681 |
Avancerade Stora Språk Modeller i Praktiken : En Studie av ChatGPT-4 och Google Bard inom DesinformationshanteringAhmadi, Aref, Barakzai, Ahmad Naveed January 2023 (has links)
SammanfattningI denna studie utforskas kapaciteterna och begränsningarna hos avancerade stora språkmodeller (SSM), med särskilt fokus på ChatGPT-4 och Google Bard. Studien inleds med att ge en historisk bakgrund till artificiell intelligens och hur denna utveckling har lett fram till skapandet av dessa modeller. Därefter genomförs en kritisk analys av deras prestanda i språkbehandling och problemlösning. Genom att evaluera deras effektivitet i hanteringen av nyhetsinnehåll och sociala medier, samt i utförandet av kreativa uppgifter som pussel, belyses deras förmåga inom språklig bearbetning samt de utmaningar de möter i att förstå nyanser och utöva kreativt tänkande.I denna studie framkom det att SSM har en avancerad förmåga att förstå och reagera på komplexa språkstrukturer. Denna förmåga är dock inte utan begränsningar, speciellt när det kommer till uppgifter som kräver en noggrann bedömning för att skilja mellan sanning och osanning. Denna observation lyfter fram en kritisk aspekt av SSM:ernas nuvarande kapacitet, de är effektiva inom många områden, men möter fortfarande utmaningar i att hantera de finare nyanserna i mänskligt språk och tänkande. Studiens resultat betonar även vikten av mänsklig tillsyn vid användning av artificiell intelligens (AI), vilket pekar på behovet av att ha realistiska förväntningar på AI:s kapacitet och betonar vidare betydelsen av en ansvarsfull utveckling av AI, där en noggrann uppmärksamhet kring etiska aspekter är central. En kombination av mänsklig intelligens och AI föreslås som en lösning för att hantera komplexa utmaningar, vilket bidrar till en fördjupad förståelse av avancerade språkmodellers dynamik och deras roll inom AI:s bredare utveckling och tillämpning.
|
682 |
Utilizing Primary Health Care Data for Early Detection of Colorectal Cancer: A Machine Learning Approach / Användning av primärvårdsdata för tidig upptäckt av kolorektalcancer: Ett maskininlärningsperspektivEivinsson, Tova January 2024 (has links)
Colorectal cancer (CRC) is a health challenge worldwide and early detection of the disease is crucial to improve patient prognosis. It is common for the first contact with care to occur in primary care centers where general practitioners often face the challenge of distinguishing CRC from other diseases with similar symptoms. In this master thesis, patient records from primary care were used to create, optimize, and evaluate a machine learning model that classifies patients with CRC for early detection of the disease. The data used in the project included parts of electronic health records (EHRs) from both public (SLSO) and privately run (Capio and Praktikertjänst) primary care centers in the Stockholm region. The available dataset was cleaned and pre- processed, and then tested on four separate models. After selecting and optimizing the most promising model, LightGBM, a detailed evaluation of the model was performed. To simulate realistic clinical conditions, data from the three months prior to diagnosis were excluded from two of the datasets. The results were then compared with a baseline machine learning model that utilized ICD codes extracted from EHRs in primary care for early detection of CRC.The results showed that the final developed model had a generally good performance with an AUROC score of a maximum of 85.8%, which indicates very good ability to distinguish between the classes. The performance dropped when using the datasets with 3 months of data removed, but the ROC curves still showed a better ability than random classification to distinguish between the classes with a AUROC score of maximum 60,8%. The results also showed that the model developed in this master thesis outperforms the baseline model, which was based on ICD codes, from a performance perspective. For future development and before a possible clinical implementation, a larger data set should be used for training and testing. / Tjock- och ändtarmscancer, kolorektal cancer (KRC) är en hälsoutmaning över hela världen och tidig upptäckt av sjukdomen är avgörande för att förbättra patientens prognos. Det är vanligt att den första kontakten med vården inträffar på vårdcentraler där allmänläkare ofta står inför utmaningen att skilja KRC från andra sjukdomar med liknande symtom. I denna masteruppsats kommer patientjournaler från primärvården att användas för att