Spelling suggestions: "subject:"équations""
131 |
L'analyse asymptotique topologique pour les équations de Maxwell et applicationsSAMET, Bessem 29 March 2004 (has links) (PDF)
L'optimisation de forme topologique permet d'obtenir une grande variété de formes possibles. Ces domaines, qui peuvent être complexes, sont généralement représentés implicitement par une fonction courbe de niveaux: la densité de matière dans le cas de l'optimisation topologique par homogénéisation, une fonction courbe de niveaux dans le cas de la méthode des level-sets et le gradient topologique donné par l'expression de l'asymptotique topologique. Le dernier cas, objet de cette thèse, présente une propriété fondamentale: la positivité du gradient topologique est une condition nécessaire et même suffisante d'optimalité. Plus précisément, soit Omega un domaine borné et j(Omega) = J(u_Omega), un critère qui dépend de Omega via la solution d'un problème d'équations aux dérivées partielles noté u_Omega. Dans la plupart des cas, la variation j(Omega - B(x, epsilon)) - j(Omega) admet un développement asymptotique (par rapport à epsilon) qui s'écrit sous la forme: f(epsilon)g(x)+o(f(epsilon)), où f(epsilon) est une fonction positive qui tend vers 0 avec epsilon. Ainsi, pour minimiser le critère, il faut créer des trous là où la fonction $g$, appelée gradient topologique, est négative. De telles formules asymptotiques ont été déjà établies pour divers problèmes. Dans cette thèse, les principaux points abordés sont: l'insertion d'une inhomogénéité dans le domaine, le cas d'opérateurs différentiels dont le symbole est non homogène (Helmholtz, Maxwell), trou de forme quelconque et le cas d'un trou sur le bord du domaine. Les résultats obtenues sont validés par des tests numériques comme par exemple l'optimisation des guides d'onde.
|
132 |
Analyse mathématique et numérique de modèles quantiques pour les semiconducteursKefi, Jihene 19 December 2003 (has links) (PDF)
L'objectif principal de ce travail de thèse concerne l'étude mathématique et la résolution numérique de modèles quantiques de transport électronique dans les nanostructures semiconductrices. Le modèle quantique que nous utilisons est celui de Schrödinger. On a pris en considération deux approches. Une première approche monobande où deux modèles unidimensionnels stationnaires sont étudiés. Le premier que nous abordons prend en compte la variation de la masse effective en fonction du matériau semi-conducteur. C'est le modèle Schrödinger avec masse variable. Le second est un modèle où les effets non paraboliques dans la relation de dispersion vecteur d'onde-énergie sont pris en compte. C'est le modèle Kohn-Luttinger. La deuxième approche est de type bibande obtenue à partir du modèle de Kane qui lui aussi découle de la méthode k.P. On le notepar le modèle Schrödinger deux bandes. La partie théorique renferme des résultats d'existence de solutions ( l'aide du théorème de point fixe de Leray Schauder) et de comportement asymptotique. Dans les différents cas, nous avons dérivé des conditions aux bords transparentes. Nous avons établi un résultat concernant la limite semiclassique lorsque $\hbar $ tend vers zéro du modèle stationnaire unidimensionnel Schrödinger avec masse variable. Nous avons montré l'existence et l'unicité de solutions sauf peut-être pour une suite de valeurs d'énergie correspondant à des valeurs propres du spectre discret de l'opérateur de Kohn-Luttinger. Nous montrons l'existence de solutions du modèle Schrödinger à deux bandes dans le cas non-linéaire (le champ électrostatique est calculé auto-consistant). Finalement, dans la partie numérique, nous avons utilisé des éléments finis Hermitiens pour Kohn-Luttinger et une méthode de différences finies pour le modèle Schrödinger à deux bandes. Dans les deux cas, pour le système couplé nous avons utilisé un schéma itératif type Gummel. Nous avons pu réaliser des simulations numériques de dispositifs type diode à effet tunnel résonnant intra-bande RTD ( resp. inter-bande RITD) pour décrire l'approche monobande (resp. bibande). Nous avons obtenu les caractéristiques courant-tension, les coefficients de transmission et le profil des densités de charge électronique.
