• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 497
  • 202
  • Tagged with
  • 699
  • 699
  • 431
  • 425
  • 292
  • 193
  • 168
  • 161
  • 148
  • 135
  • 134
  • 121
  • 114
  • 113
  • 105
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

En Ny Era - Artificiell Intelligens inom Digital Marknadsföring

Bergström Stacey, Emily, Björk, Fredrika January 2023 (has links)
I slutet av år 2022 introducerades det nya AI-verktyget ChatGPT, en AI-modell som använder maskininlärning för att generera människoliknande svar i stor skala. ChatGPT:s snabba framväxt medför en ovisshet kring hur AI-verktyget kommer påverka praxis för digital marknadsföring. Denna studie utreder därför vilken roll ChatGPT kommer spela inom olika praxis för digital marknadsföring och ämnar därmed att utreda forskningsfrågan: Hur kommer ChatGPT att påverka praxis för digital marknadsföring? Den valda forskningsstrategin för denna studie är en kartläggning där ansikte-mot-ansikte kartläggning tillämpas. Detta stöds med hjälp av intervjuer som datainsamlingsmetod och vidare appliceras en tematisk analys för att analysera insamlad data. Fem marknadsföringsexperter intervjuades i denna studie och samtliga menade att ChatGPT på något vis påverkar praxis inom digital marknadsföring. Slutsatsen pekar därför mot att ChatGPT, trots dess nya upptäckt, redan börjat påverka processer inom praxis för digital marknadsföring och att det troligtvis i bredare utsträckning kommer fortsätta göra det på olika vis, genom att fortsätta inspirera, effektivisera och optimera. Vidare hade alla respondenter en positiv inställning till att se ChatGPT som ett komplement till dagens marknadsföringspraxis, dock en mer negativ inställning till att se det som ett substitut. / In late 2022, the new AI tool, ChatGPT, was introduced. It is an AI-model that uses machine learning to generate human-like responses on a large scale. The rapid rise of ChatGPT has resulted in a lack of sufficient knowledge about the effect that ChatGPT will have on digital marketing practices. Therefore, this study investigates the role of ChatGPT in different digital marketing practices and aims to address the research question: How will ChatGPT af ect digital marketing practices? The chosen research strategy for this study is a survey strategy, as well as the application of the face-to-face survey. This is supported by the data collection method interviews and then a thematic analysis is applied to analyse the collected data. Five marketing experts were interviewed in this thesis and all believed that ChatGPT will, and already has, in some way influenced digital marketing practices. The conclusion therefore points to the fact that ChatGPT, despite its recent discovery, has already begun to influence processes within the practice of digital marketing. Furthermore ChatGPT will most likely continue to enhance digital marketing in a variety of ways on a wider scale, through continuing to inspire as well as contribute with efficiency and optimisation. In addition, all respondents had a positive attitude towards seeing ChatGPT as a complement to current marketing practices, however a more negative attitude towards seeing it as a substitute.
662

Går det att lita på ChatGPT? En kvalitativ studie om studenters förtroende för ChatGPT i lärandesammanhang