skapa, optimera och utvärdera en maskininlärningsmodell som klassificerar patienter med KRC för tidig upptäckt av sjukdomen.De data som använts i projektet omfattade delar av elektroniska patientjournaler (EHR) från både offentliga (SLSO) och privatägda (Capio och Praktikertjänst) primärvårdscentraler i Stockholmsregionen. Den tillgängliga datamängden städades och förbehandlades, och testades sedan på fyra separata modeller. Efter att ha valt ut och optimerat den mest lovande modellen, LightGBM, utfördes en detaljerad utvärdering av modellen. För att simulera realistiska kliniska tillstånd utvärderades modellen på två datamängder där data från tre månader före diagnos uteslöts. Resultaten jämfördes sedan med en baslinjemodell som använde ICD-koder som hämtats från journalsystem inom primärvården för tidig upptäckt av CRC.Resultaten visade att den slutliga utvecklade modellen hade en generellt bra prestanda med en AUROC-poäng på högst 85,8%, vilket indikerar mycket god förmåga att skilja mellan klasserna. Prestandan sjönk vid användning av datasatserna med 3 månaders data borttagen, men ROC-kurvorna visade fortfarande en bättre förmåga än slumpmässig klassificering att skilja mellan klasserna med en AUROC-poäng på högst 60,8%. Resultaten visade också att den modell som utvecklats i denna masteruppsats överträffar baslinjemodellen, som baserades på ICD-koder, ur ett prestationsperspektiv. För framtida utveckling och före en eventuell klinisk implementation bör en större datamängd användas för träning och testning av modellen.
|
683 |
IDENTIFIKATION AV RISKINDIKATORER I FINANSIELL INFORMATION MED HJÄLP AV AI/ML : Ökade möjligheter för myndigheter att förebygga ekonomisk brottslighet / INDENTIFICATION OF INDICATORS FOR RISK IN FINANCIAL INFORMATION BY USING AI/ML : Improved possibilities for authorities to prevent economic crimesAhlm, Kristoffer January 2021 (has links)
Ekonomisk brottslighet är mer lukrativt jämfört med annan brottslighet som narkotika, häleri och människohandel. Tidiga åtgärder som försvårar att kriminella kan använda företag för brottsliga syften gör att stora kostnader för samhället kan undvikas. En genomgång av litteraturen visade också att det finns stora brister i samarbetet mellan svenska myndigheter för att upptäcka grov ekonomisk brottslighet. Idag uppdagas brotten först ofta efter att en konkurs inletts. I studier har maskininlärningsmodeller prövats för att kunna upptäcka ekonomisk brottslighet och några svenska myndigheter använder maskininlärningsmodeller för att upptäcka brott men mer avancerade metoder används idag av danska myndigheter. Bolagsverket har idag ett omfattande register för bolag i Sverige och denna studie syftar till att undersöka om maskininlärning kan användas för att identifiera misstänkta bolag, genom att använda digitalt inlämnade årsredovisningar och information ur bolagsverkets register för att kunna träna klassificeringsmodeller att identifiera misstänkta bolag. För att träna modellen så har stämningsansökningar inhämtats från Ekobrottsmyndigheten som kunnat kopplas till specifika bolag av de inlämnade årsredovisningar. Principalkomponentanalys används för att visuellt visa på skillnader mellan grupperna misstänkta och icke misstänkta bolag och analyserna visade på ett överlapp mellan grupperna och ingen tydlig klustring av grupperna. Data var obalanserat med 38 misstänkta bolag av totalt 1009 bolag och därför användes översamplingstekniken SMOTE för att skapa mer syntetiskt data och för att öka antalet i gruppen misstänkta. Två maskininlärningsmodeller Random Forest och Stödvektormaskin (SVM) jämfördes i en 10 fold korsvalidering. Där båda uppvisade en recall på runt 0.91 men där Random Forest hade en mycket högre precision och med högre accuracy. Random Forest valdes och tränades på nytt och uppvisades en recall på 0.75 när den testades på osett data bestående av 8 misstänkta av 202 bolag. Ett sänkt tröskelvärde resulterade i en högre recall men med en större antal felklassificerade bolag. Studien visar tydligt problemet med obalans i data och de utmaningar man ställs inför med mindre data. Ett större data hade möjligjort ett strängare urval på brottstyper som hade kunnat ge en mer robust modell som skulle kunna användas av bolagsverket för att lättare kunna identifiera misstänkta bolag i deras register. / Economic crimes are more lucrative compared to other crimes as drugs, selling of stolen gods, trafficing. Early preventions that make it more difficult for criminals to use companies for criminal purposes