Spelling suggestions: "subject:"equações metilxantinas"" "subject:"quações metilxantinas""
11 |
Teorema Chinês dos restos e aplicaçõesSantos, Audemir dos, 92-99207-1773 05 May 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-08-21T14:13:47Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação - Audemir dos Santos.pdf: 487007 bytes, checksum: c800aeddf90ef6a1d11449fece06bed9 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-08-21T14:13:59Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação - Audemir dos Santos.pdf: 487007 bytes, checksum: c800aeddf90ef6a1d11449fece06bed9 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-08-21T14:14:32Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação - Audemir dos Santos.pdf: 487007 bytes, checksum: c800aeddf90ef6a1d11449fece06bed9 (MD5) / Made available in DSpace on 2017-08-21T14:14:32Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação - Audemir dos Santos.pdf: 487007 bytes, checksum: c800aeddf90ef6a1d11449fece06bed9 (MD5)
Previous issue date: 2017-05-05 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The focus of this research is the Chinese Remains problem and some of its elementary applications.
To achieve this goal, from Chapters 2 to 5, we appoach some content in the bibliographic
review, among which we can highlight: Set of Integer Numbers and their Basic Properties, Integer
Division, Greatest Common Divisor, Common Multiple Minimum, Linear Diophantine Equations
and Congruences. In addition, some content has been dealt with in a deeper way than is usually
done in basic education, because although it plays an important role in solving many problems
involving whole numbers, they are somewhat underutilized in basic education, especially when
these are fundamentals for Olympics and Mathematics graduations. In Chapter 6 we present the
proof of the Chinese Remainder Theorem and nine examples of its applications. We believe that
such issues, in the way they were handled in this monograph can be supportive for teachers and
students seeking supplementary problem solving materials. / O foco deste trabalho é o problema Chinês dos Restos e algumas de suas aplicações elementares.
Para este fim, dos capítulos 2 ao 5, abordamos alguns assuntos na revisão bibliográfica, dentre
os quais podemos destacar: Conjunto dos Números Inteiros e suas Propriedades Básicas, a Divisão
nos Inteiros, Máximo Divisor Comum, Mínimo Múltiplo Comum, Equações Diofantinas Lineares
e Congruências. Além disso, alguns conteúdos foram tratados de uma maneira mais profunda do
que usualmente é feita no ensino básico, pois embora tenham um papel importante na resolução
de muitos problemas envolvendo os números inteiros, estão de certa forma subutilizados no ensino
básico, em especial, quando se trata de fundamentações para olimpíadas e graduações de Matemática.
No capítulo 6 apresentamos a demonstração do Teorema Chinês dos Restos e nove exemplos
de suas aplicações. Acreditamos que tais assuntos da forma em que foram tratados neste trabalho
de conclusão de curso possam servir de apoio para professores e alunos que buscam material
suplementares para resolução de problemas.
|
12 |
Aplicações de equações Diofantinas e um passeio pelo último teorema de Fermat / Applications of Diophantine equations and a walk by Fermat ́s last theoremAlves, Lucinda Freese 20 December 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-01-15T11:36:16Z
No. of bitstreams: 2
Dissertação - Lucinda Freese Alves - 2017.pdf: 5609089 bytes, checksum: 7a1e669b3bb3ff704b41db22d3e36a4f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-01-15T11:36:54Z (GMT) No. of bitstreams: 2
Dissertação - Lucinda Freese Alves - 2017.pdf: 5609089 bytes, checksum: 7a1e669b3bb3ff704b41db22d3e36a4f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-01-15T11:36:54Z (GMT). No. of bitstreams: 2
Dissertação - Lucinda Freese Alves - 2017.pdf: 5609089 bytes, checksum: 7a1e669b3bb3ff704b41db22d3e36a4f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-12-20 / The presente work aims to help students, teachers and lovers of mathematics, to better
understand, interpret and solve problems that can be solved through Diophantine Equations.