|
133 |
Equations aux dérivées partielles et réseaux de neurones pour le traitement d'imagesElayyadi, Mohamed 14 October 1997 (has links) (PDF)
Ce travail porte sur des techniques à base d'équations aux dérivées partielles et de réseaux de neurones pour le traitement d'images. L'approximation des réseaux de neurones par des systèmes de réaction-diffusion nous a permis de définir un nouveau modèle de diffusion anisotrope de type Volterra pour le filtrage sélectif d'images bruitées. La loi d'évolution régissant le tenseur de diffusion traduit des lois d'apprentissage synaptiques naturelles. L'étude de la dynamique de ces réseaux à synapses adaptatives montre qu'ils possèdent des propriétés d'attractivité et de stabilité asymptotique au sens de Lyapunov. Les images traitées sont donc obtenues sur les asymptotiques en temps du modèle. Les techniques présentées dans cette thèse améliorent de manière importante le pré-traitement d'images car elles ne nécessitent qu'une connaissance (\em a priori) d'un paramètre de contraste sur l'image désirée et permettent la restauration des images ayant subi jusqu'à 90\% de niveau de bruit et la segmentation des images médicales d'echographie
|
134 |
Sur une classe d'équations à double non linéarité : application à la simulation numérique d'un écoulement visqueux compressibleMaitre, Emmanuel 07 January 1997 (has links) (PDF)
L'origine de ce travail est l'étude d'un problème industriel sur la mise en forme des thermoplastiques par injection. Nous nous sommes concentrés sur la partie remplissage du moule et sur la détermination de la position du front du polymère. Le travail présenté dans cette thèse comprend donc deux parties: => L'étude mathématique et numérique de l'équation en pression qui régit l'écoulement du polymère fondu. A partir de cet exemple nous avons mis en évidence et étudié une famille nouvelle d'équations à double non linéarité. => La détermination de l'interface polymère-air par des méthodes de suivi de lignes de niveau, l'interface étant décrite comme la ligne de niveau zéro d'une inconnue auxiliaire, que nous devons calculer. Nous avons obtenu l'existence d'une solution à l'équation de transport linéaire avec conditions aux limites à laquelle satisfait cette nouvelle inconnue. Puis nous avons mis au point une méthode numérique pour le calcul de l'interface polymère/air, en résolvant par éléments finis / volumes finis l'équation en pression et l'équation de transport du front. Notre méthode présente l'avantage d'une mise en oeuvre relativement aisée, robuste car elle permet de gérer les changements de topologie du front.
|
135 |
Noyau et métrique de Bergman dans des formules de représentations pour les convexes de type fini et applicationsFructus, Mathieu 18 December 2003 (has links) (PDF)
S. G. Krantz a montré qu'une solution u de l'équation de Cauchy-Riemann pour une donnée f à coefficients bornés appartient à l'espace de Lipschitz $\Lambda^(\frac(1)(2))$ dans les domaines strictement pseudoconvexes. Plus récemment, A. Cumenge d'une part et B. Fischer, J. E. Fornaess, K. Diederich d'autre part ont obtenu dans le cas des domaines convexes de type fini m des estimations en $\Lambda^(\frac(1)(m))$ . Cependant, le résultat de S. G. Krantz dans les domaines strictement pseudoconvexe a ensuite été amélioré par P. Greiner et E. Stein qui ont obtenu sous les mêmes hypothèses une solution dans l'espace anisotrope höldérien $\Lambda^(\frac(1)(2), 1)$. Ce résultat indique qu'une meilleure régularité de la solution est attendue dans les directions tangentes complexes. Notre travail consiste alors à obtenir les estimations lipschitziennes optimales des solutions de l'équation de Cauchy-Riemann dans un domaine $\Omega$ à frontière lisse borné et convexe de type fini. Dans la première partie de notre travail, nous reprenons la formule de représentation intégrale construite par A. Cumenge avec des noyaux de type Berndtsson-Andersson où le poids dépend du noyau de Bergman. Elle est ``semi-géométrique'' dans le sens où le noyau est construit en partie à l'aide du noyau de Bochner-Martinelli qui, bien qu'universel, ne nous permettra pas a priori d'exploiter toute la géométrie du domaine. Dans tous les résultats précités, la donnée $f$ est dans l'espace $L^(\infty)$. C'est ainsi la solution qui porte l'anisotropie induite par la géométrie des