Härnström, Alexandra, Bergh, Isak Eljas January 2023 (has links)
Världens tekniska utveckling går framåt i snabb takt, inte minst när det kommer till ”smarta” maskiner och algoritmer med förmågan att anpassa sig efter sin omgivning. Detta delvis på grund av den enorma mängd data som finns tillgänglig och delvis tack vare en ökad lagringskapacitet. I november 2022 släpptes ett av de senaste AI-baserade programmen; chatboten ChatGPT. Inom två månader hade ChatGPT fått över 100 miljoner användare. Denna webbaserade mjukvara kan i realtid konversera med användare genom att besvara textbaserade frågor. Genom att snabbt och ofta korrekt besvara användarnas frågor på ett mänskligt och övertygande sätt, har tjänsten på kort tid genererat mycket uppmärksamhet. Det finns flera studier som visar på hur ett stort antal människor saknar ett generellt förtroende för AI. Vissa studier menar att de svar som ChatGPT genererar inte alltid kan antas vara helt korrekta och därför bör följas upp med en omfattande kontroll av faktan, eftersom de annars kan bidra till spridandet av falsk information. Eftersom förtroende för AI har visat sig vara en viktig del i hur väl teknologin utvecklas och integreras, kan brist på förtroende för sådana tjänster, såsom ChatGPT, vara ett hinder för en välfungerande användning. Trots att man sett på ökad produktivitet vid införandet av AI-teknologi hos företag så har det inom högre utbildning, som ett hjälpmedel för studenter, inte integrerats i samma utsträckning. Genom att ta reda på vilket förtroende studenter har för ChatGPT i lärandesammanhang, kan man erhålla information som kan vara till hjälp för integrationen av sådan AI-teknik. Dock saknas det specifik forskning kring studenters förtroende för ChatGPT i lärandesammanhang. Därför syftar denna studie till att fylla denna kunskapslucka, genom att utföra en kartläggning. Vår frågeställning är: ” Vilket förtroende har studenter för ChatGPT i lärandesammanhang?”. Kartläggningen utfördes med semistrukturerade intervjuer av åtta studenter som använt ChatGPT i lärandesammanhang. Intervjuerna genererade kvalitativa data som analyserades med tematisk analys, och resultatet visade på att studenters förtroende för ChatGPT i lärandesammanhang beror på en rad faktorer. Under analysen identifierade vi sex teman som ansågs vara relevanta för att besvara frågeställningen: ● Erfarenheter ● Användning ● ChatGPT:s karaktär ● Yttre påverkan ● Organisationer ● Framtida förtroende / The world's technological development is advancing rapidly, especially when it comes to "smart" machines and algorithms with the ability to adapt to their surroundings. This is partly due to the enormous amount of available data and partly thanks to increased storage capacity. In November 2022, one of the latest AI-based programs was released; the chatbot ChatGPT. This web-based software can engage in real-time conversations with users by answering text-based questions. By quickly, and often accurately, answering users' questions in a human-like and convincing manner, the service has generated a lot of attention in a short period of time. Within two months, ChatGPT had over 100 million users. There are several studies that show how a large number of people lack a general trust in AI. Some studies argue that the responses generated by ChatGPT may not always be assumed to be completely accurate and should therefore be followed up with extensive fact-checking, as otherwise they may contribute to the spreading of false information. Since trust in AI has been shown to be an important part of how well the technology develops and integrates, a lack of trust in services like ChatGPT can be a hindrance to effective usage. Despite the increased productivity observed in the implementation of AI technology in companies, it has not been integrated to the same extent within higher education as an aid for students. By determining the level of trust that students have in ChatGPT in an educational context, valuable information can be obtained to assist in the integration of such AI technology. However, there is a lack of specific research on students' trust in ChatGPT in an educational context. Therefore, this study aims to fill this knowledge gap by conducting a survey. Our research question is: “What trust do students have in ChatGPT in a learning context?”. The survey was conducted through semi-structured interviews with eight students who have used ChatGPT in an educational context. The interviews generated qualitative data that was analyzed using thematic analysis, and the results showed that students' trust in ChatGPT in an educational context depends on several factors. During the analysis, six themes were identified as relevant for answering the research question: • Experiences • Usage • ChatGPT’s character • Influences • Organizations • Future trust
663

Artificiell Intelligens och krigets lagar : Kan skyddet i internationell humanitärrätt garanteras?