In this way, we present some basic concepts about Diophantine Equations as well as some
practical applications. We also discuss Fermat ́s Last Theorem for the cases of n=2, n=3 and
n=4, aiming to arouse interest, on the students, in Number Theory. / O presente trabalho tem como objetivo auxiliar estudantes, professores e apaixonados pela
matemática, a melhor compreender, interpretar e resolver problemas que possam ser
solucionados através das Equações Diofantinas. Desta forma, apresentamos alguns conceitos
básicos sobre Equações Diofantinas bem como algumas aplicações práticas. Discutimos ainda,
o Último Teorema de Fermat para os casos de n=2, n=3 e n=4, visando despertar o interesse
no aluno pela teoria dos números.
|
13 |
Aritmética das curvas algébricasJosé Gondim Neves, Rodrigo January 2006 (has links)
Made available in DSpace on 2014-06-12T18:30:53Z (GMT). No. of bitstreams: 2
arquivo6738_1.pdf: 1322957 bytes, checksum: a77dfa59ea2e61dc7f17b01f14df78a4 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / Universidade Federal Rural de Pernambuco / Esta dissertação tem como principal objetivo expor o bem sucedido projeto de entender a aritmética das curvas algébricas a partir de sua geometria. Estaremos interessados em características
qualitativas do conjunto dos pontos K-racionais (K corpo de números) da curva tais como existência, finitude e estrutura algébrica.
Para curvas de gênero zero, mostramos o principio local-global (para quádricas) que garante a existência de um ponto em K baseado na existência de pontos em todos seus completamentos .
Para curvas de gênero um que possuem um ponto K-racional, o método da tangente e da secante fornece ao conjunto dos pontos K-racionais da curva uma estrutura algébrico-geométrica de grupo
abeliano, o principal resultado é o teorema de Mordell-Weil que garante que tal grupo é finitamente gerado, mostraremos mais geralmente o teorema de Mordell-Weil para variedades abelianas.
A última classe de curvas que iremos considerar são as curvas de gênero maior ou igual a dois, para tais curvas o conjunto dos pontos K-racionais é sempre finito. Este é o teorema de Faltings (que não
daremos uma demonstração completa)
|
14 |
EQUAÇÕES DIOFANTINAS LINEARES: POSSIBILIDADES DIDÁTICAS USANDO A RESOLUÇÃO DE PROBLEMAS / LINEAR DIOPHANTINE EQUATIONS: TEACHING POSSIBILITIES THROUGH PROBLEM SOLVINGCampos, Adilson de 13 March 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work presents an educational experiment carried out in a 9th grade class of elementary school, in order to assess the didactic and pedagogical possibilities involving the Linear Diophantine Equations theme, with the contextual support of Problem Solving. This application intends to expand the students' conceptions in arithmetic and algebra courses, also providing a concrete possibility of applicability of the greatest common divisor of two integers, a very neglected theme throughout the elementary school. In a level of elementary school, one of the main vehicles that allows you to work the initiative, creativity and exploring spirit is through Problem Solving. A Mathematics Teacher has a great opportunity to challenge the curiosity of the students by presenting them problems that are compatible with their knowledge and guiding them through incentive questions and this teacher can also try to input on them a taste for discovery and independent thinking. Thus, a very reasonable way is to prepare the student to deal with new situations, whatever they may be. The paper is organized in three chapters. In the first chapter entitled "Problem Solving in mathematics teaching" a theoretical foundation on the Teaching of Problem Solving is searched based on the Hungarian-American author George Polya and Luiz Roberto Dante and, it also presents some aspects from the learning theory proposed by Vygotsky. In the second chapter entitled "arithmetic concepts" the themes treated are: Greatest Common Divisor (gcd), Euclidean algorithm, Bèzout theorem and Linear Diophantine Equations. In the third and final chapter entitled "pedagogical experimentation" as mentioned above, the experimentation in a class of ninth grade of an elementary school. This experiment is based on the Didactic Engineering methodology, comprising