• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MuRF3 binds to the retromer subunit SNX5 inhibiting its MuRF2-mediated degradation and leading to its stabilization

Hamati, Jida 17 October 2016 (has links)
Die muskelspezifischen RING-Finger Ubiquitin E3 Ligasen MuRF1, MuRF2 und MuRF3 werden mit verschiedenen zellulären Prozessen in Verbindung gebracht. MuRF1 und MuRF3 beteiligen sich am Abbau mehrerer Muskelstrukturproteine über das Ubiquitin Proteasom System (UPS) und spielen somit eine wichtige Rolle bei der Aufrechterhaltung der Skelett- und Herzmuskelstruktur und -funktion. MuRF1 wurde als Atrophie-Marker identifiziert, da seine Expression während der Muskelatrophie ansteigt, und MuRF2 und MuRF3 wirken bei der Stabilisierung von Mikrotubuli und Differenzierung von Myozyten mit. Dennoch sind bisher viele Aspekte der Funktion von MuRF-Proteinen ungeklärt. Die Domänenstruktur der MuRF-Proteine zeigt mehrere hochkonservierte Domänen, die sich an Protein-Protein Interaktionen beteiligen. Die Identifizierung und Charakterisierung ihres Interaktoms ermöglicht ein besseres Verständnis ihrer Funktionen. Aus diesem Grund wurden quantitative massenspektrometrische Analysen durchgeführt, um neue Interaktionspartner und Substrate für MuRF1, 2 und 3 zu identifizieren. Sorting nexin 5 (SNX5), eine Untereinheit des Retromers in Säugetieren, wurde als Interaktionspartner von MuRF3 identifiziert. SNX5, das eine wichtige Rolle in subzellulären Transport-Signalwegen spielt, interagierte über seine BAR-Domäne mit MuRF3. SNX5 und MuRF3 co-lokalisierten und assoziierten mit vesikulären Strukturen des subzellulären Transport-Signalweges. SNX5 wurde außerdem als Substrat von MuRF2 identifiziert. MuRF2 band und ubiquitinierte SNX5 in vivo und vermittelte damit dessen Abbau über das UPS. MuRF3 stabilisierte SNX5 durch die Inhibierung dieses Abbaus. Somit konnten MuRF2 und MuRF3 mit einem in subzellulärem Transport aktiven Protein in Verbindung gebracht werden, das direkt mit Mikrotubuli assoziiert und funktionell von einem stabilen Mikrotubuli-Netzwerk abhängig ist. Dies legt eine mögliche regulatorische Rolle von MuRF2 und MuRF3 in Mikrotubuli-abhängigen subzellulären Transportwegen nahe. / Muscle specific RING-Finger ubiquitin E3 ligases MuRF1, MuRF2 and MuRF3 have been implicated in several cellular functions. MuRF1 and MuRF3 have been shown to bind and degrade muscle contractile and structural proteins via the ubiquitin proteasome system (UPS), thus playing an important role in the maintenance of skeletal and cardiac muscle structure and function. MuRF1 is considered an atrophy marker since its expression increases during muscle atrophy. MuRF2 and MuRF3 are involved in myocyte differentiation and both bind to and stabilize microtubules. Nevertheless, many aspects of the functions of the MuRF-family are unknown. The domain structure of the MuRF family implicates several highly conserved domains involved in protein-protein interaction. Accordingly, one way to better understand the role of MuRF proteins in myocyte function and protein homeostasis is to identify and characterize their interactome. Therefore, quantitative mass spectrometric analysis was used to identify novel interaction partners and target proteins of MuRF1, 2 and 3. Sorting nexin 5 (SNX5), a mammalian retromer subunit which plays an important role in subcellular trafficking pathways, was identified as a novel interaction partner of MuRF3, with which it interacted via its Bin/Amphiphysin/Rvs (BAR)-domain. SNX5 and MuRF3 co-localized and associated with early endosomes, connecting the microtubule-binding MuRF3 to structures of subcellular trafficking pathway. SNX5 was also identified as a substrate of MuRF2, which interacted with and ubiquitinated SNX5 in vivo, mediating its degradation in a UPS-dependent manner. This MuRF2-mediated degradation was inhibited by MuRF3, which stabilized SNX5. Thus, MuRF2 and MuRF3 were linked to a subcellular trafficking protein, SNX5, which is directly associated with microtubules and functionally dependent on a stable microtubule network, suggesting a possible regulatory role of MuRF2 and MuRF3 in microtubule-dependent subcellular trafficking pathways.
2

Étude de la régulation post-transcriptionnelle de l’expression des gènes par la protéine de liaison à l’ARN IMP-2 au cours de la myogenèse / Post-transcriptional regulation of gene expression by IMP-2 during myogenesis.

