• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 28
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 72
  • 22
  • 20
  • 13
  • 12
  • 11
  • 10
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Avaliação do processo de osmose inversa para concentração de suco de laranja e simulação da recuperação do etil butirato através da pervaporação com predição de propriedades / Evaluation of reverse osmosis process for concentrating orange juice and simulation of ethyl butyrate, recovery through pervaporation with prediction of properties

Araujo, Wilson Andalecio de 08 March 2007 (has links)
Orientadores: Maria Regina Wolf Maciel, Mario Eusebio Torres Alvarez / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-11T16:17:30Z (GMT). No. of bitstreams: 1 Araujo_WilsonAndaleciode_D.pdf: 2993508 bytes, checksum: 29abb03a65a80f6c9835367e0cb49d50 (MD5) Previous issue date: 2008 / Resumo: Os processos de separação com membranas (PSM) têm sido considerados como alternativa a processos clássicos de separação. Esta é uma área de estudo que apresenta uma forte interdisciplinaridade. Há um crescente interesse nestes processos para diversas aplicações como, por exemplo, tratamento de efluentes industriais, desalinização de águas, purificação e concentração de correntes da indústria alimentícia. A separação, em geral, não envolve mudança de fase, o que significa economia no consumo de energia e operações a temperaturas moderadas. Na tecnologia de separação com membranas, os componentes das misturas líquidas ou gasosas são separados ao permearem de forma seletiva através de uma membrana. As membranas podem ser poliméricas ou cerâmicas. A corrente de alimentação é dividida em duas correntes de saída: a que permeou através da membrana (permeado) e a corrente concentrada retida (¿retentate¿). Estes processos têm sido aplicados no processamento de bebidas, sucos, e aromas. Neste trabalho, dois PSM foram estudados, a Osmose Inversa (OI) e a Pervaporação (PV). Experimentos em escala piloto foram realizados empregando-se o processo de OI (membrana de poliamida) para a concentração de suco de laranja a 20°Brix. Avaliou-se a retenção de compostos de voláteis (acetaldeído, metanol e etanol) monitorando-se as correntes de alimentação e permeado. Os resultados de retenção de aromas obtidos não foram satisfatórios. A membrana apresentou baixas retenções para os voláteis monitorados na temperatura usada para realização dos experimentos. Na segunda etapa do trabalho, o processo de PV foi avaliado para recuperação de um importante éster do suco de laranja, o etil butirato. O software PERVAP, um simulador Fortran essencialmente preditivo, foi empregado no estudo de desempenho do processo para duas membranas, polidimetilsiloxano (PDMS) e polioctilmetilsiloxano (POMS). Realizou-se a predição de propriedades de membranas poliméricas para incremento da capacidade preditiva do simulador. Foram empregados métodos de contribuição de grupos para predição das propriedades dos polímeros. Os dados de viscosidade preditos para o POMS viabilizaram a realização de cálculos para obtenção de parâmetros requeridos para operação do simulador. A abordagem proposta proporcionou maior versatilidade ao simulador / Abstract: The membrane separation processes (MSP) have been considered as alternative for conventional separation processes. In this research area a strong interdisciplinarity is observed. There is an increasing of interest for these processes considering many aplications (e.g., industrial wastewater treatment, water desalination, purification and concentration of food industry streams). The separation usually does not requires phase change, which means energy savings and moderate temperatures. A membrane separation system separates an inlet stream into two effluent streams known as the permeate and the retentate. The permeate is the portion of the fluid that has passed through the membrane. Whereas the retentate stream contains the constituents that have been rejected by the membrane. The membrane can be polymeric or ceramic. These processes have been applied for processing beverages, juices and aromas. In this work, two of these processes were studied, Reverse Osmosis (RO) and Pervaporation (PV). Pilot scale experiments were accomplished using RO (poliamide membrane) for concentrating single strength orange juice at 20ºBrix. The retention of volatile compounds (acetaldehyde, methanol and ethanol) was evaluated by monitoring feed and permeate streams. The retention results obtained were unsatisfactory. The membrane presented low retention for monitored volatiles under studied temperature conditions. In the second stage of this work, the PV process was evaluated for recovering an important ester of orange juice, the ethyl butyrate. The PERVAP software, an essentially predictive Fortran simulator, was used for evaluating process performance considering two membranes, polydimethylsiloxane (PDMS) and polyoctylmethylsiloxane (POMS). It was accomplished the prediction of properties for polymeric membranes targeting the software predictivity improvement. Viscosity data predicted for POMS was crucial for calculating parameters required by simulator. The predictive approach proposed improved the software versatility / Doutorado / Desenvolvimento de Processos Químicos / Doutor em Engenharia Química
62

Avaliação de polimorfismos em genes de metabolismo do etanol e gene de reparo do DNA em pacientes portadores de câncer de boca / Evaluation of polymorphisms in genes of ethanol metabolism and DNA repair gene in patients with oral cancer