can reduce large costs for sociaty. A litterature study showed that there are large weaknesses in the collaboration between Swedish authorities to detect serious economic crimes.Today most crimes among companies that commit fraud are found after a company has declared bancruptcy. In studies, machine learning models have been tested to detect economic crimes and some swedish authorites are now using machine learning methods to detect different crimes and more advanced methods are used by the danish authorites. Bolagsverket has a large register of companies in Sweden and the aim of this study is to investigate if machinelearning can be used to detect on annual reports that have been digitaly submited and information in Bolagsverket’s register to be able to train classificationsmodels and identify companies that are suspicious. To be able to train the model lawsuits have been collected from the Swedish Economic Crime Authority that can be connected to specific companies through their digitally submited annual report. Principal component analysis is used to visually show differences between the groups suspect companies and not suspected companies and the analysis show that there is an overlap between the groups and no clear clustering between the groups. Because the dataset was unbalanced with 38 suspicious companies out of 1009 companies the oversampling tecnique SMOTE was used to create more synthethic data and more suspects in the dataset. The two machinelearnings models Random Forest and support vector machine (SVM) was compared in a 10 fold crossvalidation. Both models showed a recall on around 0.91 but Random Forest had a much higher precision with a higher accuracy. Random Forest was chosen and was trained again and showed a recall on 0.75 when it was tested on unseen data with 8 suspects out of 202 companies. Lowering the treshold resulted in a higher recall but with a larger portion of wrongly classfied companies. The study shows clearly the problem with an unbalanced dataset and the challanges with a small dataset. A larger dataset could have made it possible to make a more selective selection of certain crimes that could have resulted in a more robust model that could be used by Bolagsverket to easier identify suspicous companies in their register.
|
684 |
Taxi demand prediction using deep learning and crowd insights / Prognos av taxiefterfrågan med hjälp av djupinlärning och folkströmsdataJolérus, Henrik January 2024 (has links)
Real-time prediction of taxi demand in a discrete geographical space is useful as it can minimise service disequilibrium by informing idle drivers of the imbalance, incentivising them to reduce it. This, in turn, can lead to improved efficiency, more stimulating work conditions, and a better customer experience. This study aims to investigate the possibility of utilising an artificial neural network model to make such a prediction for Stockholm. The model was trained on historical demand data and - uniquely - crowd flow data from a cellular provider (aggregated and anonymised). Results showed that the final model could generate very helpful predictions (only off by less than 1 booking on average). External factors - including crowd flow data - had a minor positive impact on performance, but limitations regarding the setup of the zones lead to the study being unable to make a definitive conclusion about whether crowd flow data is effective in improving taxi demand predictors or not. / Prognos av taxiefterfrågan i ett diskret geografiskt utrymme är användbart då det kan minimera obalans mellan utbud och efterfrågan genom att informera lediga taxiförare om obalansen och därmed utjämna den. Detta kan i sin tur leda till förbättrad effektivitet, mer stimulerande arbetsförhållanden och en bättre kundupplevelse. Denna studie ämnar att undersöka möjligheten att använda artificiella neurala nätverk för att göra en sådan prognos för Stockholm. Modellen tränades på historisk data om efterfrågan och - unikt för studien - folkströmsdata (aggregerad och anonymiserad) från en mobiloperatör. Resultaten visade att den slutgiltiga modellen kunde generera användbara prognoser (med ett genomsnittligt prognosfel med mindre än 1 bil per tidsenhet). Externa faktorer – inklusive folkströmsdata – hade en märkbar positiv inverkan på prestandan, men begränsningar rörande framställningen av zonerna ledde till att studien inte kunde dra en definitiv slutsats om huruvida folkströmsdata är effektiva för att förbättra prognoser för taxiefterfrågan eller ej.