Boudoukha, Selim 25 November 2011 (has links)
Les rhabdomyosarcomes embryonnaires et aléolaires (RMS) appartiennent aux tumeurs des tissus mous les plus fréquentes chez les enfants dont elles représentent 2/3 des cas. Plusieurs données suggèrent que la dérégulation des cellules progénitrices du muscle squelettique pourrait jouer un rôle dans l'émergence des cellules de RMS qui ont aussi bien perdu le contrôle de la régulation de la prolifération cellulaire que la capacité à se différencier.Néanmoins les mécanismes de développement des RMS restent à caractériser. La famille des IMPs et notamment IMP-2, protéines liant les ARN, sont à la fois fortement exprimées dans le muscle en régénération in vivo mais aussi dans les cellules de RMS.Au cours de ma thèse, j’ai pu mettre en évidence le rôle d’IMP-2 dans la motilité des cellules de RMS et dans les cellules musculaires ainsi que dans le contrôle de l’intégrité du cytosquelette de microtubules (MTs) et dans le remodelage des adhésions focales. En effet, IMP-2 est impliqué à la fois dans la régulation de l’expression de MuRF-3, une protéine lié àla stabilisation des MTs et de Pinch-2, un important médiateur de l’adhésion cellulaire. / The RNA-binding proteins IMPs (IGF-II mRNA binding protein) first discovered in rhabdomyosarcoma cells (RMS) are expressed during embryonic development but their expression is decreased in adult tissues.We showed that IMPs and particularly IMP-2 are strongly expressed in mouse myoblatsts, during early regeneration of skeletal muscle in vivo and in and RMS. IMP-2 loss of function experiments using siRNA have shown that IMP-2 is necessary for microtubules stability(MTs), cell motility and invasion of myoblasts and RMS.Expression of IMP-2 specifically increases MTs stability by an enrichment of detyrosinated tubulin Glu-tubulin. Detyrosination is indispensable for myogenic differentiation and plays substantial role in tumor growth. Additionaly, MTs stabilization play an important role in focal adhesion remodeling, in cytoskeleton integrity, cell adhesion and cell motility.To get new insight into molecular mechanism underlying the function of IMP-2 in MTs stability and cell motility, full ranscriptome analysis was performed between IMP-2 knockdown (KD) myoblasts and control myoblatsts. We have further shown that IMP-2 controls the mRNA levels of many important mediators of cell adhesion such as PINCH-2, as well as multiple cytoskeleton remodeling, such as MuRF-3.We have identified a number of functionally relevant protein partners of IMP-2.Moreover subsequent RNAi screens have revealed the importance of IMP-2 regulated transcripts involved in cell motility and cell adhesion In conclusion, we show that IMP-2 dependent regulation of mRNA such as MuRF3 and PINCH2 largely contributes to the motility –deficient in IMP-2 KD cells. Moreover these results indicate clearly, that further analysis of IMP2 protein partners and RNA targets regulated by IMP-2 will help to characterized the function of IMP-2 and to propose a model of IMP-2 transcriptional regulation of gene expression in myoblasts and RMS cells.
3

Effects of exercise and amino acid intake on mechanisms regulating protein synthesis and breakdown in human muscle

Moberg, Marcus January 2016 (has links)
Skeletal muscle adapts differently to specific modes of exercise, where resistance training results in muscle growth and endurance training induces mitochondrial biogenesis. These are results of molecular events that occur after each exercise session, increasing the expression of specific genes and the rate of both synthesis and breakdown of protein. The rate of protein synthesis is controlled by the mTORC1 signaling pathway, which is potently stimulated by resistance exercise and amino acid, and their combined effect is needed for muscle growth. The essential amino acids (EAA) are responsible for the stimulation of protein synthesis and here leucine has been attributed specific attention, but its particular role among the EAA, and the involvement of the other branched-chain amino acids (BCAA) is unclear. Endurance exercise activates the protein AMPK which, in animal models, has been shown to inhibit mTORC1 signaling and protein synthesis.  Suggesting that concurrent endurance and resistance exercise could restrain muscle growth, but it is unknown if this mechanism is relevant in exercising human muscle. Little is known about the regulation of protein breakdown and although much attention has been given the proteins MuRF-1 and MAFbx which target proteins for degradation, their role requires further investigation. The aim of thesis was to address the mentioned uncertainties by examining how different modes of exercise and amino acids affect mTORC1 signaling, protein synthesis and markers of protein breakdown in human muscle. In study I, the influence of high intensity endurance exercise on subsequent resistance exercised induced mTORC1 signaling was examined. Despite robust activation of AMPK by the endurance exercise there was no inhibition of mTORC1 signaling or protein synthesis during recovery from resistance exercise. Study II utilized a similar set up, but with the difference that resistance exercise was performed with the triceps. The cycling exercise reduced the resistance exercise stimulated mTORC1 signaling immediately after the exercise, but during the recovery period mTORC1 signaling and protein synthesis was similar between trials. Concurrent exercise induced the mRNA expression of MuRF-1 and that of PGC-1α, the master regulator of mitochondrial biogenesis, in both studies, despite that the exercise modes in study II were separated between legs and arms. In study III, the effect of an EAA supplement with or without leucine, in the stimulation of mTORC1 signaling in connection with resistance exercise was examined. Intake of EAA robustly stimulated mTORC1 signaling after exercise, but this was only minor when leucine was excluded from the supplement. In study IV, subjects were supplied with leucine, BCAA, EAA or placebo in a randomized fashion during four sessions of resistance exercise. Leucine alone stimulated mTORC1 signaling after the exercise, but both the amplitude and extent of stimulation was substantially greater with EAA, an effect that was largely mediated by the BCAA as a group. In conclusion, endurance exercise prior to resistance exercise using the leg or arm muscles does not affect mTORC1 signaling or protein synthesis during the three hour recovery period from exercise, supporting compatibility between resistance- and endurance exercise induced signaling. Concurrent exercise increases the expression of the proteolytic marker MuRF-1 compared to resistance exercise only, which could indicate both and increased demand of cellular adaptive remodeling or a more direct detrimental proteolytic effect. Leucine is crucial among the EAA in the stimulation of mTORC1 signaling after exercise, its effect is however potentiated by intake of the remaining EAA. As a supplement a mixture of EAA must be regarded preferable, although the effect is largely mediated by the BCAA as a group.
4