Jean Tetsuo Takamori 30 August 2012 (has links)
O carcinoma epidermóide é uma neoplasia que pode ter origem do revestimento mucoso de vários sítios das vias aerodigestivas superiores, sendo a língua o sítio primário com maior incidência. Entre os fatores de risco para a doença estão a idade, as mutações genômicas, o hábito tabagista e principalmente o consumo de etanol. O etanol é considerado um agente cocarcinogênico no processo de desenvolvimento do câncer de boca. Por outro lado, o acetaldeído, subproduto da oxidação do etanol, é tóxico e participa diretamente na carcinogênese. Assim, polimorfismos genéticos que alteram a oxidação de etanol para acetaldeído promovendo seu acúmulo podem alterar o risco de câncer oral. Os resultados sugerem que pacientes portadores do polimorfismo do gene ADH1C Ile350Val possuem maior risco de tornarem-se etilistas crônicos (OR=2,0199), mas o risco de desenvolverem câncer não é alterado quando comparado aos não portadores. Já os portadores dos polimorfismos nos genes ADH1B Arg47His (OR=0,3445), CY2E1 (ins) (OR=0,3261) e ALDH2 (GA) (OR=0,4811) apresentaram menores riscos de desenvolverem câncer oral, mas estes polimorfismos não estavam associados ao risco de tornarem-se etilistas crônicos. Observou-se também uma possível interação entre a baixa atividade da enzima ALDH2 e a expressão do gene CYP2E1 como um fator protetor no desenvolvimento do câncer de boca. Entretanto, há necessidade de mais estudos para comprovar esses achados / Squamous cell carcinoma is a neoplasm that may originate from the mucosal tissue from various sites of the upper aerodigestive tract, the tongue being the primary site with the highest incidence. Among the risk factors for the disease are age, genomic mutations, smoking habit, and especially the consumption of ethanol. Ethanol is considered a co-carcinogenic agent in the development of oral cancer. Moreover, acetaldehyde, ethanol oxidation product, is toxic and is directly involved in carcinogenesis. Thus, genetic polymorphisms that alter the oxidation of ethanol to acetaldehyde by promoting its accumulation can alter the risk of oral cancer. The results suggest that patients with the ADH1C Ile350Val polymorphism have increased risk of becoming chronic drinkers (OR = 2.0199), but the risk of developing cancer is not changed when compared to non carriers. Since the carriers of polymorphisms in genes ADH1B Arg47His (OR = 0.3445), CY2E1 (ins) (OR =0.3261) and ALDH2 (GA) (OR = 0.4811) lower risk of developing oral cancer, but these polymorphisms were not associated with risk of becoming chronic drinkers .There was also a possible interaction between the low activity of the enzymeALDH2 and CYP2E1 gene expression as a protective factor in the development of oral cancer. However, we need more studies to confirm these findings
63

Étude cinétique de la dégradation photocatalytique de composés organiques volatils (COV) et modélisation par une approche numérique de la mécanique des fluides / Kinetic study of VOC photocatalytic remediation and modelling with a computational fluid dynamics approach

Queffeulou, Amélie 05 November 2009 (has links)
Les COV présents en air intérieur sont une source d’inconfort pour les occupants et peuvent être nocifs pour la santé. La photocatalyse apparaît comme un procédé prometteur pour l’abattement de ces polluants. ArcelorMittal Liège Research développe à cet effet des films minces de TiOB2B déposé sur acier qui peuvent être intégrés dans des systèmes de purification d’air. Les objectifs de cette recherche sont, d’une part, identifier les paramètres influençant la dégradation photocatalytique de ces COV avec ce type de catalyseur et d’autre part, valider la possibilité de prédire les performances d’un réacteur photocatalytique par un modèle couplant l’écoulement et la réaction photocatalytique. Pour réaliser l’étude cinétique à des teneurs de quelques ppm, un dispositif expérimental adapté a été conçu ; il utilise un réacteur annulaire continu. L’acétaldéhyde a été choisi comme polluant modèle. La conversion dépend de la concentration en polluant, du taux d’humidité, de la température, de l’intensité lumineuse en UV et de la présence d’autres COV. La réaction est modélisée avec un modèle théorique surfacique de la réaction photocatalytique. Afin de prédire les performances d’un réacteur photocatalytique utilisant des films minces de TiOB2B, une méthodologie consistant à coupler l’écoulement et la réaction photocatalytique a été développée et validée. La distribution spatio-temporelle de la concentration en polluant est alors déterminée par une approche de mécanique des fluides numériques. La comparaison des résultats expérimentaux et des simulations obtenus avec un réacteur photocatalytique de laboratoire et un autre à l’échelle semi-pilote est très satisfaisante / VOCs are a source of discomfort for occupants and can have harmful effects on health. Photocatalysis is a promising process to remove these compounds. ArcelorMittal Liège Research has indeed developed TiOB2 Bthin film coated on steel which can be easily integrated into purification air systems. Objectives of this research are firstly, identifying parameters which influence the photocatalytic degradation of these VOCs using of such catalyst. Secondly, validate the possibility to predict performances of the photocatalytic reactor by combining fluid flow and photocatalytic reaction. An experimental set-up including an annular reactor has been designed and realized in order to conduct kinetic studies. Acetaldehyde has been chosen as a pollutant model and studied mainly with concentrations of few ppm ranges. Its conversion yield depends on pollutant concentration, relative humidity, temperature, UV light intensity and presence of others VOCs. Based on a theoretical surface model of the photocatalytic reaction, and using experimental data, this reaction is modelled. In order to predict performances of the photocatalytic reactor packed thin film of TiOB2B, a methodology which consists to combine fluid flow and photocatalytic reaction has been developed and validated. Space-time distribution of pollutant concentration is then determined with a computational fluid dynamics approach. Comparison between experimental data and numerical simulations obtained with a photocatalytic reactor at the laboratory scale and another one in semi-pilot scale are well satisfactory
64

