• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 107
  • 34
  • 23
  • 1
  • 1
  • Tagged with
  • 349
  • 253
  • 58
  • 53
  • 45
  • 43
  • 43
  • 41
  • 40
  • 40
  • 33
  • 33
  • 31
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Implication of mitochondria endoplasmic-reticulum interactions in the control of hepatic metabolism / Implication des interactions mitochondrie-réticulum endoplasmique dans le contrôle du métabolisme hépatique

Theurey, Pierre 16 July 2015 (has links)
Le foie est un organe indispensable dans le contrôle de l'homéostasie énergétique du corps humain. En particulier, le métabolisme hépatique est crucial pour l'homéostasie glucidique et lipidique. Les voies cataboliques et anaboliques sont en équilibre constant et régulées de façon synergique en fonction de la disponibilité en nutriments et de la demande en énergie. La perturbation de cet équilibre, notamment en cas d'obésité, peut conduire à l'accumulation intra-hépatique de lipides, qui est une des causes principales de la survenue de l'insulino-résistance hépatique (IRH), conduisant à l'hyperglycémie chronique et au diabète de type 2 (DT2). La cellule eucaryote est une structure hautement compartimentée, et à ce titre la compartimentalisation des processus cataboliques et anaboliques est une part intégrante de la gestion des voies métaboliques. Dans cet ensemble, la mitochondrie est un organite clef, qui abrite l'oxydation des lipides, le cycle de l'acide citrique (CAC) et la respiration cellulaire. De cette manière, la fonction mitochondriale est un élément crucial dans le maintien de l'état énergétique et d'oxydation-réduction de la cellule dans une gamme physiologique, ainsi que dans la régulation de l'activité du métabolisme du glucose et des lipides pour l'homéostasie du corps entier. La fonction mitochondriale est directement régulée par son interaction avec le réticulum endoplasmique (RE) via des zones de proximité entre les organites appelées Mitochondria-Associated-Endoplasmic-Reticulum-Membranes ou MAM. Dans ce contexte, j'ai participé au cours de mon travail de thèse à une étude qui a montré l'importance des interactions mitochondrie-RE dans la signalisation de l'insuline et mise en lumière la perturbation des MAM comme acteur principal dans l'IRH. De plus, j'ai étudié la régulation des MAM dans le contexte physiologique de la transition nutritionnelle dans le foie sain et insulino-résistant (IR) / The liver is an essential organ in the control of energetic homeostasis of the human body. Particularly, hepatic metabolism is crucial for glucose and lipid homeostasis. Catabolism and anabolism of both substrates are in constant equilibrium and synergically regulated in regard of nutrient availability and energetic demand. Disruption of this equilibrium, especially in the case of obesity, can lead to hepatic accumulation of lipids, which is a major cause of hepatic insulin resistance (HIR) leading to chronic hyperglycaemia and type 2 diabetes (T2D). The eukaryotic cell is a highly compartmented structure, and in this respect compartmentation of anabolic and catabolic processes is an integral part of managing metabolic pathways together. In this context, the mitochondrion is a key organelle, housing oxidation of lipids, the tricarboxylic acid (TCA) cycle and cellular respiration. In this way, mitochondrial function is a crucial element in maintaining energetic and reductionoxidation state of the cell within physiological ranges, as well in regulating the proper activity of glucose and lipid metabolism for the all body homeostasis. Mitochondrial function is directly regulated by its interaction with the endoplasmic reticulum (ER) via proximity points between the organelles called Mitochondria-Associated-ER-Membranes (MAM). In this context I have participated during my Ph.D. in a work that has shown the importance of mitochondria-ER interactions in insulin signalling and highlighted MAM disruption as a main actor in HIR. Furthermore, I have studied the regulation of MAM in the physiological context of nutritional transition in the healthy and insulin resistant (IR) liver. Particularly, we have shown that MAM disruption induces impaired insulin signalling, while their reinforcement protects against its appearance and restore insulin sensitivity in lipid-induced IR condition. Moreover, we have pointed out a consistent decrease of MAM quantity in the IR liver of ob/ob, high-fat high-sucrose diet (HFHSD) and Cyclophilin D - knock-out (CypD-KO) mice
312

Rôle d'OPA1 dans le fonctionnement et l'architecture des cellules musculaires striées et dans la réponse à un stress / Role of OPA1 in striated muscle cell function and architecture and in response to stress