Étude de la régulation post-transcriptionnelle de l'expression des gènes par la protéine de liaison à l'ARN IMP-2 au cours de la myogenèse

Boudoukha, Selim 25 November 2011 (has links) (PDF)
Les rhabdomyosarcomes embryonnaires et aléolaires (RMS) appartiennent aux tumeurs des tissus mous les plus fréquentes chez les enfants dont elles représentent 2/3 des cas. Plusieurs données suggèrent que la dérégulation des cellules progénitrices du muscle squelettique pourrait jouer un rôle dans l'émergence des cellules de RMS qui ont aussi bien perdu le contrôle de la régulation de la prolifération cellulaire que la capacité à se différencier.Néanmoins les mécanismes de développement des RMS restent à caractériser. La famille des IMPs et notamment IMP-2, protéines liant les ARN, sont à la fois fortement exprimées dans le muscle en régénération in vivo mais aussi dans les cellules de RMS.Au cours de ma thèse, j'ai pu mettre en évidence le rôle d'IMP-2 dans la motilité des cellules de RMS et dans les cellules musculaires ainsi que dans le contrôle de l'intégrité du cytosquelette de microtubules (MTs) et dans le remodelage des adhésions focales. En effet, IMP-2 est impliqué à la fois dans la régulation de l'expression de MuRF-3, une protéine lié àla stabilisation des MTs et de Pinch-2, un important médiateur de l'adhésion cellulaire.
5