Öholm, Emma January 2023 (has links)
Artificial intelligence (AI) is one of the fastest developing technologies globally. AI has recently entered warfare and thus taken a place in international law. Today the use of AI in warfare is through machine learning and autonomous weapon systems. Autonomous weapons are expected to play a decisive role in future war- fare and therefore have a major impact on both civilians and combatants. This gives rise to an examination of the role of artificial intelligence, machine learning and autonomous weapon systems in international law, specifically international humanitarian law (IHL).  The purpose and main research question of the thesis is to examine how the use of AI, machine learning and autonomous weapon systems is regulated within international law. Further the thesis examines if the regulations sufficiently can ensure the protection that is guaranteed within IHL or if additional regulation is needed. The research question is answered by examining the relevant rules in IHL, compliance with the protection stated in the principles of distinction, pro- portionality and precautions in attack and lastly by analyzing the consequences for civilians and combatants.  Conclusions that can be made is that the rules of IHL are both applicable and sufficient to, in theory, regulate autonomous weapon systems. However the weapon itself must be capable to follow IHL and in order to guarantee this ad- ditional regulation is needed on the use of autonomous weapons. The use of autonomous weapon systems does not necessarily violate the principles of dis- tinction, proportionality and precaution in attack. On the contrary, the use of autonomous weapons can possibly ensure that the principles are respected even further. This however depends on the actual capabilities of autonomous weapon systems and whether they can make the complex judgments required for each principle. It is although still of importance to ensure that the element of human control is never completely lost. The issue that keeps returning is the potential loss of human control. At all times human control must be guaranteed to ensure that the final decision always remains with a human. If humanity in warfare is lost the consequences and risks for civilians will increase. Not only is there a possibility of increase in use of violence but also an increase of indiscriminate attacks. The rules of IHL aim to protect civilians as well as combatants, and the use of this new weapon will lead to difficulties to navigate armed situations for combatants. This will increase the suffering of civilians, but also risk overriding the protection of combatants that IHL ensures.
664

Pulse Repetition Interval Modulation Classification using Machine Learning / Maskininlärning för klassificering av modulationstyp för pulsrepetitionsintervall

Norgren, Eric January 2019 (has links)
Radar signals are used for estimating location, speed and direction of an object. Some radars emit pulses, while others emit a continuous wave. Both types of radars emit signals according to some pattern; a pulse radar, for example, emits pulses with a specific time interval between pulses. This time interval may either be stable, change linearly, or follow some other pattern. The interval between two emitted pulses is often referred to as the pulse repetition interval (PRI), and the pattern that defines the PRI is often referred to as the modulation. Classifying which PRI modulation is used in a radar signal is a crucial component for the task of identifying who is emitting the signal. Incorrectly classifying the used modulation can lead to an incorrect guess of the identity of the agent emitting the signal, and can as a consequence be fatal. This work investigates how a long short-term memory (LSTM) neural network performs compared to a state of the art feature extraction neural network (FE-MLP) approach for the task of classifying PRI modulation. The results indicate that the proposed LSTM model performs consistently better than the FE-MLP approach across all tested noise levels. The downside of the proposed LSTM model is that it is significantly more complex than the FE-MLP approach. Future work could investigate if the LSTM model is too complex to use in a real world setting where computing power may be limited. Additionally, the LSTM model can, in a trivial manner, be modified to support more modulations than those tested in this work. Hence, future work could also evaluate how the proposed LSTM model performs when support for more modulations is added. / Radarsignaler används för att uppskatta plats, hastighet och riktning av objekt. Vissa radarer sänder ut signaler i form av pulser, medan andra sänder ut en kontinuerlig våg. Båda typer av radarer avger signaler enligt ett visst mönster, till exempel avger en pulsradar pulser med ett specifikt tidsintervall mellan pulserna. Detta tidsintervall kan antingen vara konstant, förändras linjärt, eller följa ett annat mönster. Intervallet mellan två pulser benämns ofta pulsrepetitionsintervall (PRI), och mönstret som definierar PRIn benämns ofta modulering. Att klassificera vilken PRI-modulering som används i en radarsignal är en viktig del i processen att identifiera vem som skickade ut signalen. Felaktig klassificering av den använda moduleringen kan leda till en felaktig gissning av identiteten av agenten som skickade ut signalen, vilket kan leda till ett dödligt utfall. Detta arbete undersöker hur väl det framtagna neurala nätverket som består av ett långt korttidsminne (LSTM) kan klassificera PRI-modulering i förhållande till en modern modell som använder särskilt utvalda beräknade särdrag från data och klassificerar dessa särdrag med ett neuralt nätverk. Resultaten indikerar att LSTM-modellen konsekvent klassificerar med högre träffsäkerhet än modellen som använder särdrag, vilket gäller för alla testade brusnivåer. Nackdelen med LSTM-modellen är att den är mer komplex än modellen som använder särdrag. Framtida arbete kan undersöka om LSTM-modellen är för komplex för att använda i ett verkligt scenario där beräkningskraften kan vara begränsad. Dessutom skulle framtida arbete kunna utvärdera hur väl LSTM-modellen kan klassificera PRI-moduleringar när stöd för fler moduleringar än de som testats i detta arbete läggs till, detta då stöd för ytterligare PRI-moduleringar kan läggas till i LSTM-modellen på ett trivialt sätt.
665