Metabolimos radicalares do etanol e alquilação de ácidos nucleicos estudos in vitro e in vivo / Ethanol radicals and nucleic acid alkylation studies in vitro and in vivo studies

Lia Sumie Nakao 31 January 2002 (has links)
O consumo de álcool vem sendo associado a um aumento do risco de câncer e a uma situação de estresse oxidativo. Os metabólitos responsáveis por tais processos permanecem em discussão. Neste trabalho, caracterizamos novos metabólitos radicalares do etanol e examinamos suas interações com ácidos nucléicos. Primeiramente, demonstramos que os radicais 1-hidroxietila e 2-hidroxietila produzidos durante a oxidação do etanol por sistemas Fenton alquilam DNA e RNA in vitro produzindo os adutos 8-(1-HE)Gua e 8-(2-HE)Gua, respectivamente. Esses adutos foram sintetizados e caracterizados quimicamente. Também, demonstramos que acetaldeído, o principal metabólito do etanol, é oxidado por sistemas Fenton, peroxinitrito, xantina oxidase, partículas submitocondriais e ratos a radicais acetila e metila. Esses radicais foram caracterizados e seus mecanismos de formação elucidados, pelo menos in vitro. A possibilidade do radical 1-hidroxietila alquilar ácidos nucléicos in vivo foi também examinada. Inesperadamente, o aduto 8-(1-HE)Gua foi detectado em RNA e DNA do fígado de ratos controle e seus níveis não foram significativamente alterados após administração aguda de etanol. Esses resultados sugerem que os radicais 1-hidroxietila, acetila e metila são importantes metabólitos do etanol in vivo mas atacam preferencialmente outras biomoléculas que não ácidos nucléicos. / Alcohol consumption has been associated with increased cancer risk and an oxidative stress condition. Ethanol metabolites responsible for these processes remain debatable. Here, we characterized novel radical metabolites of ethanol and examined their interactions with nucleic acids. First, we demonstrated that the 1-hydroxyethyl and 2-hydroxyethyl radical produced from ethanol oxidation by Fenton systems alkylated DNA and RNA in vitro to produce 8-(1HE)Gua and 8-(2-HE)Gua, respectively. Both adducts were synthesized and structurally characterized. Next, we demonstrated that acetaldehyde, the main ethanol metabolite, is oxidized by Fenton systems, peroxynitrite, xanthine oxidase, submitochondrial particles and whole rats to acetyl and methyl radicals. These radicals were characterized and their production mechanisms in vitro elucidated. The possibility of the 1-hydroxyethyl radical alkylating nucleic acids in vivo was also examined. Unexpectedly, the adduct 8-(1-HE)Gua was detected in RNA and DNA from liver of control rats and their levels were not increased by acute ethanol treatment. Overall, the results suggest that the radicals 1-hydroxyethyl, acetyl and methyl are important ethanol metabolites in vivo but they preferentially attack biomolecules other than nucleic acids.
65

Antimony and acetaldehyde migration from Nigerian and British PET bottles into water and soft drinks under typical use conditions. Concentration of migrants and some trace elements in polyethylene terephthalate and in bottled contents.