Identifizierung neuer MuRF-Multiproteinkomplex assoziierter Proteine

Nowak, Marcel 31 July 2014 (has links)
Die Muscle-RING-finger (MuRF) Proteine sind E3-Ubiquitin-Ligasen, die im Muskelgewebe den Ubiquitin-Proteasom-System abhängigen Abbau von Proteinen vermitteln. MuRF1 wird in der Muskelatrophie verstärkt synthetisiert, was zu einem gesteigerten Proteinabbau und damit zum Verlust von Muskelmasse führt. Zudem sind Mäuse, denen MuRF1 fehlt vor Muskelatrophie geschützt. E3-Ubiquitin-Ligasen fungieren oftmals in Multiproteinkomplexen. Dies wurde für MuRF-Proteine bisher nicht gezeigt. Aufgrund dessen sollten neue MuRF-Multiproteinkomplex assoziierte Faktoren mittels Hefe-Zwei-Hybrid-System und SILAC AP-MS identifiziert und deren Einfluss auf die MuRF-Funktion charakterisiert werden. Es wurden sowohl neue als auch publizierte MuRF-Interaktionspartner (Iap) gefunden. Von den neu entdeckten MuRF-Iap wurde der Fokus auf WDR42A gelegt, da das Protein mit beiden Methoden identifiziert wurde und zudem funktionell hoch interessant ist. WDR42A homologe Proteine bilden zirkuläre β-Propeller Strukturen die Multiproteinkomplexe koordinieren. Die Interaktion zwischen MuRF-Proteinen und WDR42A wurde mittels Ko-IP Experimenten und Kolokalisationsstudien bestätigt. Cycloheximid-Abbau-Experimente deuten darauf hin, dass WDR42A kein MuRF1 Substrat-Protein ist. Da die MuRF-Proteine spezifisch im Muskel hergestellt werden, sollte überprüft werden ob WDR42A ebenfalls im Muskelgewebe synthetisiert wird. Es wurde gezeigt, dass WDR42A ubiquitär sowie im Muskelgewebe und in immortalisierten Muskelzellen hergestellt wird. Analog zu MuRF1 wird WDR42A in der Denervations-induzierten Skelettmuskelatrophie und der Muskelentwicklung verstärkt synthetisiert. Die Herunterregulation von WDR42A mittels siRNA in C2C12 Myotuben schützte diese Zellen vor dem Auftreten von Atrophie. Diese Ergebnisse zeigen, dass WDR42A wie MuRF1 an der Entstehung von Muskelatrophie beteiligt ist. Aufgrund der WDR42A Domänenstruktur wird vermutet, dass WDR42A als Scaffolding-Protein MuRF1-Multiproteinkomplexe reguliert. / The muscle-RING-finger (MuRF) proteins are E3 ubiquitin ligases which coordinate the ubiquitin-proteasome system dependent protein degradation in muscle tissue. MuRF1 is up-regulated under muscle atrophy conditions. This leads to enhanced proteolysis and thereby to loss of muscle mass and strength. Furthermore are MuRF1 knockout mice resistant to muscle atrophy. E3 ubiquitin ligases often operate in multi-protein complexes. This has not been shown for MuRF proteins. Therefore we used yeast-two-hybrid and SILAC-AP-MS to identify and subsequently characterize new MuRF multi-protein complex associated proteins. We found new and also published MuRF interaction partners (Iap) with both methods. Amongst the new Iap, we focused on WDR42A, because it was found with both techniques and his interesting functional potential. WDR42A exhibits seven consecutive arranged WD40-repeat domains. This domain arrangement leads in homologues proteins to the formation of seven-bladed β-propeller structures, which act as protein interaction platforms that coordinate multi-protein complexes. The protein interaction between the MuRFs and WDR42A was confirmed with Co-IP and co-localization experiments. Cycloheximide decay experiments indicated that WDR42A is not a MuRF1 substrate protein. The MuRF proteins are muscle specific, therefore we tested if WDR42A is also synthetized in muscle tissue. We could show that WDR42A is ubiquitously, but also in muscle tissue as well as in immortalized muscle cells produced. WDR42A is similar to MuRF1 up-regulated under denervation-induced skeletal muscle atrophy as well as in muscle development. Furthermore are C2C12 myotubes resistant to muscle atrophy after siRNA down-regulation of WDR42A. These results demonstrate that WDR42A is like MuRF1 important for the development of muscle atrophy. Due to the domain structure of WDR42A, we hypothesize that WDR42A regulates MuRF1 multi protein complexes as scaffolding protein.
6

Efeitos do exercício intervalado na expressão de proteínas inflamatórias e catabólicas na musculatura esquelética de ratos tratados com dexametasona