|
685 |
Applying Large Language Models in Business Processes : A contribution to Management Innovation / Tillämpning av stora språkmodeller i affärsprocesser : Ett bidrag till Management InnovationBergman Larsson, Niklas, Talåsen, Jonatan January 2024 (has links)
This master thesis explores the transformative potential of Large Language Models (LLMs) in enhancing business processes across various industries, with a specific focus on Management Innovation. As organizations face the pressures of digitalization, LLMs emerge as powerful tools that can revolutionize traditional business workflows through enhanced decision-making, automation of routine tasks, and improved operational efficiency. The research investigates the integration of LLMs within four key business domains: Human Resources, Tender Management, Consultancy, and Compliance. It highlights how LLMs facilitate Management Innovation by enabling new forms of workflow automation, data analysis, and compliance management, thus driving substantial improvements in efficiency and innovation. Employing a mixed-method approach, the study combines an extensive literature review with surveys and interviews with industry professionals to evaluate the impact and practical applications of LLMs. The findings reveal that LLMs not only offer significant operational benefits but also pose challenges related to data security, integration complexities, and privacy concerns. This thesis significantly contributes to the academic and practical understanding of LLMs, proposing a framework for their strategic adoption to foster Management Innovation. It underscores the need for businesses to align LLM integration with both technological capabilities and strategic business objectives, paving the way for a new era of management practices shaped by advanced technologies. / Denna masteruppsats utforskar den transformativa potentialen hos Stora Språkmodeller (LLMs) i att förbättra affärsprocesser över olika industrier, med särskilt fokus på Management Innovation. När organisationer möter digitaliseringens press, framträder LLMs som kraftfulla verktyg som kan revolutionera traditionella affärsarbetsflöden genom förbättrat beslutsfattande, automatisering av rutinuppgifter och förbättrad operationell effektivitet. Forskningen undersöker integrationen av LLMs inom fyra centrala affärsområden: Human Resources, Anbudshantering, Konsultverksamhet och Regelefterlevnad. Den belyser hur LLMs underlättar Management Innovation genom att möjliggöra nya former av arbetsflödesautomatisering, dataanalys och efterlevnadshantering, vilket driver påtagliga förbättringar i effektivitet och innovation. Genom att använda en blandad metodansats kombinerar studien en omfattande litteraturöversikt med enkäter och intervjuer med branschproffs för att utvärdera påverkan och praktiska tillämpningar av LLMs. Resultaten visar att LLMs inte bara erbjuder betydande operationella fördelar utan även medför utmaningar relaterade till datasäkerhet, integrationskomplexitet och integritetsfrågor. Denna uppsats bidrar avsevärt till den akademiska och praktiska förståelsen av LLMs, och föreslår en ram för deras strategiska antagande för att främja Management Innovation. Den understryker behovet för företag att anpassa LLM-integrationen med både teknologiska kapabiliteter och strategiska affärsmål, vilket banar väg för en ny era av ledningspraxis formad av avancerade teknologier.
|
686 |
Investigating an Age-Inclusive Medical AI Assistant with Large Language Models : User Evaluation with Older Adults / Undersökning av en åldersinkluderande medicinsk AI-assistent med stora språkmodeller : Snvändarstudier med äldre vuxnaMagnus, Thulin January 2024 (has links)
The integration of Large Language Models (LLMs) such as GPT-4 and Gemini into healthcare, particularly for elderly care, represents a significant opportunity in the use of artificial intelligence in medical settings. This thesis investigates the capabilities of these models to understand and respond to the healthcare needs of older adults effectively. A framework was developed to evaluate their performance, consisting of specifically designed medical scenarios that simulate real-life interactions, prompting strategies to elicit responses and a comprehensive user evaluation to assess technical performance and contextual understanding. The analysis reveals that while LLMs such as GPT-4 and Gemini exhibit high levels of technical proficiency, their contextual performance shows considerable variability, especially in personalization and handling complex, empathy-driven interactions. In simpler tasks, these models demonstrate appropriate responsiveness, but they struggle with more complex scenarios that require deep medical reasoning and personalized communication. Despite these challenges, the research highlights the potential of LLMs to significantly enhance healthcare delivery for older adults by providing timely and relevant medical information. However, to realize a truly effective implementation, further development is necessary to improve the models’ ability to engage in meaningful dialogue and understand the nuanced needs of an aging population. The findings underscore the necessity of actively involving older adults in the development of AI technologies, ensuring that these models are tailored to their specific needs. This includes focusing on enhancing the contextual and demographic awareness of AI systems. Future efforts should focus on enhancing these models by incorporating user feedback from the older population and applying user-centered design principles to improve accessibility and usability. Such improvements will better support the diverse needs of aging populations in healthcare settings, enhancing care delivery for both patients and doctors while maintaining the essential human touch in medical interactions. / Integrationen av stora språkmodeller (LLMs) såsom GPT-4 och Gemini inom sjukvården, särskilt