Human error management 4.0 : Augmented Reality Systems as a tool in the quality journey / Hantering av mänskliga fel 4.0 : Augmented Reality som ett verktyg i kvalitetsresan

ETEMADY QESHMY, DANIAL, MAKDISI, JACOB January 2018 (has links)
The manufacturing industry is shifting, entering a new era with smart and connected devices. The fourth industrial revolution (Industry 4.0) is promising increased growth and productivity by the Smart Factory and within the enabling technologies is Augmented Reality (AR). This is a technology that can be used to augment the reality with digital information. At the same time as the technology is introduced, errors in manufacturing are a problem which are affecting the productivity and the quality. The errors can be caused by humans and companies strive to eliminate the errors caused by humans. This research aims to find the main causes of human errors in assembly lines and thereafter explores whether AR is an appropriate tool to be used in order to address those issues. Based on a literature review that identified and characterized a preliminary set of root causes for human errors in assembly lines, these causes were empirically studied in an exercise that covered an in-depth case study at a multinational automotive company. Data in form of interviews and deviation reports have been used to identify the causing factors and the result showed that the main causes of human errors are the amount of thinking, deciding and searching for information which affected the cognitive load of the operator and in result their performance. Several interviews with experts in AR allowed to verify if this technology would be feasible to solve or mitigate the found causes. Besides that, in repetitive manual assembly operations, AR is better used showing the process in order to train new operators, at the same time as for experienced operators AR show information only when an error occurs and when there is a need of taking an active choice is more appropriate. Nevertheless, while theoretically able to managing human error when fully developed, the desired application makes the augmentation of visual objects redundant and increasingly complex for solving the identified causes of errors which questions the appropriateness of using AR systems. However, the empirical findings showed that for managing human errors, the main bottleneck of an AR system is the software and AI. / Den tillverkande industrin skiftar och går in i en ny era där smart och uppkopplad teknologi introduceras i de operativa delarna av tillverkningen. Denna fjärde industriella revolution (Industry 4.0) som den även kallas för med smarta fabriker, utlovar ökad produktivitet och tillväxt. Bland de teknologier som representeras i detta nya landskap återfinns Augmented Reality (AR), vilket är en teknik som används för att förstärka verkligheten med digital information. I samband med att denna nya teknik introduceras, är avvikelser i produktion ett problem som påverkar företags produktivitet och kvalitet. Den mänskliga faktorn är en bidragande del till detta problem och företag strävar efter att eliminera felen orsakade av människor. Denna studie syftar till att hitta orsakerna till att människor orsakar fel i produktion och därefter utforska om AR är ett lämpligt verktyg att använda för att råda bot på dessa orsaker och därmed eliminera felen. Genom en litteraturstudie har det identifierats ett antal faktorer som påverkar den mentala belastningen hos människor i produktionssammanhang. Dessa faktorer har därefter undersökts genom en fallstudie hos en multinationell tillverkare av kommersiella fordon. Datainsamling i form av intervjuer och avvikelsedata har använts för att identifiera de påverkande faktorerna och resultaten pekade på att behovet av att behöva tänka, leta efter information och fatta beslut påverkade den mentala belastningen mest. Intervjuer hölls med forskare och montörer för att definiera en lämplig AR funktion som sedan undersöktes genom flera intervjuer med forskare inom AR för att verifiera om AR är en lämplig teknik att använda för de identifierade orsakerna. I termer av AR i en arbetsmiljö med repetitiva aktiviteter efterfrågas en funktion som visualiserar fel för montörer som är erfarna medan det för oerfarna montörer är bättre med visualisering av hela arbetsprocessen. Men, trots att systemet i teorin är lämpligt att använda för att hantera orsakerna till att felen uppstår så är den efterfrågade funktionen överflödig då visualisering kommer visas väldigt sällan samt att tekniken är väldigt komplex. Detta gör att det går att ifrågasätta hela funktionen av att använda AR system i det fall som studerades. Dessutom visade sig tekniken vara olämplig att använda i den miljö fallet utspelar sig i på grund av svårigheter med artificiell intelligens (AI).
666