Tukur, Aminu January 2011 (has links)
Polyethylene terephthalate (PET) is an excellent material for bottling water, beverages, edible oils and other liquids because it is light, tough and transparent. PET bottles are also extensively reused for storage of drinking water, beverages and other liquids and for solar disinfection of microbiologically unsafe drinking water in the tropics. In spite of the usefulness of PET bottles earlier works have reported leaching of antimony and acetaldehyde from the bottle matrix into the liquid contents. Both antimony trioxide and acetaldehyde belongs to Group 2B (possible carcinogens) in the International Agency for Research on Cancer (IARC) carcinogen classification. Additionally acetaldehyde associated with alcoholic beverages (derived from alcoholic beverage and formed endogenously) has recently been upgraded to IARC Group 1 carcinogen (carcinogenic to humans). The research aims to assess the pattern and extent of antimony and acetaldehyde migration from British and Nigerian polyethylene terephthalate bottles into bottle contents under typical use and reuse conditions. The research compares the assessed extents of migration with the current regulations to determine whether the maximum acceptable levels of antimony and acetaldehyde are being exceeded and whether current regulations might need to be reassessed. To achieve these goals the pattern and extent of PET bottle use and reuse in Britain and Nigeria were appraised through survey. The survey revealed that new bottles with contents are typically stored prior to use for periods ranging between one and 7 days, with Nigerians storing for longer periods than British respondents. However storage of up to one year was reported. The extent of bottle reuse was high and similar for the two countries. Nevertheless Nigerian respondents reuse bottles for longer periods than British respondents. The survey findings together with relevant literature were used to design laboratory experiments that assessed the extent of antimony and acetaldehyde migration from PET bottles into water/beverages. A total of 82 brands of bottled water and soft drinks in plastic and glass bottles and in cartons were collected. A few samples from Nigeria in plastic pouches were collected. Materials used in bottling including glass and plastic bottle materials, metal and plastic bottle cap materials and plastic cap lining materials were collected. All samples were collected in supermarkets and shops in Britain and Nigeria except drinking water from taps which was collected in Britain only. Some bottles were aged for the purpose of studying the impact of bottle aging on chemical migration. Other bottles were stored with their contents to study the impact of long term storage of bottle contents on chemical migration. Energy dispersive X-ray spectrometry (EDX) and Raman spectroscopy were used to characterise PET bottle material and other materials associated with water and soft drink bottling. Antimony and other trace metals in water and soft drinks were determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Antimony content of PET and other plastics was determined by microwave digestion and ICP-MS. Acetaldehyde content of water and soft drinks and PET were determined using headspace gas chromatography with flame ionisation detection (GC-FID). Accuracy and precision for determination of antimony and other trace elements in bottle materials and bottle contents were good as recoveries were around 100% and coefficients of variation were less than 15% for all analysis types. Accuracy and precision for determination of acetaldehyde in bottle materials and bottle contents were also good as recoveries were around 100% and coefficients of variation were less than 15% for all analysis types. Impact of long term storage, elevated temperatures, bottle thickness, carbonation, bottle aging and bottle size on migration of antimony and acetaldehyde were also assessed. All plastic bottle materials analysed were found to be PET. Bottle cap materials were either polyethylene or polypropylene. All plastic cap lining materials from Britain and some from Nigeria were found to be ethylene vinyl acetate/polypropylene copolymer. Plastic cap lining materials from some Nigerian soft drinks were identified as polyvinyl chloride. Glass bottle materials analysed were found to be soda-lime glass. Metal bottle caps were identified as tinplate, tin-free-steel coated with chromium or aluminium coated with chromium. The antimony concentration in 32 PET bottle materials from Britain and Nigeria were similar and ranged between 177 and 310 mg/kg with an average of 250±30 mg/kg. The concentration agrees well with the industry reported concentration of between 150 and 350 mg/kg. The concentration of residual acetaldehyde in 25 fresh PET bottle materials from Britain and Nigeria ranged between 0.95 and 12.52 µg/g. The average concentration in British and Nigerian soft drinks PET materials are 4.76 and 2.17µg/g respectively. Concentration of residual acetaldehyde was higher in soft drinks and still water PET materials than in sparkling water materials. The concentration of residual acetaldehyde decreases as the bottle wall material becomes older. Also the thinner the bottle walls the lower the concentration of residual acetaldehyde. Antimony concentration in 47 freshly purchased British bottled water and soft drinks ranged between 0.03 and 6.61µg/L with only one sample going above the EU acceptable limit. Concentrations of other trace elements measured were low except titanium which was detected at part per million levels in soft drinks. Lead content of a Nigerian soft drink in glass bottle stored for 2 months was above the EU acceptable limit for lead. At realistic temperatures of 40 and 60°C antimony concentration in the water remained below the EU acceptable limit even after 48 hours of exposure but the concentration exceeded the limit for most exposures at 80°C. Concentration of antimony in some Nigerian bottled water and soft drinks was above the EU limit after 11 months of storage at room temperature. Aged bottles leach lower amount of antimony than new bottles. Similarly larger bottles leach lower amount of antimony than smaller bottles. The average acetaldehyde concentrations found in British fruit juices, carbonated soft drinks, sparkling water and still water were 5113, 1458, 22 and 8 µg/L respectively. Acetaldehyde was not detected in water bottled in glass. The concentration of acetaldehyde in five fruit juice samples in PET bottles and carton was beyond the EU specific migration limit (SML) of 6mg/kg. Also the tolerable daily intake of acetaldehyde could be exceeded as a result of intake of some soft drinks and fruit juices. Acetaldehyde content in soft drinks increase with storage but the increase cannot be accounted for by the residual acetaldehyde in PET. Acetaldehyde was found to be outgassing from some bottles. It was also found to be capable of migrating from soft drinks into bottle wall. Without replenishment the concentration of acetaldehyde in solution decreases with time. The use of PVC cap lining in Nigeria as found in this study is a cause for concern as PVC is associated with health risk issues. The study recommends actions to ensure that antimony in fruit juices and other bottled products remain within the regulatory standard from bottling to consumption for the purpose of safeguarding the health of consumers. Glass used in bottling should be well scrutinized to ensure that it does not contain high levels of lead or other chemical substances that can cause harm to consumers through migration into contents. PET bottles can safely be used for solar water disinfection without the risk of antimony intake at concentrations above safe limits as water temperature achievable as the result of the technique doesn¿t go beyond 60°C. Also aged bottles are safer to use than new bottles because their chemical leaching was found to be lower than that of new bottles. This study recommends the reassessment of the absence of international guidelines for acetaldehyde in water and foods. The study also recommends that the amount of acetaldehyde that can be added to soft drinks as flavouring agent should be below the specific migration limit (SML) for migration of acetaldehyde from PET bottle into bottle contents. This is essential since the SML was designed to ensure that exposure to acetaldehyde, as a result of intake of bottled water and soft drinks in PET bottles, is below the tolerable daily intake (TDI) for acetaldehyde. As antimony was reported to go beyond the safe limits in some Nigerian bottled water and soft drinks after 11 months of storage this study discourages the use of bottle contents stored for a very long time. / Commonwealth Scholarship Commission in the United Kingdom
66