the following stages: theme and scope of action; previous analyzes associated with the dimensions: epistemological, didactic and cognitive; prior analysis; experimentation; aftermost analysis and validation of Didactic Engineering. / Este trabalho apresenta uma experimentação pedagógica realizada numa turma de 9ºano do Ensino Fundamental com o objetivo de aferir as possibilidades didático-pedagógicas envolvendo a temática Equações Diofantinas Lineares, tendo como suporte contextual a Resolução de Problemas. Tal aplicação tem o intento de ampliar as concepções dos alunos nos campos da aritmética e da álgebra, dando também uma possibilidade concreta de aplicabilidade do máximo divisor comum de dois números inteiros, tema tão negligenciado ao longo do Ensino Fundamental. Em um nível de Ensino Fundamental, um dos principais veículos que permite trabalhar a iniciativa, a criatividade e o espírito explorador é a Resolução de Problemas. O professor de Matemática tem, dessa forma, uma grande oportunidade de desafiar a curiosidade de seus alunos, apresentando-lhes problemas compatíveis com os conhecimentos destes e orientando-os através de indagações incentivadoras, podendo incutir-lhes o gosto pela descoberta e pelo raciocínio independente. Assim, um caminho bastante razoável é preparar o aluno para lidar com situações novas, quaisquer que sejam elas. O trabalho está organizado em três capítulos. No primeiro capítulo intitulado A Resolução de Problemas no ensino da Matemática busca-se uma fundamentação teórica sobre a Didática da Resolução de Problemas no autor húngaro-americano George Polya e Luiz Roberto Dante e, também, são apresentados alguns aspectos da teoria da aprendizagem proposta por Vygotsky. No segundo capítulo intitulado conceitos de aritmética são tratados os temas: Máximo Divisor Comum (mdc), Algoritmo de Euclides, Teorema de Bèzout e Equações Diofantinas Lineares. No terceiro e último capítulo intitulado experimentação pedagógica é apresentada a experimentação supracitada numa turma de nono ano do Ensino Fundamental. Tal experimentação é baseada na metodologia Engenharia Didática, compreendendo os seguintes momentos: tema e campo de ação; análises prévias associadas às dimensões: epistemológica, didática e cognitiva; análise a priori; experimentação; análise a posteriori e validação da Engenharia Didática.
|
15 |
Equações diofantinas classicas e aplicações / Classical diopantine equations and applicationsSilva, Filardes de Jesus Freitas da 13 August 2018 (has links)
Orientador: Emerson Alexandre de Oliveira Lima / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T21:19:45Z (GMT). No. of bitstreams: 1
Silva_FilardesdeJesusFreitasda_M.pdf: 678989 bytes, checksum: 49b0b13ce88d8aa64141c17e237d85fe (MD5)
Previous issue date: 2009 / Resumo: Neste trabalho focalizamos os principais conceitos da teoria elementar dos números objetivando uma melhor compreensão das Equações Diofantinas Clássicas e suas aplicações e para isto explicitamos os conceitos de Números primos, Algoritmo de Euclides, Máximo divisor comum e Mínimo múltiplo comum, assim como a teoria das Congruências, uma abordagem sobre a Criptografica RSA e Soma de Inteiros. Palavras-Chave: Congruências Lineares, Soma de Inteiros, Equação de Fermat, Soma de Quadrados / Abstract: In this work we focus the main concepts of the elementary theory of numbers seeking a better understanding of Classical diophantine equations and their applications for this and explained the concepts of prime numbers, algorithms of Euclid, maximum common divisor and least common multiple and the theory of congruence , an approach on the RSA encryption and Sum of Integers. Keywords: Linear congruence, Sum of Integers, equation of Fermat, Sum of Squares / Mestrado / Teoria dos Numeros / Mestre em Matemática
|
16 |
Convite às equações diofantinas: uma abordagem para a educação básicaAltino da Silva Neto 24 August 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação, apresentamos os resultados de uma ampla pesquisa bibliográfica sobre as equações diofantinas e seus métodos de solução mais utilizados. A mais simples desta classe de equações é a da forma ax + by = c, com a, b e c números