Operativ cybersäkerhet: för och nackdelar med AI verktyg : En Förstudie

Jepsson, David, Tillman, Axel January 2023 (has links)
Denna studie undersöker för- och nackdelarna med att implementera artificiell intelligens (AI)som ett verktyg inom en Security Operations Center (SOC). Syftet med studien är att undersökaom och hur AI-verktyg kan underlätta incidenthantering inom en SOC, samt vilka nyautmaningar som uppstår.Studien har genomförts genom kvalitativa intervjuer med fyra personer med expertkunskaperinom både AI och cybersäkerhet. Experterna utfrågades om deras syn på AI som ett verktyg, hurde ser på AI och cybersäkerhet, samt hur AI kan appliceras relaterat till de 4 stegen inom NISTincidenthantering; förberedelser, detektion & analys, Identifiera, utrotning & återhämtning samtpost-incident aktivitet.Resultaten visar på både fördelar och nackdelar med att använda AI-verktyg inom SOC inklusiveeffektivare konfigurering av SIEM, lägre antal falska positiva larm, lättad arbetsbörda förSOC-analytiker och hantering av "zero-day" incidenter. Nackdelar inkluderar lägre förklarbarhetav större AI-modeller, juridiska utmaningar och beroendet av bra indata. Slutligen visar studienatt användningen av AI som ett verktyg i SOC kan vara fördelaktigt och att mer forskningbehövs för att utforska specifika tekniker och verktyg.
667

Contextual short-term memory for LLM-based chatbot / Kontextuellt korttidsminne för en LLM-baserad chatbot

Lauri Aleksi Törnwall, Mikael January 2023 (has links)
The evolution of Language Models (LMs) has enabled building chatbot systems that are capable of human-like dialogues without the need for fine-tuning the chatbot for a specific task. LMs are stateless, which means that a LM-based chatbot does not have a recollection of the past conversation unless it is explicitly included in the input prompt. LMs have limitations in the length of the input prompt, and longer input prompts require more computational and monetary resources, so for longer conversations, it is often infeasible to include the whole conversation history in the input prompt. In this project a short-term memory module is designed and implemented to provide the chatbot context of the past conversation. We are introducing two methods, LimContext method and FullContext method, for producing an abstractive summary of the conversation history, which encompasses much of the relevant conversation history in a compact form that can then be supplied with the input prompt in a resource-effective way. To test these short-term memory implementations in practice, a user study is conducted where these two methods are introduced to 9 participants. Data is collected during the user study and each participant answers a survey after the conversation. These results are analyzed to assess the user experience of the two methods and the user experience between the two methods, and to assess the effectiveness of the prompt design for both answer generation and abstractive summarization tasks. According to the statistical analysis, the FullContext method method produced a better user experience, and this finding was in line with the user feedback. / Utvecklingen av LMs har gjort det möjligt att bygga chatbotsystem kapabla till mänskliga dialoger utan behov av att finjustera chatboten för ett specifikt uppdrag. LMs är stateless, vilket betyder att en chatbot baserad på en LM inte sparar tidigare delar av konversationen om de inte uttryckligen ingår i prompten. LMs begränsar längden av prompten, och längre prompter kräver mer beräknings- och monetära resurser. Således är det ofta omöjligt att inkludera hela konversationshistoriken i prompten. I detta projekt utarbetas och implementeras en korttidsminnesmodul, vars syfte är att tillhandahålla chatboten kontexten av den tidigare konversationen. Vi introducerar två metoder, LimContext metod och FullContext metod, för att ta fram en abstrakt sammanfattning av konversationshistoriken. Sammanfattningen omfattar mycket av det relevanta samtalet i en kompakt form, och kan sedan resurseffektivt förses med den påföljande prompten. För att testa dessa korttidsminnesimplementationer i praktiken genomförs en användarstudie där de två metoderna introduceras för 9-deltagare. Data samlas in under användarstudier. Varje deltagare svarar på en enkät efter samtalet. Resultaten analyseras för att bedöma användarupplevelsen av de två metoderna och användarupplevelsen mellan de två metoderna, och för att bedöma effektiviteten av den snabba designen för både svarsgenerering och abstrakta summeringsuppgifter. Enligt den statistiska analysen gav metoden FullContext metod en bättre användarupplevelse. Detta fynd var även i linje med användarnas feedback.
668

