Spelling suggestions: "subject:"groupes dde"" "subject:"groupes dee""
201 |
Cubulations de variétés hyperboliques compactesDufour, Guillaume 23 March 2012 (has links) (PDF)
Cette thèse est une contribution au domaine des cubulations de groupes hyperboliques au sens de Gromov. Nous nous intéressons au cas particulier des groupes fondamentaux de variétés hyperboliques réelles compactes. La philosophie inspirée dans ce domaine par les travaux de M. Sageev est que si un groupe hyperbolique possède suffisamment de sous-groupes de codimension 1 quasi-convexes, alors il agit géométriquement sur un complexe cubique CAT(0) de dimension finie. Nous démontrons un critère précis de cubulation pour les groupes fondamentaux de variétés hyperboliques compactes, à l'aide de constructions d'espaces à murs quasi-isométriques à l'espace hyperbolique réel. Nous nous restreignons par la suite au cas particulier de la dimension 3 et plus particulièrement aux 3-variétés hyperboliques compactes virtuellement fibrées sur le cercle. Nous exploitons alors une construction de surfaces immergées incompressibles dites coupées-croisées due à D. Cooper, D. Long et A. Reid dans une telle 3-variété M pour fabriquer des sous-groupes de surface de son groupe fondamental~G. En raffinant des arguments de J. Masters et en exploitant la structure de l'application de Cannon-Thurston, nous parvenons à construire des sous-groupes de surfaces quasi-convexes de G en quantité suffisante pour que leurs ensembles limites permettent de séparer toutes les paires de points distincts du bord du revêtement universel de M. En conséquence de cette construction, G agit géométriquement sur un complexe cubique CAT(0) de dimension finie. D. Wise soulève alors la question de savoir si ce groupe G peut agir géométriquement et également virtuellement co-spécialement (au sens de F. Haglund et D. Wise) sur un complexe cubique CAT(0). Une réponse positive résoudrait les conjectures selon lesquelles G est large et le premier nombre de Betti virtuel de M est infini. Nous faisons remarquer que pour obtenir une réponse positive à cette question, il suffit de trouver une surface coupée-croisée virtuellement plongée dans un revêtement fini fibré sur le cercle de M. Nous concluons en présentant des conditions algébriques, puis géométriques et cohomologiques suffisantes pour qu'une surface coupée-croisée donnée soit virtuellement plongée.
|
202 |
Calcul des invariants de groupes de permutations par transformee de fourier.Borie, Nicolas 07 December 2011 (has links) (PDF)
Cette thèse porte sur trois problèmes en combinatoire algébrique effective et algorithmique.Les premières parties proposent une approche alternative aux bases de Gröbner pour le calcul des invariants secondaires des groupes de permutations, par évaluation en des points choisis de manière appropriée. Cette méthode permet de tirer parti des symétries du problème pour confiner les calculs dans un quotient de petite dimension, et ainsi d'obtenir un meilleur contrôle de la complexité algorithmique, en particulier pour les groupes de grande taille. L'étude théorique est illustrée par de nombreux bancs d'essais utilisant une implantation fine des algorithmes. Un prérequis important est la génération efficace de vecteurs d'entiers modulo l'action d'un groupe de permutation, dont l'algorithmique fait l'objet d'une partie préliminaire.La quatrième partie cherche à déterminer, pour un certain quotient naturel d'une algèbre de Hecke affine, quelles spécialisations des paramètres aux racines de l'unité donne un comportement non générique.Finalement, la dernière partie présente une conjecture sur la structure d'une certaine $q$-déformation des polynômes harmoniques diagonaux en plusieurs paquets de variables pour la famille infinie de groupes de réflexions complexes.Tous ces chapitres s'appuient fortement sur l'exploration informatique, et font l'objet de multiples contributions au logiciel Sage.
