feasible and increase the maturity to gain sufficient acceptance and recognition. This paper contributes to the academic community by assessing the compatibility of hyperloop on the Swedish market, as well as if hyperloop could become a viable alternative transport solution in Sweden. It provides insight to specific perspectives of the Swedish market, its requirements and the demand for alternative transport solutions. Hence, this paper is considered to make both an analytical contribution in terms of evaluating the viability of disruptive technologies. And an empirical contribution by shedding light on new important insights for the potential diffusion of hyperloop. Insights that are significant for hyperloop actors as well as for dominant actors on the Swedish transport market. / Transporters roll i samhället blir allt viktigare och de har idag en framträdande roll inom näringsliv, medborgares liv samt världsekonomin. Den ökande globaliseringen och urbaniseringen sätter dock ett betydande tryck på det existerande transportsystemet, med ökande efterfrågan för höghastighetsalternativ. Detta medför implikationer för miljön, och oron kring transporters miljöpåverkan är ett av de största bekymren för transportsektorn. Eftersom de existerande transportalternativen är bundna av sin teknik, vilket begränsar dem till inkrementella snarare än radikala förbättringar, kan en möjlighet för nya transportsätt att komma in på marknaden öppna sig. En kommande ny teknik som utvecklas inom transport idag kallas hyperloop, en teknik som kan visa sig möta efterfrågan för snabbare, billigare, säkrare och mer miljösmarta transporter. Tekniken är dock i ett tidigt utvecklingsskede och är därav omgärdad av stora osäkerheter. Vidare kräver teknikens natur att flertalet hinder kommer att behöva överkommas innan tekniken kan nå kommersiellt bruk. Detta tillsammans med den begränsade kunskap som finns kring konceptet i Sverige gör det svårt att förutspå om hyperloop kan bli ett möjligt transportalternativ på den svenska marknaden. Kondenserat ligger detta till grund för syftet med den här uppsatsen: "Att ge en övergripande förståelse av dynamiken på den svenska transportmarknaden, tillsammans med en djupgående utvärdering av hyperloop konceptet. Och därav bidra till en mer inkluderande kunskap och förståelse kring hyperloops möjligheter i den svenska kontexten." Eftersom detta fenomen inte tidigare har studerats i större utsträckning valdes en forskningsdesign i form av en undersökande fallstudie med ett induktivt, kvalitativt tillvägagångssätt. För att adressera syftet gjordes en litterär översyn av det teoretiska fältet. Med inblickar i tidigare forskning kring disruptiv teknik, diffusion av innovation, tekniska övergångar, transformationstryck samt möjlighetsfönster. Det empiriska materialet till studien samlades in genom två kanaler i huvudsak. Först, genom en djupdykning i tidigare forskning och vetenskapliga artiklar relaterade till hyperlooptekniken, för att generera insikter kring tekniken och dess omgivning. Detta kompletteras med kvalitativa intervjuer för att erhålla material om dynamiken på den svenska transportmarknaden samt för att ge en förståelse av hyperloop i den svenska kontexten. Den empiriska studien kompletterades ytterligare med en översyn av nyhetsartiklar och webbplatser för att kartlägga de senaste framstegen i hyperlooputvecklingen. Genom att analysera det empiriska materialet med hjälp av tre ramverk; Egenskaper för Spridning av Innovation, Perspektiv i Multipla Nivåer (MLP) och Teknisk Mogenhetsnivå (TRL), kunde flertalet intressanta upptäckter och slutsatser dras. Vilka tillsammans pekar mot att hyperloop, om tekniken lyckas uppnå den predikterade prestandan, kommer att ha betydande relativa fördelar och synliga effekter i förhållande till dagens transportsätt. Vidare kan ett märkbart möjlighetsfönster, sprunget ur kapacitetsbrist och tryck mot miljömässig hållbarhet, identifieras på den svenska marknaden. Detta fönster skulle kunna kapitaliseras på och motivera hyperloop i den svenska kontexten. Teknologins nuvarande tillstånd har emellertid konsekvenser, eftersom den hittills inte är tillräcklig för att minska osäkerheten hos potentiella adopterare. Faktorer som sannolikt kommer att förlänga processen att adoptera tekniken i Sverige härstammar från systemets relativa komplexitet, dess begränsade kompatibilitet med befintliga metoder samt teknikens låga mogenhet. Därav är det essentiellt för hyperloopbolagen att bevisa konceptet möjligt och öka mogenheten för att få tillräcklig acceptans och erkännande. Detta arbete bidrar till det akademiska samhället genom att bedöma kompatibiliteten mellan hyperloop och den svenska marknaden, samt om hyperloop kan bli ett genomförbart transportalternativ i Sverige. Arbetet bidrar med insikter i specifika perspektiv på den svenska marknaden, dess krav samt efterfrågan för alternativa transportlösningar. Därav kan denna uppsats anses utgöra både ett analytiskt bidrag genom dess utvärdering av genomförbarheten av disruptiv teknik. Samt ett empiriskt bidrag genom att belysa viktiga insikter för den potentiella spridningen av hyperloop. Insikter som är viktiga för såväl hyperloopaktörer som de dominanta aktörerna på den svenska transportmarknaden.
376