strictement pseudoconvexes ou des convexes de type fini. Il nous a semblé intéressant de donner aussi une approche où la donnée appartient à un espace anisotrope. Pour cela, nous utilisons la norme $|||f|||_(\kappa)$ qui est définie à l'aide d'une norme de type Kobayashi pour les vecteurs. La solution appartient alors à l'espace de Zygmund isotrope $\Lambda^1(\Omega)$. Pour montrer les techniques usuelles de résolution, et les difficultés d'approche pour les estimations de la partie euclidienne du noyau résolvant, nous donnons aussi un résultat où la donnée appartient à l'espace des (0,1)-formes $L^(\infty)$. Ce résultat n'est pas optimal et nous l'améliorons dans la troisième partie. La seconde partie donne la construction d'un noyau entièrement géométrique. Il ne fait plus intervenir que le noyau et la métrique de Bergman et nous pouvons espérer être donc à même de l'exploiter pour obtenir les résultats les plus fins. Cette construction est similaire à celle de Berndtsson-Andersson en choisissant comme section une approximation de la métrique de Bergman à l'ordre 2. Ce noyau permet d'obtenir une formule de représentation valable pour les (p,q)-formes en général. Le choix du poids permet l'annulation du terme d'intégration sur le bord qui apparaît dans les formules d'homotopie, ce qui nous donne directement une solution de l'équation de Cauchy-Riemann pour les (p,q)-formes $\overline \partial$ fermée. Dans la troisième partie, nous donnons un premier résultat qui utilise ce noyau et améliore le second résultat de la première partie. Nous obtenons un résultat optimal : pour une donnée dans $L^(\infty)(\Omega)$, nous montrons que l'équation de Cauchy-Riemann admet une solution dans l'espace de fonction anisotrope $\Gamma_(\rho)^(\frac(1)(m))(\Omega)$ introduit par J. McNeal et E. Stein. C'est un espace de type Lipschitz $\frac(1)(m)$ pour une métrique $\rho$ faisant intervenir la pseudométrique de McNeal, donc reflétant la géométrie du domaine. Pour obtenir ce résultat, nous avons dû adapter un lemme de type ``Hardy-Littlewood anisotrope'' pour pouvoir estimer directement les termes du noyau ne contenant pas la singularité maximale. Pour le dernier terme, nous avons dû introduire une définition directe de $\Gamma_(\rho)^(\frac(1)(m))(\Omega)$ qui nécessitait l'introduction d'une approximation de l'unité adapté à la géométrie des convexes de type fini. Nous terminons par une seconde application : nous retrouvons un théorème de P. Greiner et E. Stein dans les domaines strictement pseudoconvexes. C'est-à-dire que pour une donnée $L^(\infty)(\Omega)$, nous montrons que nous pouvons trouver une solution dans $\Lambda^(\frac(1)(2),1)(\Omega)$. Il est assez naturel de pouvoir y arriver puisque notre solution est construite afin de dominer les aspects géométriques des domaines.
|
136 |
Problemes de régularité en optimisation de formesBriançon, Tanguy 02 July 2002 (has links) (PDF)
Ce travail porte sur les problèmes de régularités en optimisation de forme. Précisément nous étudions la régularité d'un ouvert qui minimise l'énergie du problème de Dirichlet pour le Laplacien parmi tous les ouverts de mesure fixée inclus dans un grand ouvert (par exemple l'espace tout entier). La première étape consiste à regarder la régularité de la fonction d'état optimale (la solution du problème de Dirichlet sur l'ouvert minimal): on montre que, là où elle garde un signe constant, elle est localement lipschitzienne (dans tout l'espace et pas seulement dans l'ouvert optimal). La deuxième étape consiste à étudier la régularité du bord de l'ouvert optimal. Si la fonction d'état est lipschitzienne, on montre que cet ouvert est à périmètre fini. On peut également montré que, là où le terme source est positif, le Laplacien de la fonction d'état est égal, sur le bord de l'ouvert optimal, à une constante multipliée par la mesure de Hausdorff du bord. Cette constante est un multiplicateur de Lagrange dans une équation d'Euler-Lagrange. De manière formelle, cela signifie que la dérivée normale de la fonction d'état est constante sur le bord. Ceci est bien le résultat attendu: si on suppose que l'ouvert optimal est régulier, on le retrouve facilement. On peut enfin déduire de cela que, loin du support du terme source, la frontière de l'ouvert optimal est, en dehors d'un ensemble négligeable, une hypersurface analytique.