|
203 |
Cohomologie de GL_2(Z[i,1/2]) à coefficients dans F_2Weiss, Nicolas 16 October 2007 (has links) (PDF)
Le point de départ de cette thèse est une version instable de la conjecture de Lichtenbaum et Quillen qui dit que la cohomologie modulo 2 du classifiant des groupes linéaires définis sur Z[1/2] serait détectée par la cohomologie du classifiant du sous-groupe des matrices diagonales de ces groupes linéaires. On sait que la conjecture est vraie pour n=1, 2 et 3, mais qu'elle est fausse à partir de n=14. <br /><br />On peut montrer que si la conjecture est vraie pour n=4, alors nécessairement, il existe un certain carré cartésien en cohomologie à coefficients dans F_2 dans lequel apparaît le classifiant du groupe GL_2(Z[i,1/2]). L'espoir initial, motivé par des idées de Henn et Lannes, était que la cohomologie à coefficients dans F_2 de BGL_2(Z[i,1/2]) rendrait ce carré non cartésien, invalidant de ce fait la conjecture de Lichtenbaum et Quillen dès n=4.<br /><br />Nous avons calculé la cohomologie à coefficients dans F_2 de BGL_2(Z[i,1/2]) et montré que le carré cartésien sus-nommé est bien cartésien.<br />La conjecture a ainsi passé un test avec succès et a encore des chances d'être vraie pour n=4. En tout cas, la recherche d'un contre-exemple est plus délicate qu'on aurait pu l'espérer.<br /><br />Les moyens utilisés pour effectuer le calcul de H*(BGL_2(Z[i,1/2]),F_2) ont été la construction d'un certain espace Z sur lequel le groupe PSL_2(Z[i]) agit avec de bonnes propriétés, et le calcul de H*(BPSL_2(Z[i]),F_2) et H*(BGo,F_2) où Go est un certain sous-groupe de PSL_2(Z[i]) tel qu'on ai la décomposition en somme amalgamée PSL_2(Z[i,1/2])=PSL_2(Z[i])*_Go PSL_2(Z[i]). On obtient ensuite H*(BGL_2(Z[i,1/2]),F_2) en étudiant certains morphismes de H*(BPSL_2(Z[i]),F_2) vers H*(BGo,F_2) et plusieurs suites spectrales.
|
204 |
Semi-groupes integres d'operateurs, l'unicite des pre-generateurs et applicationsLemle, Ludovic Dan 19 January 2007 (has links) (PDF)
Notre principal but est le probleme de l'unicite pour les operateurs de diffusion dans $L^\infty$. Ce travail commence par un etude des $C_0$-semi-groupes et des semi-groupes integres dans un contexte tres general. Nous etudions les $C_0$-semi-groupes sur un espace localement convexe et nous introduisons une nouvelle topologie sur l'espace dual tel que l'adjoint d'un $C_0$-semi-groupe est de classe $C_0$ par rapport a cette topologie. Les resultats les plus importants sont un theoreme de caracterisation d'un core du generateur et un theoreme de caracterisation complet d'un generateur essentiel sur un espace localement convexe. Finalement, nous presentons quelques exemples des generateurs essentiels dans $L^\infty$. Dans cette these ont ete obtenues pour la premiere fois la $L^\infty$-unicite des operateurs de Schroedinger et des operateurs de Schroedinger generalises sur une variete riemannienne complete, ainsi que $L^1$-unicite des solutions faibles pour l'equation de transport de masse.
|
205 |
Applications de la théorie de Galois différentielle aux équations différentielles linéaires d'ordre 4Gaillard, Philippe 25 October 2004 (has links) (PDF)
Pour les équations différentielles ordinaires linéaires d'ordre 2 et 3, des algorithmes de résolution exacte avec des temps de calcul réalistes existent, se fondant sur une étude préalable précise des groupes de Galois différentiels potentiels de ces équations. Plusieurs études de l'ordre 4 ont déjà eu lieu mais ne concernaient qu'un aspect particulier de la classification des groupes. Dans cette thèse, on donne les bornes optimales pour le degré du polynôme minimal des dérivées logarithmiques des solutions liouvilliennes de telles équations (travail commun avec D. Boucher et F. Ulmer) puis on présente une stratégie algorithmique de recherche du groupe de Galois différentiel d'une équation en connaissant ses semiinvariants de degré 2 et 4, obtenue après avoir en particulier complété les travaux précédents par les cas imprimitif-monomial de la classification des groupes. On trouve alors plus efficacement des semi-invariants produits de formes linéeaires. Dans le chapitre 4 de cette thèse, on s'intérresse aux chutes d'ordre de la puissance symétrique quatrième d'une équation. Plus précisément, on montre qu'une chute d'ordre de un implique l'existence d'au moins un semi-invariant de degré 4, ce qui permet d'obtenir des informations sur le groupe de l'équation. En cas de chute d'ordre de deux et plus, des conditions de finitude du groupe sont données par un théorème de M.F. Singer. Dans le chapitre 5, on traite deux exemples. Dans le premier, on applique la stratégie algorithmique décrite dans le chapitre 3 en vue de trouver le groupe de Galois diff érentiel d'une équation dont on calcule ensuite les solutions (à l'aide d'une méthode décrite par F. Ulmer). Le second est un exemple de résolution du problème inverse pour le groupe SO(4, C) à l'aide de la méthode décrite par C. Mitschi et M.F. Singer (équation qui n'admet donc pas de solutions liouvilliennes). On trouvera en annexe la liste explicite des semiinvariants de degré 2 et 4 des sous-groupes monomiaux de SL(4, C).