inteiros e ab 6= 0, chamada equação diofantina linear nas duas incógnitas x e y. No trabalho, expomos diversos métodos de resolução destas equações, em duas e três incógnitas. Para tanto, utilizamos conceitos de divisibilidade, divisão euclidiana, máximo divisor comum, números primos, dentre outros, que formam parte do currículo do Ensino Fundamental. No Brasil, as equações diofantinas não são comumente exploradas
na Educação Básica, embora sejam perfeitamente compreensíveis nesse nível, como se mostra no texto do professor A. Guelfond, consultado na redação do trabalho. Na
dissertação, incluímos, também, um capítulo sobre as contribuições de Diofanto para a Aritmética, que pode ser uma fonte de motivação para o estudo das equações diofantinas;
e outro capítulo, ampliando as perspectivas sobre equações diofantinas não lineares. Esperamos que o trabalho seja uma fonte bibliográfica facilmente acessível aos professores da Educação Básica, e estimule seu interesse e criatividade para a
introdução elementar desses conteúdos na prática docente e na preparação dos alunos para as Olimpíadas de Matemática. / In this dissertation, the results of a wide bibliographic research about Diophantine equations and their most used solution methods are exposed. The simplest equation of these
class is the one in the form ax + by = c, with a, b and c integers numbers and ab 6= 0, called Diophantine linear equation in the unknowns x and y. Divers solutions methods for
these equations, in two or three unknowns are discussed. Therefore, concepts like divisibility, Euclidean division, grated common divisor, prime numbers, among others, that are
included in the Elementary Schools curriculum. In Brazil, Diophantine equations are not commonly exploited in Basic Education, even though they are perfectly understandable
at this educational level, like Professor A. Guelfond shows in his book consulted in the redaction of the dissertation. There are also a chapter about Diophantuss contributions
to Arithmetic, which can be a source of motivation to study the Diophantine equations; and another chapter, extending perspectives, about nonlinear Diophantine equations.
We hope that the dissertation becomes a suitable easy accessible bibliographic font for Basic Education teachers and stimulates their interest and creativity for an elemental
introducing of these contents in their teaching and in the students training for Math Olympiads.
|
17 |
Equações diofantinas / Diofantine equationsSilva, Yuri Faleiros da 16 April 2019 (has links)
Este trabalho descreve as soluções de algumas equações diofantinas em duas e três variáveis. O objetivo é apresentar a análise de alguns casos simples e de outros mais difíceis relativos ao Último Teorema de Fermat. Primeiramente são apresentados os pré-requisitos necessários dentre os quais incluímos a noção de número primo, máximo divisor comum, congruência, o Algoritmo de Euclides e o Teorema Fundamental da Aritmética. Este material é desenvolvido primeiramente no anel dos inteiros racionais e posteriormente em duas extensões algébricas conhecidas como os inteiros de Gauss e de Eisenstein. A estrutura dos últimos é indispensável na resolução do primeiro caso não trivial do Último Teorema de Fermat, a saber, da equação diofantina x3 + y3 = z3. O último capítulo apresenta algumas aplicações de problemas diofantinos e do Algoritmo de Euclides que podem ser desenvolvidos em sala de aula com alunos do sexto e do oitavo ano. / This work describes the solutions to some diophantine equations in two and three variables. The objective is to present the analysis of some simple and other more difficult cases related to Fermats Last Theorem. First, we present the necessary prerequisites which include the notion of a prime number, the maximum common divisor, congruences, Euclids Algorithm and the Fundamental Theorem of Arithmetic. This material is first developed by using the rational integers and then presented for two algebraic extensions known as Gauss and Eisenstein integers. The structure of the latter is indispensable for the first non-trivial case of Fermats Last Theorem, namely, the diophantine equation x3 + y3 = z3. The last chapter presents some applications of simple diophantine equations and Euclids algorithm which can be developed in the classroom with sixth and eight grade students.