AI learn, AI do : En konstvetenskaplig studie om AI-modellers materialbetingade förmågor, aktörskap och deltagande inom konstnärliga processer / AI learn, AI do : An art-historical study about the material-based abilities, agencies, and involvement in artistic processes of AI-models

Persson, Cornelius January 2023 (has links)
This master’s thesis investigates generative AI-art through the lens of actor network theory. By focusing on the role of images in datasets as a material that effects both AI-models and artworks, the decisively non-human agencies generative AI-models can be said to possess, and the traces and associations that generative AI-models imbue artworks with, this thesis aims to investigate art that has been created with GAN-models as well as contemporary text-to-image diffusion-models, by way of similar premises. Forgoing common discussions and questions regarding the status of AI-art as art that inundate many a reasoning regarding this topic, this thesis instead investigates the use of generative AI to make images and art with an understanding of it as a multifaceted practice that can be observed and experienced in a variety of ways.  General topics such as the way images are used to train AI-models, the blurry connections between trained images and generated images, the way AI-models can be used and interacted with by using prompts as well as different kinds of interfaces and AI-Image-generators, are investigated, followed by the analysis of a number of artworks for which generative AI has been used. Throughout this study generative AI-art emerges as a both novel and oftentimes contested artform that is defined by direct and indirect connection to other media, a varied understanding of what it is that the artificial intelligence appears to do, and a use of the AI-artwork as a means to comment the mediums emerging characteristics.
669

Intimt eller sexuellt deepfakematerial? : En analys av fenomenet ‘deepfake pornografi’ som digitalt sexuellt övergrepp inom det EU-rättsliga området / Intimate or sexual deepfake material? : An analysis of the phenomenon ’deepfake pornography’ as virtual sexual abuse in the legal framework of the European Union

Skoghag, Emelie January 2023 (has links)
No description available.
670

Through the Blur with Deep Learning : A Comparative Study Assessing Robustness in Visual Odometry Techniques

Berglund, Alexander January 2023 (has links)
In this thesis, the robustness of deep learning techniques in the field of visual odometry is investigated, with a specific focus on the impact of motion blur. A comparative study is conducted, evaluating the performance of state-of-the-art deep convolutional neural network methods, namely DF-VO and DytanVO, against ORB-SLAM3, a well-established non-deep-learning technique for visual simultaneous localization and mapping. The objective is to quantitatively assess the performance of these models as a function of motion blur. The evaluation is carried out on a custom synthetic dataset, which simulates a camera navigating through a forest environment. The dataset includes trajectories with varying degrees of motion blur, caused by camera translation, and optionally, pitch and yaw rotational noise. The results demonstrate that deep learning-based methods maintained robust performance despite the challenging conditions presented in the test data, while excessive blur lead to tracking failures in the geometric model. This suggests that the ability of deep neural network architectures to automatically learn hierarchical feature representations and capture complex, abstract features may enhance the robustness of deep learning-based visual odometry techniques in challenging conditions, compared to their geometric counterparts.

Page generated in 0.0352 seconds