inom äldrevård, representerar betydande möjligheter i användningen av artificiell intelligens i medicinska sammanhang. Denna avhandling undersöker dessa modellers förmåga att förstå och effektivt svara på äldres vårdbehov. För att utvärdera deras prestanda utvecklades ett ramverk bestående av specifikt utformade medicinska situationer som simulerar verkliga interaktioner, strategier för att framkalla relevanta svar från modellerna och en omfattande användarutvärdering för att bedöma både teknisk prestanda och kontextuell förståelse. Analysen visar att även om LLMs såsom GPT-4 och Gemini visar på hög teknisk prestationsförmåga, är dess kontextuella förmåga mer begränsad, särskilt när det gäller personalisering och hantering av komplexa, empatidrivna interaktioner. Vid enklare uppgifter visar dessa modeller på en lämplig responsivitet, men de utmanas vid mer komplexa scenarier som kräver djup medicinsk resonemang och personlig kommunikation. Trots dessa utmaningar belyser denna forskning potentialen hos LLMs att väsentligt förbättra vårdleveransen för äldre genom att tillhandahålla aktuell och relevant medicinsk information. Däremot krävs ytterligare utveckling för att verkligen möjliggöra en effektiv implementering, vilket inkluderar att förbättra modellernas förmåga att delta i en meningsfull dialog och förstå de nyanserade behoven hos äldre patienter. Resultaten från denna avhandling understryker nödvändigheten av att aktivt involvera äldre individer i utvecklingen av AI-teknologier, för att säkerställa att dessa modeller är skräddarsydda för deras specifika behov. Detta inkluderar ett fokus på att förbättra den kontextuella och demografiska medvetenheten hos AI-system. Framtida insatser bör inriktas på att förbättra dessa modeller genom att integrera användarfeedback från äldre populationer och tillämpa principer för användarcentrerad design för att förbättra tillgänglighet och användbarhet. Sådana förbättringar kommer att bättre stödja de mångsidiga behoven hos äldre i vårdsammanhang, förbättra vårdleveransen för både patienter och läkare samtidigt som den väsentliga mänskliga kontakten i medicinska interaktioner bibehålls.
|
687 |
Evaluating Artificial Intelligence in Dental Radiography / Utvärdering av artificiell intelligens inom tandradiografiBaza, Rabi January 2024 (has links)
The integration of Artificial Intelligence (AI) in dental radiography not only presents an opportunity but also holds immense potential to enhance diagnostic accuracy and efficiency. This study addresses the exciting challenge of leveraging AI, specifically a generative pre-trained transformer model, to interpret dental panoramic X-rays, a task traditionally reliant on human expertise. The central purpose of the study is to evaluate the diagnostic capabilities of this AI model compared to professional dental evaluations, focusing on its accuracy and consistency, thereby paving the way for a promising future in dental diagnostics. The research involved a sample of 35 dental panoramic X-rays obtained from Flexident AB, anonymized and annotated by a panel of dental professionals. The study was conducted in two stages: Stage One tested the AI model in three different methods: 1- without any annotations, 2- with numbered teeth, and 3- with colored circles highlighting areas of interest. Stage Two involved training a specialized GPT model with domain-specific knowledge. Key findings indicate that the AI model, when provided with detailed visual annotations, achieved diagnostic accuracy comparable to that of dental professionals, as statistical analysis showed no significant differences between the golden standard (dentist group) and the visually annotated group (P>0.05). However, the model struggled with unannotated images, highlighting the importance of structured input. The research underscores the potential of language-based AI in medical imaging while emphasizing the need for detailed input to optimize performance. This study is pioneering in applying a generative pre-trained transformer model for dental diagnostics, opening new avenues for AI integration in healthcare. / Integrationen av artificiell intelligens (AI) inom tandradiografi innebär inte bara en möjlighet utan har också en enorm potential att förbättra diagnostisk noggrannhet och effektivitet. Denna studie tar upp den spännande utmaningen att utnyttja AI, specifikt en generativ förtränad transformer-modell, för att tolka panoramaröntgenbilder av tänder, en uppgift som traditionellt är beroende av mänsklig expertis. Studiens centrala syfte är att utvärdera de diagnostiska förmågorna hos denna AI-modell jämfört med professionella tandläkarbedömningar, med fokus på dess noggrannhet och konsekvens, vilket banar väg för en lovande framtid inom tanddiagnostik. Forskningen omfattade ett urval av 35 panoramaröntgenbilder av tänder erhållna från Flexident AB, anonymiserade och annoterade av en panel av tandläkare. Studien genomfördes i två steg: Steg ett testade AI-modellen på tre olika sätt: 1- utan några annoteringar, 2- med numrerade tänder och 3- med färgade cirklar som markerade intressanta områden. Steg två involverade träning av en specialiserad GPT-modell med domänspecifik kunskap. Nyckelresultat visar att AI-modellen, när den tillhandahölls detaljerade visuella annotationer, uppnådde en diagnostisk noggrannhet jämförbar med professionella tandläkare, då statistisk analys visade inga signifikanta skillnader mellan guldstandarden (tandläkargruppen) och den visuellt annoterade gruppen (P>0,05). Modellen hade dock svårigheter med icke-annoterade bilder, vilket understryker vikten av strukturerad inmatning. Forskningen betonar potentialen hos språkbaserad AI inom medicinsk avbildning och behovet av detaljerad inmatning för att optimera prestanda. Denna studie är banbrytande i sin tillämpning av en generativ förtränad transformer-modell för tanddiagnostik, vilket öppnar nya möjligheter för AI-integrering inom sjukvården.