Martuscelli, Aline Mio 27 March 2014 (has links)
Made available in DSpace on 2016-06-02T19:23:00Z (GMT). No. of bitstreams: 1 6281.pdf: 1196634 bytes, checksum: 422ee8c02db41898a26d5fca8418a486 (MD5) Previous issue date: 2014-03-27 / Financiadora de Estudos e Projetos / Dexamethasone is widely used in clinical use due to its potent anti-allergic and antiinflammatory effects, but it has been shown that its chronic use can induce several side effects such as hyperglycemia, hypertension, hypercholesterolemia and muscle atrophy. Muscle atrophy occurs by an imbalance between catabolic and anabolic protein levels. Among catabolic proteins, FOXO3a, MuRF-1 and Atrogin-1 are directly related to muscle atrophy induced by dexamethasone. Furthermore, it is known that some inflammatory proteins (TNF-α and IL-6) also participate in reduction of muscle weight. We have shown that aerobic exercise attenuates some of the side effects of dexamethasone, but nothing is known about interval training (IT) performed before and concomitant dexamethasone treatment. This study investigated if interval training is effective in attenuating muscle atrophy induced by dexamethasone and if the proteins FOXO3a, MuRF-1, Atrogina-1, TNF-αand IL-6 are involved in this response. Rats were distributed into 4 groups: sedentary control (SC), sedentary + Dexa (SD), trained control (TC), and trained + Dexa (TD), and underwent an interval training period (50% and 80% of maximal capacity, 2 and 1 min, respectively, 1h/day, 5 days / week, 70 days) or remained sedentary. Dexamethasone was administered during the last 10 days (0.5mg/kg per day i.p.). The rats were weighed weekly during training and daily during the treatment. The tibialis anterior (TA), soleus (SOL) and flexor hallucis longus (FHL) were collected, weighed and stored for analysis of TNF-α, IL-6, FOXO3a, MuRF-1 and Atrogin-1protein levels using electrophoresis method, Western Blotting. Administration of dexamethasone resulted in a significant decrease in body weight (-17%) followed by reduction in TA (-22%) and FHL (-19%) muscles weight. This reduction in muscle weight involved a significant increase in MuRF-1 protein levels in TA (+27%) and FHL (+18%) muscles, although TNF-α (-37%FHL and -15% SOL) and IL-6 (-26% TA, - 24% FHL and -18% SOL) protein levels were reduced. Interval training was effective in blocking the increase of MuRF-1protein level in TA and FHL muscles, moreover interval training significantly reduced FOXO3a production level in TA muscle, in both groups, TC (-27%) and TD (-32%).This response was followed by an attenuation of TA muscle mass after training. Chronic treatment with dexamethasone, as well as training, did not change Atrogin-1protein level. The results of the present study allow us to conclude that MuRF-1 seems to be involved in TA and FHL muscle atrophy induced by dexamethasone treatment, independent of inflammatory proteins signaling. On the other side, interval training determined TA muscle atrophy attenuation by decreasing MuRF-1 and FOXO3a without changes in TNF-α e IL-6 protein levels. / A dexametasona é amplamente utilizada no uso clínico, devido ao seu potente efeito antialérgico e anti-inflamátorio, entretanto o uso crônico pode induzir diversos efeitos deletérios, tais como hiperglicemia, hipertensão, hipercolesterolemia e atrofia muscular. A atrofia muscular se dá por um desbalanço entre proteínas catabólicas e anabólicas. Dentre as proteínas catabólicas, a FOXO3a, MuRF-1 e Atrogina-1 estão diretamente relacionadas com a atrofia muscular induzida pela dexametasona. Além disso, já se sabe que algumas proteínas inflamatórias (TNF-α e IL-6) também participam na redução de peso muscular. Demonstramos recentemente que o exercício físico aeróbio atenua alguns dos efeitos deletérios da dexametasona, mas nada se sabe sobre os benefícios do exercício físico intervalado (TI) realizado antes e concomitantemente ao tratamento com a dexametasona. Portanto o objetivo deste trabalho foi investigar se o treinamento intervalado seria efetivo em prevenir a atrofia muscular induzida pela dexametasona (0,5mg/kg por 10 dias) e se as proteinas FOXO3a, MuRF-1, Atrogina-1, TNF-α e IL-6 estão envolvidas nesta resposta. Foram utilizados 56 ratos Wistar, separados em 4 grupos: sedentário controle (SC), sedentário tratado com dexametasona (SD), treinado controle (TC) e treinado tratado com dexametasona (TD). Após adaptação na esteira, os animais foram submetidos ao protocolo de TI (50% e 80% da capacidade máxima, 2 e 1 minutos, respectivamente, 1h / dia, 8 semanas, 5 dias / semana) ou mantidos como sedentários. O peso corporal (PC) foi verificado semanalmente durante o treinamento e diariamente durante o tratamento. Os músculos tibial anterior (TA), sóleo (SOL) e flexor longo do hálux (FHL) foram coletados, pesados e armazenados para análises de produção proteica de TNF-α, IL-6, FOXO3a, MuRF-1 e Atrogina-1 utilizando o método de eletroforese. O TI aumentou a capacidade física máxima dos animais treinados. A administração da dexametasona determinou diminuição significativa de PC (-17%) acompanhado de redução do peso muscular do TA (-22%) e FHL (-19%). Esta redução de peso muscular envolveu a proteína MuRF-1, que aumentou no TA (+27%) e FHL (+18%), embora tenha ocorrido diminuição significativa da produção proteica de TNF-α (-37% FHL e -15% SOL) e IL-6 (-26% TA, -24% FHL e -18% SOL) no grupo SD. O TI foi efetivo em bloquear o aumento de MuRF-1 nos músculos TA e FHL, ademais diminuiu significativamente a produção proteica de FOXO3a no músculo TA, tanto para o grupo TC (-27%) como TD (-32%), resposta acompanhada de atenuação da redução de peso muscular no TA, mas não no FHL (TD, -15%). O tratamento crônico com dexametasona, assim como o TI, não determinou alteração na Atrogina-1. Os resultados do presente estudo nos permitem concluir que a MuRF-1 parece estar envolvida na atrofia nos músculos TA e FHL induzida por 10 dias de tratamento com dexametasona, independentemente das alterações das proteínas inflamatórias (TNF-α e IL-6). O TI prévio, por sua vez, determinou atenuação da atrofia no TA por promover diminuição significativa na produção proteica de MuRF-1e de FOXO3a, sem alterar a produção proteica de TNF-α e IL-6.
7