|
206 |
Graphes et marches aléatoiresDe Loynes, Basile 06 July 2012 (has links) (PDF)
L'étude des marches aléatoires fait apparaître des connexions entre leurs propriétés algébriques, géométriques ou encore combinatoires et leurs propriétés stochastiques. Si les marches aléatoires sur les groupes - ou sur des espaces homogènes - fournissent beaucoup d'exemples, il serait appréciable d'obtenir de tels résultats de rigidité sur des structures algébriques plus faibles telles celles de semi-groupoide ou de groupoide. Dans cette thèse il est considéré un exemple de semi-groupoide et un exemple de groupoide, tous les deux sont définis a partir de sous-graphes contraints du graphe de Cayley d'un groupe - le premier graphe est dirige alors que le second ne l'est pas. Pour ce premier exemple, on précise un résultat de Campanino et Petritis (ils ont montre que la marche aléatoire simple était transiente pour cet exemple de graphe dirigé) en déterminant la frontière de Martin associée à cette marche et établissant sa trivialité Dans le second exemple apparaissant dans ce manuscrit, on considère des pavages quasi-périodiques de l'espace euclidien obtenus à l'aide de la méthode de coupe et projection. Nous considérons la marche aléatoire simple le long des arêtes des polytopes constituant le pavage, et nous répondons a la question du type de celle-ci, c'est-à-dire nous déterminons si elle est récurrente ou transiente. Nous montrons ce résultat en établissant des inégalités isopérimétriques Cette stratégie permet d'obtenir des estimées de la vitesse de décroissance du noyau de la chaleur, ce que n'aurait pas permis l'utilisation d'un critère de type Nash-Williams.
|
207 |
Probabilités et géométrie dans certains groupes de type finiMathéus, Frédéric 25 November 2011 (has links) (PDF)
Dans de nombreux phénomènes régis par le hasard, le résultat de l'observation provient de la combinaison aléatoire d'événements élémentaires : le gain d'un joueur au jeu de pile ou face est le résultat de parties successives, mélanger un jeu de cartes s'effectue en plusieurs battages consécutifs, l'enchevêtrement d'une molécule d'ADN dans une cellule est le produit, entre autres, de croisements successifs. Ces événements élémentaires ont la particularité d'être réversibles (gagner/perdre au pile ou face, croiser/décroiser des brins d'ADN) et l'aléa régissant leur combinaison possède une certaine indépendance (l'issue d'une partie de pile ou face n'a a priori aucune influence sur la suivante). Un modèle possible pour ces phénomènes consiste à considérer un groupe G, fini ou dénombrable, que l'on munit d'une mesure de probabilité μ. On effectue des tirages successifs d'éléments dans G avec les hypothèses suivantes : les tirages sont indépendants, et, pour chaque tirage, μ(g) est la probabilité de tirer l'élément g. Si g1, g2,...,gn est le résul- tat de n tirages, on forme le produit g1.g2. ... . gn. C'est, par définition, la position à l'instant n de la marche aléatoire sur G de loi μ, et la question est : que peut-on dire du comportement asymptotique de g1.g2. ... .gn lorsque n augmente in- définiment ? La marche aléatoire s'en va-t'elle à l'infini ? Si oui, dans quelle direction ? Et à quelle vitesse ? Mes travaux depuis 2003 sont consacrés, pour l'essentiel, à l'étude du comportement asymptotique des marches aléatoires dans trois familles de groupes infinis, non abéliens et de type fini : les produits libres de groupes finis, les groupes d'Artin diédraux, ainsi que certaines extensions des groupes libres. Ils sont le fruit de collaborations avec Jean Mairesse (CNRS, Paris VI) et François Gautero (Université de Nice). Dans le cas des produits libres de groupes finis, nous décrivons précisément