|
137 |
Contribution d'orbites périodiques diffractives à la formule de traceHILLAIRET, Luc 24 June 2002 (has links) (PDF)
La formule de trace est un outil privilégié pour l'étude du problème spectral inverse puisqu'elle établit, sur une variété riemannienne compacte, une relation entre le spectre du laplacien et les longueurs des géodésiques périodiques. Cette thèse étend ce type de formule dans deux situations présentant des singularités ponctuelles. Dans ces deux cas, on commence par étudier l'équation des ondes et par établir la propagation des singularités associée. Sur une variété $M$ de dimension $3$, on place un potentiel Dirac en un point $p$. Cela revient à considérer une extension autoadjointe du laplacien, défini sur ${\cal C}^\infty( M\backslash \{p\} )$, différente du laplacien riemannien de $M.$ Le propagateur de l'équation des ondes associée est construit en faisant apparaître des diffractions successives au point $p$, ce qui donne alors la propagation des singularités. La formule de trace en découle~; on montre notamment que les courbes obtenues en suivant successivement un ou plusieurs lacets géodésiques joignant $p$ à $p$ donnent une contribution dont on calcule la partie principale. Sur une surface euclidienne à singularités coniques, il faut commencer par étendre la notion de géodésique en admettant le passage par les points coniques. Au voisinage d'une géodésique $g$, la géométrie locale de l'ensemble des géodésiques (éventuellement) diffractives dépend d'un nombre (appelé {\it complexité classique\/}) que l'on relie à la suite des angles de diffractions le long de $g.$ On montre alors que la propagation des singularités se fait en suivant ces géodésiques généralisées. La trace fait alors apparaître la contribution de géodésiques périodiques diffractives dont on calcule la partie principale sous certaines hypothèses.
|
138 |
Modélisation mathématique et résolution numérique de problèmes de fluides à plusieurs constituants.Lagoutière, Frédéric 07 December 2000 (has links) (PDF)
Ce travail concerne les fluides eulériens compressibles constitués de plusieurs espèces, qui peuvent être mélangées ou séparées par des interfaces. Le mémoire est composé de trois parties. La première partie est consacrée à la résolution numérique de problèmes modèles : équation d'advection, équation de Burgers, équations d'Euler, en dimensions un et deux. L'accent est mis sur la précision des méthodes (en particulier pour des données initiales discontinues), et des algorithmes non dissipatifs sont développés. Ils sont basés sur un décentrage aval des flux (de type volumes finis) sous des contraintes de stabilité. La seconde partie traite de la modélisation mathématique des mélanges de fluides. Nous y construisons et analysons une classe de modèles entropiques, symétrisables, hyperboliques, non forcément conservatifs. Ce sont des modèles à plusieurs températures et plusieurs pressions. Dans la troisième partie, nous utilisons les idées introduites dans la première partie (décentrage aval et schémas non dissipatifs) pour la résolution numérique des problèmes aux dérivées partielles construits dans la deuxième partie. Nous présentons des résultats numériques en dimensions un et deux.
|
139 |
Quelques contributions à l'analyse mathématique de l'équation de Gross-Pitaevskii et du modèle de Bogoliubov-Dirac-FockGravejat, Philippe 08 December 2011 (has links) (PDF)
Ce mémoire présente plusieurs contributions quant à l'analyse mathématique de l'équation de Gross-Pitaevskii et du modèle de Bogoliubov-Dirac-Fock. Au sujet de l'équation de Gross-Pitaevskii, l'analyse commence par la construction variationnelle des ondes progressives minimisantes. La preuve de la stabilité orbitale du soliton noir en dimension un, et la description de la limite transsonique des ondes progressives minimisantes vers les états fondamentaux de l'équation de Kadomtsev-Petviashvili en dimension deux, viennent compléter cette construction. L'analyse s'achève par la dérivation rigoureuse du régime ondes longues vers l'équation de Korteweg-de Vries en dimension un. Quant au modèle de Bogoliubov-Dirac-Fock, il s'agit de construire les états fondamentaux du modèle réduit, puis de préciser le processus de renormalisation de leur charge, lequel autorise le calcul d'un développement asymptotique de la densité de charges du vide polarisé, qui est cohérent avec les développements perturbatifs de l'électrodynamique quantique.
|
140 |
Schémas numériques d'ordre élevé en temps et en espace pour l'équation des ondesAgut, Cyril 13 December 2011 (has links) (PDF)
Mes travaux de thèse portent sur le développement de schémas numériques d'ordre élevé en temps et en espace pour la simulation de la propagation des ondes. Nous avons proposé de discrétiser dans un premier temps l'équation des ondes par rapport au temps, en utilisant une technique de type équation modifiée. Puis nous avons utilisé une méthode d'éléments finis de type Galerkine discontinue pour la discrétisation en espace. En modifiant l'ordre de la discrétisation, nous avons construit des schémas tout aussi précis que ceux déjà existants pour un coût de mise en oeuvre très intéressant. Après avoir validé numériquement la nouvelle méthode, nous nous sommes intéressés à sa stabilité ainsi qu'à son adaptivité en temps et en espace. Pour arriver à cela, nous avons dû faire une étude précise de la stabilité de la méthode de Galerkine discontinue et nous avons proposé des améliorations à cette technique entraînant des gains de temps significatifs.
|
Page generated in 0.0949 seconds