|
688 |
AI Pinpoints Sustainability Priorities where Surveys Can’t : Towards Sustainable Public Procurement with Unsupervised Text Classification / AI hittar hållbarhetsprioriteringar där enkäter går bet : Mot hållbara offentliga upphandlingar med oövervakad textklassificeringNordstrand, Mattias January 2024 (has links)
There are many sustainability issues related to products, services, and business processes. For example, the production, usage, and disposal of IT equipment all impact sustainability. Therefore, buying more sustainable IT equipment can make a difference. More sustainable IT equipment can be acquired by selecting IT equipment with sustainability certification, such as TCO Certified. TCO Certified makes sustainable purchasing easier, which is useful in public procurement. Public procurement is complex to guarantee objectivity and transparency. Transparency in public procurement also means many public procurement documents are available, which can be analyzed. We hypothesized that the sustainability focuses in these public procurement documents (what the text is about) reflect the sustainability priorities of professional buyers (in their minds, which is indirectly observable). With this link, we investigated differences in sustainability priorities by using a machine learning model for predicting sustainability focuses in public procurement documents. By using a large language model, we automatically extracted sustainability focuses in procurement documents from the e-procurement platform TED. Thereby, we measured the sustainability focus of countries all over the globe. Through interviews with experts, we saw several indications that the used method is a good way of pinpointing sustainability priorities. We provide maps of sustainability focuses around the world (in section 4.12). Moreover, we analyze the results in-depth. One interesting finding includes indications that countries generally do not prioritize an issue more if the issue is of a larger concern. Counterintuitively, countries prioritize an issue more if the issue is of lesser concern. One example of this is circularity focus, which we note is generally less in countries with worse waste management. To our knowledge, analyzing sustainability focuses in procurement documents has not been done on this scale before. We believe these novel results can lead the way for a better understanding of sustainability priorities around the world. / Det finns många hållbarhetsproblem relaterade till produkter, tjänster och affärsprocesser. Till exempel finns det en hållbarhetspåverkan i produktion, användning och avfallshantering av IT-utrustning. Inköp av hållbarare IT-utrustning kan därför göra skillnad. Mer hållbar IT-utrustning kan erhållas genom att välja hållbarhetscertifierad IT-utrustning som exempelvis TCO Certified. TCO Certified gör hållbara inköp enklare och är särskilt användbart inom offentlig upphandling. Offentlig upphandling är komplext i objektivitet- och transparenssyfte. Transparens inom offentlig upphandling innebär också att många offentliga upphandlingsdokument finns tillgängliga och kan analyseras. Vi antog att hållbarhetsfokusen inuti dessa offentliga upphandlings-dokument (vad texten handlar om) hänger ihop med de professionella inköparnas hållbarhetsprioriteringar (deras tankar/känslor/intressen). Med denna länk undersökte vi skillnader i hållbarhetsprioriteringar genom att använda en maskininlärningsmodell för att uppskatta hållbarhetsfokus i offentliga upphandlingsdokument. Med en storskalig språkmodell extraherade vi automatiskt hållbarhetsfokus i dokument från Tenders Electronics Daily. Därigenom mätte vi hållbarhetsfokus för länder över hela världen. Genom intervjuer med experter såg vi flera indikationer på att den använda metoden är ett bra sätt att uppskatta hållbarhetsprioriteringar på. Vi presenterar kartor över hållbarhetsfokus runt om i världen (i avsnitt 4.12). Dessutom analyserar vi resultaten på djupet. En intressant upptäckt är att länder generellt inte prioriterar ett problem mer om problemet är allvarligare i det landet utan snarare tvärtom. Länder prioriterar ett problem mer om problemet är av lägre allvarlighetsgrad i det landet. Till exempel ser vi att cirkularitetsfokuset i offentliga upphandlingar är mindre i länder med sämre avfallshantering. Att analysera hållbarhetsfokus i upphandlingsdokument har inte tidigare gjorts på denna skala såvitt vi känner till. Vi tror våra resultat kan bidra till en bättre förståelse av hållbarhetsprioriteringar runt om i världen.