Terahertz Molecular Spectroscopy as a Tool for Analytical Probing of Cellular Metabolism

Paul, Mitchell Cameron 30 August 2017 (has links)
No description available.
67

Single-photon multiple ionisation of atoms and molecules investigated by coincidence spectroscopy : Site-specific effects in acetaldehyde and carbon dioxide

Zagorodskikh, Sergey January 2016 (has links)
In this thesis, multiple ionisation processes of free atoms and molecules upon single photon absorption are studied by means of a versatile multi-electron-ion coincidence spectroscopy method based on a magnetic bottle, primarily in combination with synchrotron radiation. The latter offered the possibility to access not only valence but also core levels, revealing processes, which promote the target systems into different charge states. One study focuses on double and triple ionisation processes of acetaldehyde (ethanal) in the valence region as well as single and double Auger decay of initial 1s core vacancies. The latter are investigated site-selectively for the two chemically different carbon atoms of acetaldehyde, scrutinising theoretical predictions specifically made for that system. A related study concentrates on core-valence double ionisation spectra of acetaldehyde, which have been investigated in the light of a previously established empirical model, and which have been used as test cases for analysing this kind of spectra by means of quantum chemical electronic structure methods of increasing sophistication. A third study investigates site-specific fragmentation upon 1s photoionisation of acetaldehyde using a magnetic bottle augmented with an in-line ion time-of-flight mass spectrometer. Experimental evidence is presented that bond rupture occurs with highest probability in the vicinity of the initial charge localisation and possible mechanisms are discussed. A site-specificity parameter P∆ is introduced to show that differences in fragmentation behavior between initial ionisations at chemically different carbon atoms probably persist even for identical internal energy contents in the nascent dications. In another study where both electrons and ions from Auger decay of core-excited and core-ionised states of CO2 are detected in coincidence, it is confirmed that O2+ is formed specifically in Auger decay from the C1s → π* and O1s → π* resonances, suggesting a decisive role of the π* orbital in the molecular rearrangement. Also, the molecular rearrangement is found to occur by bending in the resonant states, and O2+ is produced by both single and double Auger decay. A new version of the multi-electron-ion coincidence method, where the ion time-of-flight spectrometer is mounted perpendicularly to the electron flight tube, which affects less the electron resolution and which allows for position sensitive detection of the ions, is employed in combination with tunable soft X-rays to reveal the branching ratios to final Xen+ states with 2 &lt; n &lt; 9 from pure 4d-1, 4p-1, 4s-1, 3d-1 and 3p-1 Xe+ hole states. The coincident electron spectra give information on the Auger cascade pathways. / <p>Byte av lokal vid disputation till Polhemssalen.</p>
68

Modulation par approches microbiologique et génétique de la synthèse d'acide acétique lors de la production d'éthanol sous métabolisme oxydo-réductif chez Saccharomyces cerevisiae / Modulation by microbiological and genetical approaches of the synthesis of acetic acid during the production of ethanol under oxido-reductive metabolism in Saccharomyces cerevisiae

