• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 8
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 15
  • 12
  • 12
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Über die Annäherung von Summenverteilungsfunktionen gegen unbegrenzt teilbare Verteilungsfunktionen in der Terminologie der Pseudomomente

Paditz, Ludwig January 1977 (has links)
Die Pseudomomente dienen als Charakteristikum der Annäherung der Komponenten einer Summenverteilungsfunktion gegen die Komponenten der Grenzverteilungsfunktion. In der Terminologie der Pseudomomente werden Abschätzungen der Annäherung der Summenverteilungsfunktion gegen eine unbegrenz teilbare Verteilungsfunktion angegeben. Dabei werden die Aussagen ohne die Voraussetzung der sogenannten Infinitesimalitätsbedingung hergeleitet. Es werden Abschätzungen angegeben sowohl unter der Voraussetzung endlicher Streuungen als auch ohne diese Voraussetzung. Abschließend werden einige Literaturhinweise angegeben.:1. Einleitung S. 2 2. Abschätzungen unter Voraussetzung endlicher Streuungen S. 3 3. Abschätzungen ohne die Voraussetzung über die Existenz der Streuungen S. 6 4. Beweise S. 9 5. Beispiel S. 11 Literatur S. 12 / The pseudo-moments serve as a characteristic of the approach of the components of a cumulative distribution function to the components of the limit distribution function. In the terminology of pseudo-moments estimates of the approximation of the cumulative distribution function by an indefinite divisible distribution function can be specified. The results are derived without the assumption of the so-called condition of infinitesimality. There are given some estimations with or without the assumption of finite variances. Finally some references are given.:1. Einleitung S. 2 2. Abschätzungen unter Voraussetzung endlicher Streuungen S. 3 3. Abschätzungen ohne die Voraussetzung über die Existenz der Streuungen S. 6 4. Beweise S. 9 5. Beispiel S. 11 Literatur S. 12
42

Réflexions sur le système du droit international pénal - La responsabilité « pénale » des États et des autres personnes morales par rapport à celle des personnes physiques en droit international

Quirico, Ottavio 13 December 2005 (has links) (PDF)
Par « système du droit international pénal » on entend l'ensemble des normes qui règlent la responsabilité internationale pénale. Tant au niveau des principes généraux qu'au niveau des règles relatives, les normes qui régissent la responsabilité des individus sont assez développées et cohérentes. Par contre, celles qui règlent la responsabilité des États et des autres personnes morales sont moins développées et moins cohérentes. Malgré ce décalage, la responsabilité individuelle est à la base de l'imputation collective, de sorte qu'il faut concevoir toutes les normes en question comme un système unique. En raison de la nature essentiellement privée et décentralisée du droit international, on parlerait plutôt d'un système de la responsabilité « grave » que de responsabilité « pénale », mais substantiellement, au-delà de la terminologie employée, il faut reconnaître l'existence de l'ordre normatif en question. Une évaluation dudit système, du point de vue de la cohérence (analyse ontologique) et de l'efficacité (analyse phénoménologique), dévoile un cadre problématique. Afin de sortir des impasses systématiques plusieurs solutions sont envisageables, de iure condendo. Essentiellement, on devrait réformer le système selon trois directives. En premier lieu, il faudrait définir les actes illicites internationaux graves des États de façon précise, selon l'esprit de l'article 19 du Projet d'articles sur la responsabilité des États adopté par la Commission du droit international, en première lecture, en 1996. Deuxièmement, il faudrait établir la compétence obligatoire d'une cour impartiale pour juger de la conduite des États, en coordination avec le jugement sur la responsabilité individuelle, conformément à l'imputation par le biais de l'individu-organe. Troisièmement, il faudrait créer une institution, préférablement le Conseil de sécurité des Nations Unies, capable de coordonner l'action étatique, afin de donner exécution aux décisions prises par la juridiction internationale. Finalement, la solution la plus cohérente consisterait à élargir la compétence de la Cour pénale internationale, actuellement limitée aux individus, aux États, ainsi qu'aux organisations internationales et aux autres personnes morales, dans le cadre d'une réforme radicale du système onusien. Un tel ordre, relatif de par son origine conventionnelle, pourrait être universalisé en exploitant la notion de crime en tant que violation du ius cogens. Un système ainsi conçu ne serait pas figé et statique, du point de vue du droit matériel, mais changeant et ouvert à l'inclusion de nouvelles conduites dans le champ des infractions, selon l'évolution du droit international en tant que droit vivant.
43

Numerical analysis and multi-precision computational methods applied to the extant problems of Asian option pricing and simulating stable distributions and unit root densities

Cao, Liang January 2014 (has links)
This thesis considers new methods that exploit recent developments in computer technology to address three extant problems in the area of Finance and Econometrics. The problem of Asian option pricing has endured for the last two decades in spite of many attempts to find a robust solution across all parameter values. All recently proposed methods are shown to fail when computations are conducted using standard machine precision because as more and more accuracy is forced upon the problem, round-off error begins to propagate. Using recent methods from numerical analysis based on multi-precision arithmetic, we show using the Mathematica platform that all extant methods have efficacy when computations use sufficient arithmetic precision. This creates the proper framework to compare and contrast the methods based on criteria such as computational speed for a given accuracy. Numerical methods based on a deformation of the Bromwich contour in the Geman-Yor Laplace transform are found to perform best provided the normalized strike price is above a given threshold; otherwise methods based on Euler approximation are preferred. The same methods are applied in two other contexts: the simulation of stable distributions and the computation of unit root densities in Econometrics. The stable densities are all nested in a general function called a Fox H function. The same computational difficulties as above apply when using only double-precision arithmetic but are again solved using higher arithmetic precision. We also consider simulating the densities of infinitely divisible distributions associated with hyperbolic functions. Finally, our methods are applied to unit root densities. Focusing on the two fundamental densities, we show our methods perform favorably against the extant methods of Monte Carlo simulation, the Imhof algorithm and some analytical expressions derived principally by Abadir. Using Mathematica, the main two-dimensional Laplace transform in this context is reduced to a one-dimensional problem.
44

Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten Normalverteilung

Paditz, Ludwig 28 May 2013 (has links) (PDF)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt. Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden. International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert: Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß. Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert. Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten. Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen. Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet. Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend. Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given. Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest. International two main directions have emerged in the theory of limit theorems: Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process. First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution. As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants. Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically. Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time. In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly. The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
45

Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten Normalverteilung

Paditz, Ludwig 25 August 1977 (has links)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt. Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden. International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert: Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß. Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert. Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten. Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen. Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet. Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend. Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given. Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest. International two main directions have emerged in the theory of limit theorems: Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process. First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution. As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants. Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically. Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time. In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly. The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
46

Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement

El-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous. In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model. This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives. Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
47

Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement

El-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous. In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model. This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives. Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.

Page generated in 0.0515 seconds