Governance of Transformations towards Sustainable Water, Food and Energy Supply Systems - Facilitating Sustainability Innovations through Multi-Level Learning Processes

Halbe, Johannes 27 February 2017 (has links)
A fundamental change in societal values and economic structures is required to address increasing pressures on ecosystems and natural resources. Transition research has developed in the last decades to analyze the co-dynamics of technological, institutional, social and economic elements in the provision of key functions such as energy, water and food supply. This doctoral dissertation provides conceptual and methodological contributions to the pro-active governance of sustainability transitions. Three research gaps are identified that are addressed in this dissertation. First, a comprehensive conceptualization of learning in sustainability transitions is currently missing that comprises learning at multiple societal levels (ranging from individuals to policy-actors). Learning concepts are often not explicitly discussed in transition research even though learning is considered as fundamental for innovation processes, niche formation and development as well as breakthrough and diffusion of innovations. Second, methods for the analysis and design of transition governance processes are lacking that specify case-specific intervention points and roles of actors in the implementation of innovations. Third, participatory modeling approaches are only applied to a limited extent in transition research despite a high potential for supporting communication and learning. The conceptualization of multi-level learning developed in this doctoral research conceptualizes learning at different societal levels as specific learning contexts ranging from individual and group contexts to organizational and policy contexts. The conceptual framework further differentiates between learning processes, intensity, objects, outcomes, subjects and factors, allowing for a more detailed analysis of learning within and across learning contexts. Thus, learning contexts can be linked by processes that involve actors from different learning contexts (e.g., community groups and policy-makers), as well as exchanges of physical aspects, institutions and knowledge (in the form of ‘learning factors’). This research has also provided a classification of model uses in transition research that supports a purposeful discussion of the opportunities of modeling and promising future research directions. The methodology developed in this doctoral research aims at the analysis and design of transition governance processes by specifying the various opportunities to contribute to sustainability transitions through purposeful action at different societal levels, as well as related roles of stakeholders in implementing such processes of change. The methodology combines different streams of previous research: 1) a participatory modeling approach to identify problem perceptions, case-specific sustainability innovations as well as related implementation barriers, drivers and responsibilities; 2) a systematic review to identify supportive and impeding learning factors from the general literature that can complement case-specific factors; and 3) a method for the analysis and design of case-specific transition governance processes. Three case studies in Canada (topic: sustainable food systems), Cyprus (water-energy-food nexus) and Germany (sustainable heating supply) have been selected to test and iteratively develop the methodology described above. The results for each case study reveal that there are learning objects (i.e., learning requirements) in all learning contexts, which underscores the importance of multi-level learning in sustainability transitions, ranging from the individual to the group, organizational and policy levels. Actors have various opportunities to actively facilitate societal transformations towards sustainable development either directly through actions at their particular societal levels (i.e., context-internal learning) or indirectly through actions that influence learning at other societal levels. In fact, most of the learning factors require cooperation across learning contexts during the implementation process. The comparing of learning factors across case studies underline the importance of several factor categories, such as ‘physical a ‘disturbance or crisis’, ‘information and knowledge’. Of the 206 factors identified by stakeholders, 40 factors are case-specific and not contained in the general, review-based factor list. This underscores the value of participatory research, as general, top-down analyses might have overlooked these case-specific factors. The methodology presented in this dissertation allows for the identification and analysis of case-specific intervention points for sustainability transitions at multiple societal levels. The methodology furthermore permits the analysis of interplay between individual, group, organizational and policy actions, which is a first step towards their coordination. The focus on sustainability innovations links the broad topic of sustainability transitions to a set of opportunities for practical interventions and overcoming their implementation barriers. The methodology presented allows for the analysis and design of these interlinkages between learning contexts. While the methodology cannot provide any ‘silver bullets’ for inducing sustainability transitions, it is flexible enough to identify an appropriate abstraction level for analyzing and designing transition governance processes. The methodology developed in this doctoral research also provides several contributions for the development of participatory modeling methods in transition research. Thus, the participatory method supports an integrated analysis of barriers and drivers of sustainability innovations, and allows application in practice and education. The concepts and methods developed in this research project allow for reflection on transition governance processes from a systemic viewpoint. Experiences in the case studies underline the applicability of the concepts and methods developed for the analysis of case-specific transition governance processes. Despite substantial differences in the geographic location, culture and topics addressed, all case studies include promising sustainability innovations and the engagement of multiple actors in their implementation. The diversity and multitude of initiatives in the case study regions provides an optimistic outlook on future opportunities for large-scale sustainability transitions.

Page generated in 0.1812 seconds