Efeitos do treinamento resistido associado com decanoato de nandrolona sobre a expressão gênica de moduladores de vias de hipertrofia e atrofia do músculo esquelético

Stotzer, Uliana Sbeguen 02 June 2016 (has links)
Made available in DSpace on 2016-06-02T19:22:52Z (GMT). No. of bitstreams: 1 2703.pdf: 887815 bytes, checksum: ffe15f73632c174ed03a17b4e76bcee7 (MD5) / Universidade Federal de Sao Carlos / Androgenic-anabolic steroids (AAS) are spread among athletes and no athletes in order to improve performance or physical appearance. AAS targets the satellite cells in skeletal muscles, which are the major precursors of the skeletal muscle, and are essential for muscle growth and repair. When activated, in the presence of several factors, including myogenic differentiation factor D (MyoD), they proliferate and differentiate into new myofibers or myonuclei, resulting in increased protein synthesis. On the other hand, myostatin is able to inhibit cell cycle progression. Up-regulation of the expression of ubiquitin ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF-1), results in increased muscle degradation. The understanding of AAS mechanism of action in skeletal muscle is critical for a better comprehension of muscular physiology under AAS use and abuse. The aim of this study was to investigate the effects of resistance training associated to AAS supraphysiological dose on the expression of modulators of skeletal muscle pathways of atrophy and hypertrophy. Wistar rats were grouped into: sedentary (S); trained (T); S with AAS (A); and T with AAS (TA). Exercised groups performed jumps in water: 4 sets of 10 jumps each and 30-second of rest interval between series, for 7 weeks with a progressive overload of 50 to 80% of body weight. Nandrolone decanoate (5 mg/kg) was injected sc twice a week. After last exercise session animals were killed. Myostatin, MyoD, Atrogin-1 and Murf mRNA expression were determined in the gastrocnemius muscle extracts by real-time reverse transcriptase-polimerase chain reaction (RT-PCR). The exercise did not change RNAm expression of any studied genes while AAS or its association with training increased atrogina-1 and reduced myostatin RNAm. The expression of MyoD and MuRF-1 was not altered by AAS. These results showed that both myostatin and atrogin-1, important genes of skeletal muscle related to cell cycle progression and protein degradation, are sensitive to supraphysiological doses of AAS. / O uso de esteróides anabólicos androgênicos (EAA) é disseminado entre atletas e não atletas que desejam melhorar o desempenho ou a aparência física. Os EAA agem sobre as células satélites no músculo esquelético, que são as principais precursoras do músculo esquelético, sendo essenciais tanto para crescimento quanto para reparo muscular. Quando são ativadas, na presença de diversos fatores, incluindo o fator D de diferenciação miogênica (MyoD), elas podem se proliferar e diferenciar-se em novas miofibrilas ou mionúcleos, resultando em maior síntese proteica. Por outro lado, a miostatina é capaz de inibir essa progressão do ciclo celular. Uma maior expressão de ubiquitinas de ligação, Atrogina-1 e muscle ring finger protein 1(MuRF-1), resulta em aumentada degradação muscular. Entender os mecanismos de ação dos EAA no músculo esquelético é essencial para uma melhor compreensão da fisiologia muscular sob a ação dos EAA. O objetivo desse estudo foi investigar os efeitos do treinamento pliométrico aquático com sobrecarga associado a doses suprafisiológicas de EAA sobre a expressão de moduladores de vias de hipertrofia e atrofia do músculo esquelético. Ratos Wistar foram agrupados em não treinados (S), treinados (T), S tratados com EAA (E), e T tratados com EAA (TE). Os grupos que treinaram realizaram saltos na água: quatro séries de 10 saltos com 30 segundos de intervalo entre as séries, 5 vezes por semana durante 7 semanas, com uma sobrecarga progressiva de 50 a 80% do peso corporal. Decanoato de nandrolona (5 mg/kg) foi injetado subcutaneamente duas vezes por semana. Imediatamente após a última sessão os animais foram mortos. A expressão gênica de miostatina, MyoD, Atrogina-1 e MuRF-1 do músculo gastrocnêmio foi determinada por transcriptase reversa-reação em cadeia da polimerase (RT-PCR) em tempo real. O treinamento não alterou a expressão de nenhum dos genes estudados, enquanto sua associação com o EAA aumentou a expressão gênica de atrogina-1 e reduziu de miostatina. A expressão de MyoD e MuRF-1 não foi alterada pelo EAA. Os resultados mostraram que tanto a miostatina quando a atrogina-1, importantes genes relacionados tanto a progressão do ciclo celular quanto a degradação de proteínas no músculo esquelético, são sensíveis ao EAA.
8

Effekten av 10 veckors styrketräning på markörer för hypertrofi, translation och proteolys