Marc, Jillian 26 September 2013 (has links)
L’objectif de ces travaux de thèse était de rechercher un potentiel effet inhibiteur de l’acide acétique endogène sur le métabolisme oxydo réductif de Saccharomyces cerevisiae, afin d’évaluer la pertinence d’une stratégie d’amélioration des capacités de production d’éthanol par la modulation de la synthèse de cet acide. Ces travaux devaient également permettre d’approfondir la compréhension des principaux facteurs commandant la synthèse de l’acide acétique et plus largement des acides organiques. La stratégie de modulation de la synthèse d’acide acétique mise en place reposait sur des approches microbiologique et génétique, consistant en l’ajout d’acide oléique et / ou de carnitine dans le milieu de culture ainsi que la surexpression du gène CIT2 ou la suppression du gène ALD6.Cette démarche a permis de montrer que, contrairement à la version exogène, l’acide acétique endogène ne présentait pas d’effet inhibiteur du métabolisme oxydo réductif de Saccharomyces cerevisiae ou qu’il était négligeable par rapport au stress éthanol. En outre, la modulation de la production de cet acide ne semble pas être une stratégie envisageable en vue de l’amélioration des capacités de production d’éthanol de cette levure, bien qu’une corrélation ait été observée entre les titres finaux de ces deux molécules.En outre, il a été montré que l’isoforme 6 de l’acétaldéhyde déshydrogénase (Ald6p) était essentiel pour assurer la croissance cellulaire normale ainsi que les mécanismes de résistance au stress éthanol dans ces conditions de culture. Plus largement, l’interrelation entre les différents isoformes ne paraissait pas aussi flexible qu’en anaérobiose. Saccharomyces cerevisiae semblait également présenter un métabolisme flexible en réponse à une modulation de la synthèse d’acide acétique. La voie des pentoses phosphates serait ainsi capable de prendre le relais de l’Ald6p pour assurer la régénération du NADPH cytosolique, bien que le flux à travers cette voie semble avoir été limité par le ratio NADP+ / NADPH. Enfin, les cellules paraissaient capables de réguler la synthèse de l’acétyl coA à partir d’acide acétique en réaction à une évolution des besoins anaboliques lors de la fin de la phase de croissance. Elles seraient toutefois incapables de pallier le manque d’acétyl coA suite à la suppression du gène ALD6. La modulation de la synthèse des acides pyruvique et succinique a également fait l’objet de discussions. / The aim of this work was to investigate a potential inhibitory effect of endogenous acetic acid on the oxido-reductive metabolism of Saccharomyces cerevisiae, to assess the relevance of a strategy based of the modulation of the synthesis of this acid, to improve ethanol production capacities. This work should also help to broaden the understanding of the main factors controlling the synthesis of acetic acid, and more generally organic acids. The strategy to modulate the synthesis of acetic acid was based on microbiological and genetic approaches, consisting in the addition of oleic acid and / or carnitine in the medium as well as the overexpression of the gene CIT2 or the deletion of the gene ALD6.This approach has shown that, contrary to exogenous version, endogenous acetic acid did not induce inhibitory effects on the oxido-reductive metabolism of Saccharomyces cerevisiae, or was negligible compared to stress caused by ethanol. Moreover, the modulation of the synthesis of this acid appear to be not an attractive strategy to improve ethanol production capacities of the yeast, although a correlation was observed between the end-culture titer of these two molecules.In addition, it has been shown that the isoform 6 of acetaldehyde dehydrogenase (Ald6p) was essential to ensure regular growth and mechanisms of ethanol stress resistance under these conditions of culture. More broadly, the interrelation between the different isoforms did not seem as flexible as under anaerobic conditions. Saccharomyces cerevisiae also seemed to have a flexible metabolism in response to a modulation of the synthesis of acetic acid. The pentose-phosphate way would be able to take over from Ald6p for regeneration of cytosolic NADPH, although the ratio NADP+ / NADPH seemed to lessen the flux through this pathway. Finally, the cells appeared to be able to regulate the synthesis of acetyl-CoA from acetic acid in response to changing in anabolic needs at the end of the growth phase. However, yeasts would be unable to overcome the lack of acetyl-CoA following the suppression of the gene ALD6. The modulation of the synthesis of pyruvic and succinic acids has also been discussed.
69

Genes de metabolização do álcool e o risco de câncer de cabeça e pescoço / Alcohol metabolizing genes and the risk of head and neck cancer