la mesure harmonique pour les marches aléatoires au plus proche voisin dans ces groupes, ce qui permet de calculer la vitesse et l'entropie asymptotique. En particulier, ces quantités dépendent de façon analytique des coefficients de μ. Considérant l'inégalité fondamentale de Yves Guivarc'h entre vitesse, entropie et croissance, nous montrons que les générateurs canoniques des produits libres de groupes finis sont extrémaux au sens de Vershik. Les groupes d'Artin diédraux forment une classe de groupes d'Artin qui généralise le groupe de tresses à trois brins B3 et pour laquelle nous donnons une description précise des géodésiques. La connaissance de la vitesse de fuite des marches aléatoires au plus proche voisin dans le groupe B3 est un premier outil de mesure de la complexité asymptotique d'une tresse aléatoire. Dans ce cas, on montre que la vitesse dépend de façon lipschitzienne mais non différentiable de μ, faisant apparaître certaines transitions de phase. Enfin, en ce qui concerne les extensions du groupe libre, nous montrons que, dans certains cas (comprenant notamment les extensions cycliques) les fonctions μ-harmoniques bornées sont entièrement décrites via le bord du groupe libre sous-jacent. La preuve repose sur l'existence d'actions non triviales de ces groupes sur des arbres réels, couplée à des critères généraux sur les compactifications des groupes développés par Vadim Kaimanovich.
|
208 |
Multipliers and approximation properties of groups / Multiplicateurs et propriétés d'approximation de groupesVergara Soto, Ignacio 03 October 2018 (has links)
Cette thèse porte sur des propriétés d'approximation généralisant la moyennabilité pour les groupes localement compacts. Ces propriétés sont définies à partir des multiplicateurs de certaines algèbres associés aux groupes. La première partie est consacrée à l'étude de la propriété p-AP, qui est une extension de la AP de Haagerup et Kraus au cadre des opérateurs sur les espaces Lp. Le résultat principal dit que les groupes de Lie simples de rang supérieur et de centre fini ne satisfont p-AP pour aucun p entre 1 et l'infini. La deuxième partie se concentre sur les multiplicateurs de Schur radiaux sur les graphes. L'étude de ces objets est motivée par les liens avec les actions de groupes discrets et la moyennabilité faible. Les trois résultats principaux donnent des conditions nécessaires et suffisantes pour qu'une fonction sur les nombres naturels définisse un multiplicateur radial sur des différentes classes de graphes généralisant les arbres. Plus précisément, les classes de graphes étudiées sont les produits d'arbres, les produits de graphes hyperboliques et les complexes cubiques CAT(0) de dimension finie. / This thesis focusses on some approximation properties which generalise amenability for locally compact groups. These properties are defined by means of multipliers of certain algebras associated to the groups. The first part is devoted to the study of the p-AP, which is an extension of the AP of Haagerup and Kraus to the context of operators on Lp spaces. The main result asserts that simple Lie groups of higher rank and finite centre do not satisfy p-AP for any p between 1 and infinity. The second part concentrates on radial Schur multipliers on graphs. The study of these objects is motivated by some connections with actions of discrete groups and weak amenability. The three main results give necessary and sufficient conditions for a function of the natural numbers to define a radial multiplier on different classes of graphs generalising trees. More precisely, the classes of graphs considered here are products of trees, products hyperbolic graphs and finite dimensional CAT(0) cube complexes.