Väisänen, Daniel January 2016 (has links)
Det har forskats mycket på olika signalvägar i det mänskliga genomet, trotts detta finns det många frågetecken som kvarstår. Denna uppsats undersöker några av dem. Syfte: Undersöka förändringar i genuttryck och mRNA-nivåer för hypertrofi- (MRF4) translations- (5.8S & 18S) och proteolysreglerande gener (MuRF1 & GDF-8) efter en 10 veckor lång styrketräningsperiod hos kvinnor och män. Frågeställningar: (1) Finns det en förändring i total mängd RNA före och efter en 10 veckors styrketräningsintervention. (2) Finns det en förändring i uttryck av MRF4, 5.8S, 18S, MuRF1 samt GDF-8 efter en 10 veckors styrketräningsintervention. (3) Finns det en könsskillnad i förändringen av total mängd RNA samt aktivering av MRF4, 5.8S, 18S, MuRF1 och GDF-8 efter en 10 veckors styrketräningsintervention. Metod: Urvalet för analysen bestod av 16 otränade försökspersoner varav 8 var män och 8 var kvinnor. Försökspersonerna utförde unilateral styrketräning av nedre extremiteten under 10 veckor, under 2 av dessa veckor utfördes ocklusionsträning.  Träningsperiodiseringen var vågformig (70-90% av 1RM, 5-12 rep, 3 ggr/vecka). Muskelbiopsier togs i det arbetande benet före träningsperiodens start samt 3-7 dagar efter träningsperiodens avslut. Genuttryck analyserades med qPCR. Resultat: Det fanns ingen signifikant skillnad i förändring mellan män och kvinnors totala RNA eller genuttryck. Total RNA ökade signifikant (p<0,01) med 19,2 %. Kvinnorna hade en signifikant ökning (P<0,05) av RNA på 27,6 % medan männen hade en signifikant ökning (p<0,05) på 14 %. MRF4 hade en signifikant (P>0,05) procentuell ökning i genuttryck med 55,7 % och kvinnor för sig hade en signifikant (P>0,05) ökning på 64 %. GDF-8 ökade signifikant (P>0,05) med 55,5 % medan GAPDH ökade signifikant (P>0,05) för båda könen tillsammans med 70,6 % och för män med 87,8 %. MuRF1 och 5.8S hade inga signifikanta förändringar i genuttryck. Slutsats: Det verkar som att både män och kvinnor får en liknande procentuell förändring av total RNA och mRNA genuttryck 3-7 dagar efter en 10 veckors hypertrofistyrd styrketräningsperiod. För att mäta genuttryck av translationsgenen MRF4 verkar 3-7 dagar efter en 10 veckors styrketräningsperiod vara en tidpunkt då det fortfarande pågår hypertrofi av skelettmuskulaturen.  Av de proteolysreglerande generna GDF-8 och MuRF1 sågs en uppreglering av GDF-8 vilket skulle kunna vara ett tecken på att hypertrofin börjar hämmas. Ett oväntat fynd var att GAPDH visade sig vara olämplig som kontrollgen vid en styrketräningsintervention på 10 veckor och att 18S var väldigt stabil. Detta kan betyda att GAPDH inte skall användas vid längre styrketräningsinterventioner. / There have been much research on signaling pathways in the human genome, but there still remain many questions. This paper examines some of them. Aim: Investigate changes in gene expression and mRNA levels of hypertrophy (MRF4), translation (5.8S & 18S) and proteolysis regulating genes (GDF-8) after a 10-week strength training period in men and women. Research questions: (1) Is there a change in the total amount of RNA before and after a 10-week strength training intervention. (2) Is there a change in the expression of MRF4, 5.8S, 18S, Murf1 and GDF-8 after 10 weeks of strength training. (3) Is there a gender difference in the change of total RNA and the expression of MRF4, 5.8S, Murf1 and GDF-8 after a 10-week long strength training intervention. Method: The sample for analysis consisted of 16 untrained subjects, of whom 8 were men and 8 were women. The subjects performed unilateral resistance training of lower extremities for 10 weeks, during two of these weeks blood flow restriction training were performed. The training was undulating (70-90% of 1RM, 5-12 cord, 3 times / week). Muscle biopsies were taken from the working leg before the start and 3-7 days after the training period. Gene expression was analyzed by qPCR. Results: There was no significant gender difference in total RNA or gene expression. Total RNA was significantly increased (p <0.01) with 19.2 %. The women had a significant increase (P <0.05) of RNA at 27.6 %, while the men had a significant increase (p <0.05) at 14 %. MRF4 had a significant (P> 0.05) percentage increase in gene expression by 55.7 %, and women had a significant (P> 0.05) increase of 64 %. GDF-8 increased significantly (P> 0.05) with 55.5 %, while GAPDH increased significantly (P> 0.05) for both sexes with 70.6 % and for men with 87.8 %. Murf1 and 5.8S had no significant changes in gene expression. Conclusions: It seems that both men and women experience a similar percentage difference of total RNA and mRNA gene expression 3-7 days after a 10 weeks long strength training period. To measure the gene expression of MRF4 3-7 days after a 10-week weight-training period seems to be a time when there still is a anabolic responses in the skeletal muscle. Of the proteolysis regulating genes GDF-8 and Murf1 there was an upregulation of GDF-8, which could be a sign that the inhibition of hypertrophy started. An unexpected finding is that GAPDH was found to be unsuitable as a control gene at a strength training intervention at 10 weeks and rRNA 18S was very stable, which could mean that GAPDH should not be used as control gene in longer strength training studies.
9