|
18 |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada / On the sum of power of two consecutive k-generalized Fibonacci numbersRico Acevedo, Carlos Alirio 16 March 2018 (has links)
Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-04-11T12:39:47Z
No. of bitstreams: 2
Dissertação - Carlos Alirio Rico Acevedo - 2018.pdf: 1289579 bytes, checksum: 0b60c803c3d9f6f61772e58e7d624086 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-04-12T11:29:32Z (GMT) No. of bitstreams: 2
Dissertação - Carlos Alirio Rico Acevedo - 2018.pdf: 1289579 bytes, checksum: 0b60c803c3d9f6f61772e58e7d624086 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-04-12T11:29:32Z (GMT). No. of bitstreams: 2
Dissertação - Carlos Alirio Rico Acevedo - 2018.pdf: 1289579 bytes, checksum: 0b60c803c3d9f6f61772e58e7d624086 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-03-16 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Let $ k \geq 2.$ an integer. The recurrence $ \fk{n} = \sum_ {i = 0}^k \fk{n-i} $ for $ n> k $, with initial conditions $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0$ and $F_1^{ (k)} = 1$, which is called the $k$-generalized Fibonacci sequence. When $ k = 2 ,$ we have the Fibonacci sequence $ \{ F_n \}_{n\geq 0}.$ We will show that the equation $F_{n}^{x}+F_{n+1}^x=F_{m}$ does not have no non-trivial integer solutions $ (n, m, x) $ to $ x> 2 $. On the other hand, for $ k \geq 3,$ we will show that the diophantine equation $\epi$ does not have integer solutions $ (n, m, k, x) $ with $ x \geq 2 $. In both cases, we will use initially Matveev's Theorem, for linear forms in logarithms and the reduction method due to Dujella and Pethö, to limit the variables $ n, \; m $ and $ x $ at intervals where the problem is computable. In addition, in the case for $ k\geq 3 $, we will use the fact that the dominant root the $k$-generalized Fibonacci sequence is exponentially close to 2 to bound $k$, a method developed by Bravo and Luca. / Seja $k\geq 2$ inteiro, considere-se a recorrência $\fk{n}=\sum_{i=0}^{k}\fk{n-i}$ para $n>k$, com condições iniciais $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0$ e $F_{1}^{(k)}=1$, que é a sequência de Fibonacci $k$-generalizada.
No caso quando $k=2$, é dizer, para a sequência de Fibonacci $\{F_n\}_{n\geq 0}$, vai-se mostrar que a equação $F_{n}^{x}+F_{n+1}^x=F_{m}$ não possui soluções inteiras não triviais $(n,m,x)$ para $x>2$. Por outro lado para, $k\geq 3$ se mostrar que a equação diofantina $\epi$ não possui soluções inteiras $(n,m,k,x)$ com $x\geq 2$. Em ambos casos, inicialmente são usados resultados como o Teorema de Matveev, para formas lineares em logaritmos e o método de redução de Dujella e Pethö, para limitar as variáveis $n, \; m$ e $x$ em intervalos onde o problema seja computável. Adicionalmente, no caso para $k\geq 3$ é usado que a raiz dominante da sequência de Fibonacci $k$-generalizada e exponencialmente próxima a 2, para limitar $k$, o que é um método desenvolvido por Bravo e Luca.
|
19 |
Equações diofantinas lineares em duas incógnitas e suas aplicações / Elementary theory of numbers, linear diophantine equations, high school, entire solutions, problem resolution.Borges, Fábio Vieira de Andrade 01 March 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-22T13:41:10Z
No. of bitstreams: 2
Borges, Fábio Vieira de Andrade.pdf: 831817 bytes, checksum: dc7f36aa0aef4a7fb90ba2008b7da2cf (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-23T11:19:19Z (GMT) No. of bitstreams: 2
Borges, Fábio Vieira de Andrade.pdf: 831817 bytes, checksum: dc7f36aa0aef4a7fb90ba2008b7da2cf (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-23T11:19:20Z (GMT). No. of bitstreams: 2
Borges, Fábio Vieira de Andrade.pdf: 831817 bytes, checksum: dc7f36aa0aef4a7fb90ba2008b7da2cf (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main objective of this assignment is to help students and also teachers with the resolution and understanding
of problems involving the Linear Diophantine Equations with Two Incognits through the elaboration
and application of didactic activities in order to contribute to the study of this kind of equations. Through the
tasks it was aimed to dothe integration of Arithmetic with Algebra and Geometry by using some computational
programs which worked as support to the graphical visualization of the entire solutions.