|
209 |
Le Mexique et l'UE les relations intergouvernementales : étude de la relation bilatérale entre le Mexique et l'Allemagne / Mexico and the EU interguvernamental relations : study of the bilateral relationship between Mexico and GermanyGil Gutierrez, Cintia 16 December 2011 (has links)
Les relations internationales ont mis en évidence le rôle intégrateur du dialogue politique dans la promotion des objectifs, des intérêts nationaux, des engagements et des perceptions de l'État, et des organisations non gouvernementales. Les études consacrées à la relation entre l'UE et le Mexique concluent à une véritable transformation de la relation politique en raison de la signature de l'Accord global. Dès les premières années, les analyses se sont attachées à décrire les perceptions des négociations, le règlement ainsi que la perspective qui a complété les nouvelles composantes de la relation: le dialogue politique et la coopération. D'une façon générale, l'opinion commune semble faciliter le dialogue et les différentes propositions qui définissent la coopération, malgré l'ambiguïté de la situation qui résulte de la complexité de la communication entre les partenaires. L'objectif de cette recherche est d'analyser les interactions au sein du dialogue politique destiné à un approfondissement de la relation bilatérale, mais aussi d'analyser les éléments qui le composent et les formes de dialogue constituées par les autorités mexicaines et européennes. Deuxièmement, étant donné la nécessité de maintenir un programme commun bilatéral, il est important de réviser la coopération. Pour le cas de l'Allemagne et le Mexique, l'étude vise à présenter les effets de la relation dans des termes différents. Autrement dit, il y a de nouvelles formes de collaborations distinguées par l'action consensuelle afin de bénéficier d'une participation plus large. A ce processus il faut ajouter d'autres organisations non gouvernementales liées aux différents niveaux de gouvernement et des institutions qui mettent en évidence l'action des communautés épistémiques transnationales à travers les coalitions et les réseaux qui apparaissent entre les acteurs. / International relations have highlighted the integrating role of political dialogue in promoting objectives of national interests, commitments and perceptions of the State, and non-governmental organizations. Studies on the relationship between the EU and Mexico have established that there has been a genuine transformation of the political relationship because of the signing of the Global Agreement. From the early years, those studies focused on describing the perceptions of negotiation, the legal-normative framework, and the perspective that has complemented the new features of the relationship: namely, political dialogue and cooperation. In general, the common opinion seems to facilitate dialogue and different proposals that define cooperation, despite the ambiguity of the situation resulting from the complexity of communication between partners. The objective of this research is to analyze the interactions within the political dialogue aimed at deepening the bilateral relationship but also to analyze its components and forms of dialogue established by the Mexican and European authorities. Second, given the need for maintaining a joint bilateral agreement, it is important to review the nature of cooperation. This study highlights the special case of collaboration between Germany and Mexico, with the aim of presenting the effects of the relationship in different terms. In other words, there are new forms of collaboration distinguished by consensual action in order to benefit from wider participation. In this process one cannot leave out non-governmental organizations that have ties with different levels of government and institutions, which highlights the activities of transnational epistemic communities through coalitions and networks that emerge between the actors.
|
210 |
Contributions à l'étude des groupes quantiques de permutations / Contributions to the study of quantum permutation groupsChassaniol, Arthur 28 June 2016 (has links)
Dans cette thèse nous étudions le groupe quantique d’automorphismes des graphes finis, introduit par Banica et Bichon. Dans un premier temps nous montrerons un théorème de structure du groupe quantique d’automorphismes du produit lexicographique de deux graphes finis réguliers, qui généralise un résultat classique de Sabidussi. Ce théorème donne une condition nécessaire et suffisante pour que ce groupe quantique s’exprime comme le produit en couronne libre des groupes quantiques d’automorphismes de ces deux graphes. Dans un deuxième temps, nous expliciterons certaines améliorations de résultats de Banica, Bichon et Chenevier permettant d’obtenir des critères de non symétrie quantique sur les graphes, à l’aide des outils développés par les auteurs susmentionnés.Enfin, pour poursuivre ces recherches, nous développerons une autre méthode utilisant la dualité de Tannaka-Krein et inspirée de l’étude des groupes quantiques compacts orthogonaux par Banica et Speicher. Celle-ci nous permettra, à l’aide d’une étude orbitale approfondie des graphes sommets-transitifs, d’énoncer une condition suffisante pour qu’un graphe ait des symétries quantiques ; condition qui a vocation à être aussi nécessaire mais ceci reste une conjecture à ce stade. / In this thesis we study the quantum automorphism group of finite graphs, introduces by Banica and Bichon. First we will prove a theorem about the structure of the quantum automorphism group of the lexicographic product of two finite regular graphs. It is a quantum generalization of a classical result of Sabidussi. This theorem gives a necessary and sufficient condition for this quantum group to be discribe as the free wreath product of the quantum automorphism groups of these two graphs. Then, we will give some improvement of Banica, Bichon and Chenevier results, to obtain a quantum non-symmetry criteria on graphs, using tools developped by the above authors. Finally, to continue this research, we will describe another method using Tannaka-Krein duality and inspired by the study of orthogonal compact groups by Banica and Speicher. This will enable us, with a thorough orbital study of vertex-transitive graphs, to state a sufficient condition for a graph to have quantum symmetries ; condition which is intended to be also necessary but this remains conjecture at this point.
|
Page generated in 0.0565 seconds