|
689 |
KERMIT: Knowledge Extractive and Reasoning Model usIng TransformersHameed, Abed Alkarim, Mäntyniemi, Kevin January 2024 (has links)
In the rapidly advancing field of artificial intelligence, Large Language Models (LLMs) like GPT-3, GPT-4, and Gemini have revolutionized sectors by automating complex tasks. Despite their advancements, LLMs and more noticeably smaller language models (SLMs) still face challenges, such as generating unfounded content "hallucinations." This project aims to enhance SLMs for broader accessibility without extensive computational infrastructure. By supervised fine-tuning of smaller models with new datasets, SQUAD-ei and SQUAD-GPT, the resulting model, KERMIT-7B, achieved superior performance in TYDIQA-GoldP, demonstrating improved information extraction while retaining generative quality. / Inom det snabbt växande området artificiell intelligens har stora språkmodeller (LLM) som GPT-3, GPT-4 och Gemini revolutionerat sektorer genom att automatisera komplexa uppgifter. Trots sina framsteg stårdessa modeller, framför allt mindre språkmodeller (SLMs) fortfarande inför utmaningar, till exempel attgenerera ogrundat innehåll "hallucinationer". Denna studie syftar till att förbättra SLMs för bredare till-gänglighet utan krävande infrastruktur. Genom supervised fine-tuning av mindre modeller med nya data-set, SQUAD-ei och SQUAD-GPT, uppnådde den resulterande modellen, KERMIT-7B, överlägsen pre-standa i TYDIQA-GoldP, vilket visar förbättrad informationsutvinning samtidigt som den generativa kva-liteten bibehålls.
|
690 |
Perspectives on Implementation of Digital Tools and Technologies within Construction Safety Management : An Interview Study / Perspektiv på implementering av digitala verktyg och teknologier inom byggarbetsmiljö och säkerhet : En intervjustudieMatti, Mara, Zahid, Md Shan E Jahan Anwar January 2024 (has links)
The construction sector is considered one of the most hazardous industries in the world. The reason for this is due to several factors. Earlier literature shows that a construction site can be dynamic as different types of objects or people are in constant motion. Difficulties arise when trying to predict safety hazards on-site. Collisions between objects or falling from a height are examples of hazardous situations that can occur onconstruction sites. In a construction environment, there are also static risks related to, for instance, dust, unsafe substances, and chemicals from paints, fuels, and solvents. Simultaneously, society is in an era of digitalization and innovation with, among other things, artificial intelligence (AI), drones, building information modeling (BIM), virtual reality (VR), augmented reality (AR), digital twins, internet of things (IoT), automation, robotics and sensor-technologies on the topic. These tools have the potential to improvecurrent safety management methods. At the same time, the attitudes towards the construction industry are associated with traditional working methods where digitalization and new technology are perceived to be moving at a slow pace.Technologies and digital methods for securing construction sites have mainly been investigated in controlled research settings and test projects. The research gap lies in the fact that there is not enough knowledge regarding the implementation of technologies and digital methods in more authentic construction site environments. The study aims to identify different technologies and digital tools within construction safetymanagement in the Swedish context. The purpose of this thesis is to provide a general understanding of the topic and to broaden the perspective on existing attitudes and behaviors toward digital tools and technologieswithin construction safety management. In this thesis, the focus is on construction sites during the production phase with their respective personnel. Other parts of the construction project process, such as the planning and design stages, are taken into account by exploring how these stages can contribute to safer constructionsites. To obtain empirical material, methods based on qualitative research have been suitable where semi-structured interviews and fieldwork have been conducted. The Technology Acceptance Model (TAM) has been used as a theoretical framework for the results and a thematic analysis has been used as a data analysis approach.The thesis has examined how construction sites can become safer with the help of