Garcia, Silvia Marçal Nunes 14 October 2009 (has links)
A incidência do câncer de cabeça e pescoço (CCP) vem crescendo substancialmente nos últimos anos, inclusive no Brasil. Esse aumento está em parte relacionado com o consumo de álcool e tabaco, mas a susceptibilidade genética individual também deve ser considerada. O objetivo desse trabalho foi avaliar a freqüência de polimorfismos em genes que codificam as enzimas de metabolização do álcool em pacientes com câncer de cabeça e pescoço do Hospital Heliópolis da cidade de São Paulo, comparados com um grupo de pacientes do mesmo hospital, sem diagnóstico de câncer. Foram investigados polimorfismos genéticos das enzimas álcool desidrogenase (ADH1B Arg48His, ADH1B Arg370Cys, ADH1C Ile350Val) e do citocromo P450 (CYP2E1 PstI), pela técnica PCR-RFLP, em 451 indivíduos, sendo 207 pacientes com CCP (confirmados histopatologicamente, 184 homens e 23 mulheres, idade média 54,3 ± 7,8 anos) e 244 controles (225 homens e 19 mulheres, idade média 53,6 ± 9,3 anos). O hábito de fumar foi relatado por 80% dos pacientes com CCP e 50% dos controles o que aumentou mais de dez vezes o risco de câncer (OR=11,1; 95% IC; 4,89-25,19). Apenas 7% dos pacientes com CCP relataram nunca haver consumido álcool em comparação com 22,5% dos controles hábito que aumentou mais de quatro vezes o risco de CCP (OR=4,39 95% IC; 2,35-8,22). Verificou-se que o consumo diário acima de 30,655g/L/dia de álcool (72,5% dos pacientes com CCP e 35,2% dos controles) estava associado ao maior risco de CCP (Curva de ROC). A análise dos polimorfismos genéticos revelou que o genótipo mutado ADH1B Arg48His em homozigose ou heterozigose foi mais freqüente nos controles (12,7%) do que nos pacientes com CCP (5,8%) conferindo proteção à doença (OR=0,42; 95% IC; 0,21-0,85). Resultados similares foram observados para os indivíduos com os haplótipos ADH1B*2 (OR=0,41; 95% IC; 0,20-0,82) ou ADH1B*2/ADH1C*1 (OR=0,32; 95% IC; 0,13-0,79). Análise de regressão múltipla escalonada revelou que os indivíduos com o genótipo mutante ADH1B Arg48His que consomem quantidades de álcool inferiores a 30g/L/dia mantém o risco diminuído de CCP (OR=0,12; 95% IC; 0,03-0,52). Entretanto, quando o consumo diário de bebidas alcoólicas supera 30,655g/L/dia o risco de CCP é aumentado independente da presença (OR=4,42; 95% IC; 1,21-16,11).ou não do genótipo ADH1B Arg48His com o alelo mutado (OR= 3,01; 95% CI, 1,90-4,78). Conclusão: Os genótipos de metabolização rápida do álcool podem proteger contra o CCP quando a quantidade de álcool ingerida for menor que 30,655 g/l/dia. / Garcia, S.M.N. Alcohol metabolizing genes and the risk of head and neck cancer. 2009. Dissertação (Mestrado)- Faculdade de Medicina, Universidade de São Paulo, São Paulo. The incidence of head and neck cancer (HNC) has increased substantially in the last years, including in Brazil. This increase is associated to alcohol and tobacco consumption, but genetic susceptibility also should be considered. The aim of this study was to evaluate the frequency of the polymorphism in genes of alcohol metabolizing enzymes in patients with head and neck cancer (HNC) of the Heliópolis Hospital in São Paulo, compared with a group from the same hospital, without the diagnosis of cancer. The genetic polymorphisms of the alcohol desydrogenase enzyme (ADH1C Ile350Val, ADH1B Arg48His, ADH1B Arg370Cys) and of the P450 citochrome enzyme (CYP2E1 PstI) was investigated by PCR-RFLP, in 451 individuals, being 207 histopathologically confirmed HNC patients (184 male and 23 female, mean age 54,3 ± 7,8 years) and 244 controls (225 male and 19 female, mean age 53,6 ± 9,3 years) selected in the same hospital. The smoking habit was revealed by 80% of the patients with HNC and 50% of the controls, the difference between the groups increased the HNC risk more than ten times (OR=11.1; 95% IC; 4.89-25.19). Just 7% of the patients reported never alcohol use against 22.5% of the controls, increasing more than four times the risk of HNC (OR=4.39 95% IC; 2.35-8.22). The daily consumption of alcohol above 30.655g/L/day (72.5% of the patients with HNC and 35.2% of the controls) was associated with increased risk of the HNC. The analysis of the genetic polymorphisms revealed that the mutate genotype ADH1B Arg48His was more frequent in the controls (12.7%) than in the patients with HNC (5.8%) conferring protection to the disease (OR=0.42; 95% IC; 0.21-0.85). Similar results were observed for individuals with ADH1B*2 (OR=0.41; 95% CI; 0.20-0.82) or ADH1B*2/ADH1C*1 (OR=0.32; 95% CI; 0.13-0.79) haplotypes. Multiple regression analyses showed that the mutant genotype ADH1B Arg48His was associated to HNC protection for those that consumed alcohol lower than 30 g/l/day (OR=0.12; 95% IC; 0.03- 0.52).However, when the daily alcohol consumption exceeded 30.655g/L/day the HNC risk was higher in the presence (OR=4.42; 95% IC; 1.21-16.11) or not of the genotype ADH1B Arg48His with the mutate allele (OR= 3.01; 95% CI, 1.90-4.78).The fast alcohol metabolizing genotypes seams to prevent HNC when the amount of alcohol intake is lower than 30.655 g/L/day.
70

Eletrooxidações de acetaldeído comum e etanol isotopicamente marcado (H3 13C-12CH2OH) em superfície de platina policristalina acompanhadas por FTIRS in situ / Electrooxidation of acetaldehyde common and ethanol Isotope-labeled compounds (H3 13C_12CH2OH) in surface accompanied by platinum FTIRS in situ