In the first chapters the essence of the Elementary Theory of Numbers will be better known, since the
mathematical tools which will be used to solve linear Diophantine equations will be displayed and demonstrated,
some of them already known, like the greatest common divisor (g.d.c). Then the Diophantine equations
and theirapplication methods for the solution of daily problems will be introduced.
The Conclusion of this study highlights the importance of algebraic and geometric interpretation of Linear
Diophantine Equations, and also emphasizes that the contact with problems of this area contributes to the students
reasoning abilities development in a creative way. It is important to emphasize that this issue can be introduced in high school. / O presente trabalho tem como objetivo principal auxiliar os alunos e professores na resolução e compreensão
de problemas envolvendo as Equações Diofantinas Lineares com Duas Incógnitas através da elaboração
e aplicação de atividades didáticas destinadas a contribuir para o estudo desse tipo de equações. Procurou-se
nas tarefas fazer a integração da Aritmética com a Álgebra e a Geometria, utilizando-se de alguns programas
computacionais que serviram de suporte para as visualizações gráficas das soluções inteiras.
Nos primeiros capítulos vamos conhecer melhor a essência da Teoria Elementar dos Números, pois apresentaremos
e demonstraremos as ferramentas matemáticas que serão utilizadas na resolução das Equações
Diofantinas Lineares, algumas delas já conhecidas, que é o caso do máximo divisor comum (m.d.c). Em seguida
serão introduzidas as equações diofantinas e os métodos de determinação de soluções da mesma para
aplicação em resolução de problemas do cotidiano.
A conclusão desse trabalho ressalta a importância da interpretação algébrica e geométrica das Equações
Diofantinas Lineares, e que o contato com problemas desta área contribui para que o aluno desenvolva, de
forma criativa suas habilidades de raciocínio. É importante enfatizar que esse tema pode ser abordado no Ensino Médio.
|
20 |
O Décimo problema de HilbertFerreira, Marcelo 27 August 2010 (has links)
In this work we present a proof that the Hilbert s Tenth Problem is unsolvable. This problem is to
give a computing algorithm which will tell of a given polynomial Diophantine equation with integer
coefficients whether or not it has a solution in integers. We start developing some topics of basic
number theory, that will be useful at some time. In this part we prove only main results. After that,
we study Diophantine equation as well as Diophantine functions. Then, we prove a serie of lemas that
will be useful to proof that the exponential function is Diophantine. From there, we define the concept
of recursive function and prove that a function is Diophantine if and only if it is recursive. Finally
we prove the Universality Theorem. We use this last theorem to proof that the Hilbert s Problem is
unsolvable. / Neste trabalho apresentamos uma demonstração da insolubilidade do Décimo Problema de Hilbert,
que investiga a existência de um método para determinar se dada uma equação Diofantina
qualquer podemos determinar se esta tem ou não uma solução. Começamos desenvolvendo alguns
tópicos de teoria de números, que serão úteis em vários momentos, nesta parte demonstramos apenas
os resultados principais. Em um segundo momento, passamos ao estudo das equações Diofantinas
bem como das funções Diofantinas, que permeiam nossos resultados. Em seguida, demonstramos uma
série de lemas que servem de base para mostrarmos que a função exponencial é Diofantina. A partir
daı, passamos a definição do importante conceito de função recursiva e então demonstramos que uma
função ser recursiva é equivalente a ser Diofantina. Finalmente, demonstramos o Teorema da Universalidade
que servirá de base para a demonstração o da insolubilidade do Décimo Problema de Hilbert. / Mestre em Matemática
|
Page generated in 0.0798 seconds