Einfluss einer Hyperglykämie auf die Expression von Proteinen des Ubiquitin-Proteasom-Systems im Skelett- und Herzmuskel

Koerner, Tobias 25 January 2011 (has links) (PDF)
Es ist bekannt, dass eine diabetische Stoffwechsellage über einen gesteigerten Proteinabbau zu einer Muskelatrophie führen kann. Ein zentrales System beim Abbau von Muskelproteinen ist hierbei das Ubiquitin-Proteasom-System mit seinen zwei spezifischen E3-Ligasen MuRF-1 und MAFbx. Ziel dieser Arbeit war es, den Einfluss einer Hyperglykämie auf die Expression von Proteinen des Ubiquitin-Proteasom-Systems im Skelett- und Herzmuskel zeit- und konzentrationsabhängig zu untersuchen. Insbesondere stand die Expression der E3-Ligasen MuRF-1 und MAFbx sowie die daraus folgende Auswirkung auf die Protein-Ubiquitinylierung im Fokus der Untersuchungen. Weiterhin sollte der Einfluss der Hyperglykämie auf die Apoptoserate von Skelett- und Herzmuskelzellen analysiert werden. Seit Kurzem stehen die GLP-1-Analoga als neue Antidiabetika für die Therapie des Diabetes mellitus Type II zur Verfügung. Da in Studien bereits positive Effekte der GLP-1-Analoga am Herzmuskel festgestellt wurden, sollte in der vorliegenden Studie geprüft werden, ob das GLP-1-Analogon Liraglutid die Veränderungen am Herzmuskel beeinflussen kann. Um die Fragestellungen zu klären, wurden verschiedene Untersuchungen in der Zellkultur durchgeführt. Skelettmuskel Myoblasten (undifferenzierte C2C12-Zellen), Skelettmuskel Myotuben (differenzierte C2C12-Zellen) und neonatale Rattenkardiomyozyten wurden unterschiedlichen Glukosekonzentrationen (5mM, 12mM, 25mM) für 24 oder 72 Stunden ausgesetzt. Die Herzmuskelzellen wurden zusätzlich in den Glukosekonzentrationen unter Zusatz von 12 mg/ml Liraglutid für 72h inkubiert. Die Expression der E3-Ligasen wurde mit qRT-PCR (MuRF-1 und MAFbx) und Western Blot (MuRF-1) quantifiziert. Die Poly-Ubiquitinylierung wurde mittels Western Blot bestimmt. Unter Verwendung des Cell Death Detection ELISA (Roche Diagnostics) wurde die Apoptoserate evaluiert. Die Inkubation von Skelett- und Herzmuskelzellen für 24 h mit hyperglykämischen Medium hatte kaum einen Einfluss auf die Expression von MuRF-1 und MAFbx sowie die Apoptoserate. Bei einer Inkubationszeit von 72 h konnten signifikante Erhöhungen bei 25mM Glukose für MuRF-1, MAFbx, der Poly-Ubiquitinylierung und der Apoptoserate in Skelett und Herzmuskelzellen festgestellt werden. Diese Anstiege konnten durch den Zusatz von Liraglutid beim Herzmuskel verhindert werden. Die Ergebnisse der vorliegenden Studie konnten zeigen, dass eine Hyperglykämie in der Zellkultur nach 72 h die Expression von zwei wichtigen Ubiquitin-E3-Ligasen sowie die Steigerung der Apoptoserate induzieren kann und dass dies durch Liraglutid am Herzmuskel verhindert werden kann. Diese Vorgänge können eventuell den Proteinverlust bzw. die Muskelatrophie beim Diabetes mellitus zum Teil erklären. Durch die positive Beeinflussung von Liraglutid an den Herzmuskelzellen könnte sich hier ein therapeutisches Potential zur Muskelatrophiebehandlung ergeben.
10

Rôle de la voie de la SUMOylation dans les fonctions de la protéine TRIM55

Hammami, Nour El Houda January 2020 (has links) (PDF)
No description available.

Page generated in 0.0286 seconds