digitalization and new technology. Attitudes and behaviors towards the implementation of digital tools and technology have also been investigated. The results indicate that there are different attitudes towards the implementation of digital tools and technologies concerning safety management in both the design and planning phase and the production phase. To summarize the results, many of the interview participants were positive towards using digital tools and technologies for safety purposes. However, they were also skeptical about the success of implementation due to factors such as cost, risks, traditional methods, and attitudes and behaviors. The attitudes and behaviors, in turn, affect the actual usage of construction safety management implementations.In this thesis, we hope to broaden the perspective on how digital tools and technology could contribute to safer construction sites and the attitudes and behaviors towards the matter. / Byggsektorn anses vara en av de mest riskfyllda branscherna i världen. Anledningen till detta beror på flera faktorer. Tidigare studier visar att en bygg- och anläggningsplats kan vara dynamisk då olika typer av föremål eller människor är i ständig rörelse. Svårigheter kan därmed uppstå i arbetet med att förutse säkerhetsrisker på plats. Kollisioner mellan föremål och fall från höjder är exempel på olyckor på byggarbetsplatser. I en bygg – och anläggningsmiljö finns det också statiska risker relaterade till exempelvisdamm, farliga ämnen och kemikalier från färger, bränslen och lösningsmedel. Samtidigt befinner sig samhället i en era av digitalisering och innovation med bland annat artificiell intelligens (AI), drönare, building information modeling (BIM), virtual reality (VR), augmented reality (AR), digitala tvillingar, internet of things (IoT), automation, robotik och sensorteknik, vilka uppmärksammas på bred front. Dessahjälpmedel har potential att driva utvecklingen av arbetsmiljö - och säkerhetsarbetet inom byggbranschen. Samtidigt förknippas attityderna till byggbranschen med traditionella arbetssätt där digitalisering och ny teknik upplevs gå långsamt.Idag finns det många tekniker och digitala metoder för att säkra bygg- och anläggningsplatser. Detta har dock främst undersökts i kontrollerade forskningsmiljöer och testprojekt. Forskningsgapet ligger i det faktum att det inte finns tillräckligt med kunskap om implementering av teknik och digitala metoder i mer autentiskabygg- och anläggningsplatser. Studien syftar till att identifiera olika tekniker och digitala verktyg inom byggarbetsmiljö och säkerhet i den svenska kontexten. Syftet med denna uppsats är att ge en allmän förståelse för ämnet och att bredda perspektivet på befintliga attityder och beteenden gentemot digitala verktyg och tekniker inom byggarbetsmiljö och säkerhet. I detta examensarbete ligger fokus på byggarbetsplatser under produktionsfasen. Andra delar av byggprojektprocessen, såsom planerings- ochprojekteringsfaserna, beaktas genom att undersöka hur dessa skeden kan bidra till säkrare byggarbetsplatser. För att få fram empiriskt material har metoder baserade på kvalitativa undersökningar varit lämpliga där semistrukturerade intervjuer och fältarbete har genomförts. Technology acceptance model (TAM) har använts som ett teoretiskt ramverk för resultaten och tematisk analys har använts för att redogöra för empirin.I denna studie har det undersökts hur bygg – och anläggningsplatser kan bli säkrare med hjälp av digitalisering och ny teknik. Attityder och beteenden till implementering av digitala verktyg och teknik har också undersökts. Resultaten tyder på att det finns olika attityder till implementering av digitala verktyg och tekniker gällande byggarbetsmiljö och säkerhet i såväl planering- och projekteringsfasen som produktionsfasen. Sammanfattningsvis kan sägas att många av intervjudeltagarna var positiva till att använda digitala verktyg och tekniker i arbetsmiljö – och säkerhetssyfte. Men de var också skeptiska till framgången med implementeringen på grund av faktorer som kostnader, risker, traditionella metoder, attityder och beteenden. Attityderna och beteendena påverkar i sin tur den faktiska användningen av nya implementeringarför arbetsmiljö och säkerhetshantering. I den här uppsatsen hoppas vi kunna bredda perspektivet på hur digitala verktyg och teknik kan bidra till säkrare byggarbetsplatser och attityder och beteenden i frågan.
|
Page generated in 0.045 seconds