Farias, Manuel de Jesus Santiago 19 June 2006 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-02T18:48:59Z No. of bitstreams: 1 ManuelFarias.pdf: 1389622 bytes, checksum: 6e4849f2b44871723791cde342c7bf04 (MD5) / Made available in DSpace on 2017-06-02T18:48:59Z (GMT). No. of bitstreams: 1 ManuelFarias.pdf: 1389622 bytes, checksum: 6e4849f2b44871723791cde342c7bf04 (MD5) Previous issue date: 2006-06-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This is work treat of the acetaldehyde and labeled ethanol oxidations, both kinds in percloric acidic medium, 0,1 Mol L-1 HClO4 on the Pt polycrystalline surface with used conventional electrochemical and spectroscopy techniques (FTIRS in situ). From acetaldehyde, wanted to find the mean concentration that better favor the reaction to evolve for CO2 in the potential smaller from production of the kind. The concentration 0,01 Mol L-1 was better suitable, but the increase of the concentration in solution, this is pathway was whole inhibited. However, in the high potential the form to acetic acidic is favorable. For main cronoamperometry, acetaldehyde in the concentration 0,02 Mol L-1, were able proof results in situ FTIRS. According to potential, this is results was interpreted second pattern to consider: the pear adsorbed kinds (Langmuir-Hinshelwood) and other where consider only one adsorbed kinds between adsorbed (pattern Eley-Rideal mechanism). In the case of ethanol labeled oxidation (H3 13CO 12CH2OH), it is search to look into the path delineated from way severous of the reaction from to form CO2. The results showed that is product would to be results of the intermediates oxidations contained carbon from alcohol group and intermediates contained carbon from group methyl; however, the intermediates contained carbon alcohol group is mores able reactive in the zone potential searched in the work, is this mores, confronted with able reactive metil group. The path double that yield CO2 in the zone potential below 1,0 V, are yielded coupling bands 12COL and 13COL which coexist in below potential. In the presence kind 13COL in 0,4 V potential proof that of the efficiency of the platinum electrode for the oxygenation group metil in the zone below potential. In the potential largest that 1,0 V, where exist the formation continuous of carbon dioxide, the difference in the greatness bands associated from 12CO2 e 13CO2 (double path product contained carbon), was interpreted in the sense of the electrochemical conditions infortunable for remover hydrogen group metil; additional this is kind was to promote for yield from molecules, which not is able identify for whole technique. / Este trabalho trata das reações de eletrooxidações de acetaldeído comum e etanol isotopicamente marcado, ambas reações em superfície de platina policristalina em meio de ácido perclórico, HClO4, 0,1 Mol L-1, com a utilização de técnicas eletroquímicas convencionais e espectroscopia (FTIRS in situ). Para o acetaldeído, essa reação foi estuda com a dependência do potencial aplicado e a concentração do aldeído em solução, que melhor resultaram na transformação desta molécula a CO2. Assim, para o potencial 0,6 V, a concentração de aldeído 0,01 Mol L-1 foi a mais apropriada deduzida a partir de FTIRS in situ e, a concentração 0,02 Mol L-1 permitiu a geração de maior densidade de corrente e foi inferida a partir de cronoamperometria. Essa discrepância foi discutida em termos das reações específicas que resultam no sinal analítico para cada técnica. Dependendo da concentração do acetaldeído, a via de formação de CO2 foi completamente inibida e, em altos potenciais, prevalecia sempre a formação de ácido acético. Paralelamente, dependendo do potencial, estes resultados foram interpretados com base em modelos de mecanismos de reações que considera: um par de reagentes adsorvidos (mecanismo Langmuir-Hinshelwood) e apenas uma espécie adsorvida do par fundamental de reagentes (mecanismo Eley-Rideal). Para o etanol isotopicamente marcado (H3 13C 12CH2OH), foram investigados passos delineados pelas diferentes vias de reação de formação de CO2. Os resultados mostraram que este produto pode ser resultante da eletrooxidação de intermediários contendo o carbono do grupo álcool e do grupo metil, sendo que o intermediário contendo o carbono do grupo álcool, para toda a faixa de potenciais investigados, é bem mais reativo que o intermediário contendo o carbono do grupo metil. As vias duplas que geram CO2 em potenciais abaixo de 1,0 V são resultantes de bandas acopladas de 12COL e 13COL que coexistem em baixos potenciais. A presença de 13COL em 0,35 V foi encarada como uma evidência da eficiência da Pt para oxigenação do grupo metil em baixos potenciais. Em potenciais acima de 1,0 V, onde há produção contínua de dióxido de carbono, a diferença na magnitude das intensidades de bandas relativa ao 13CO2 e 12CO2 (das vias de origem de carbono), foi interpretada como sendo as referidas condições eletroquímicas desfavoráveis para desprotonação do metil.

Page generated in 0.0551 seconds