Caffin, Fanny 19 December 2012 (has links)
L’ADOA-1 (Autosomal dominant optic atrophy) est une maladie neurologique pouvant être causée par la mutation de la protéine mitochondriale OPA1 (Optic atrophy type 1) et pouvant conduire à une cécité. Certains patients peuvent présenter un dysfonctionnement mitochondrial plus généralisé, et développer d'autres complications neuromusculaires (ADOA-1+). La protéine OPA1 est une dynamine GTPasique impliquée dans la dynamique mitochondriale en modulant la fusion des membranes internes, et plus largement dans le maintien des fonctions mitochondriales. Le rôle de cette protéine a été étudié dans beaucoup de types cellulaires, mais peu d’études se sont intéressées à la cellule cardiaque qui pourtant possède de nombreuses mitochondries.La 1ère question soulevée par cette thèse était de déterminer l’implication de la protéine OPA1 dans l’organisation du réseau mitochondrial et dans le fonctionnement de la cellule cardiaque en condition physiologique ou pathologique. Pour répondre à cela, nous avons utilisé un modèle murin hétérozygote pour Opa1 (Opa1+/-). Nous avons montré que dans le cardiomyocyte adulte, la diminution d’expression d’OPA1 induisait un déséquilibre de la balance fusion/fission, qui se traduisait par une désorganisation du réseau mitochondrial, ainsi qu’une altération de la morphologie des mitochondries. Cependant, ces modifications n’engendraient pas d’altération des capacités oxydatives des mitochondries, mais conduisaient à une perturbation des propriétés d’ouverture du PTP. En outre, la déficience en OPA1 n’influençait pas la fonction cardiaque en condition physiologique, mais était associée à son altération plus sévère en condition pathologique. La 2nde question de cette thèse était de savoir l’implication d’OPA1 dans la réponse à un stress physiologique des cellules musculaires squelettiques, et ainsi étudier le lien éventuel entre OPA1 et la mise en place de la biogénèse mitochondriale. Nous avons donc soumis nos souris Opa1+/- à un exercice d’endurance. Nos résultats ont révélé que nos deux groupes d’animaux disposaient des mêmes capacités physiques à l’entraînement. L’adaptation des souris Opa1+/- à l’entrainement s’effectuait par un remodelage métabolique, vraisemblablement pour contrer un défaut d’adaptation de la biogénèse mitochondriale. En conclusion, nos résultats ont permis de mieux définir le rôle de la protéine OPA1 dans les muscles striés et son implication dans l’adaptation à un stress. Ce travail nous ouvre des perspectives sur le rôle de la dynamique mitochondriale dans l’adaptation à un stress. / ADOA-1 (Autosomal dominant optic atrophy) is a neurological disease that can be caused by mutations in mitochondrial protein OPA1 (Optic atrophy type 1) and can lead to blindness. Some patients with OPA1 mutations may have a generalized mitochondrial dysfunction, and may develop additional neuromuscular complications (ADOA-1+). OPA1 protein is a GTPase dynamin involved in mitochondrial dynamics by controlling the fusion of inner membranes, and also in the maintenance of mitochondrial functions. The role of this protein has been studied in many cell types, but only few studies have been done on cardiac cell, which nevertheless has many mitochondria.The first question raised by this thesis was to determine the involvement of OPA1 protein in mitochondrial network organization and the functioning of the cardiac cell in physiological or pathological condition. To answer this, we used a mouse model heterozygous for Opa1 (Opa1+/-). We have shown that in adult cardiomyocytes, a decrease expression of OPA1 induces an imbalance fusion/fission, which results in a disruption of mitochondrial network, as well as alteration of the morphology of mitochondria. However, these changes did not alter oxidative capacities, but leads to a disturbance of PTP opening. Additionally, OPA1 deficiency did not affect cardiac function under physiological conditions, but it is associated with a stronger impairment of cardiac function in pathological condition.The 2nd part of this thesis was to determine the involvement of OPA1 in response to physiological stress in cells of skeletal muscle, and thus to study the possible link between OPA1 and mitochondrial biogenesis activation. For this, we submitted our Opa1+/- mice to an exercise training. Our results showed that both groups of animals were able to perform the same physical activity. The adaptation of Opa1+/- mice to training did not involve mitochondrial biogenesis and led to a specific response involving a metabolic remodelling towards higher fatty acids utilization.In conclusion, our results allowed us a better understanding of OPA1 role in striated muscle and its involvement for adaptation to a stress. This work opens new perspectives on the role of mitochondrial dynamics in cardiac and muscle cells and during adaptation to a stress
313

Regulation of mitochondrial ATPase by its inhibitor protein IF1 in Saccharomyces cerevisiae / Régulation de l’ATP synthase mitochondriale par son inhibiteur endogène IF1 chez Saccharomyces cerevisiae

Wu, Qian 12 December 2013 (has links)
ATP synthase est une protéine essentielle associée à la membrane interne mitochondriale, qui synthétise l'ATP par couplage d’un transport de protons au travers de la membrane, en dissipant un gradient électrochimique de protons créé par la chaîne respiratoire. Cette réaction assure l’alimentation en énergie des processus biologiques cellulaires. Si la membrane mitochondriale se dépolarise, la réaction inverse d’hydrolyse d’ATP est rapidement bloquée par un inhibiteur soluble naturel de l’ATPase mitochondriale, IF1. Cette régulation efficace et réversible évite le gaspillage de l’énergie par la cellule. Chez la levure, IF1 est une petite protéine de 63 amino-acides. Elle se fixe sur l'une des trois interfaces catalytiques de l’ATP synthase et inhibe l’hydrolyse d’ATP. Bien que les structures cristallographiques des complexes F1-ATPase inhibés par IF1 aient été résolus, l'étape initiale de reconnaissance et celle du verrouillage d’IF1 restent peu claires au niveau moléculaire.Pendant ma thèse, nous nous sommes intéressés au mécanisme d’inhibition de l’ATPase par IF1. Par des analyses des structures disponibles et des alignements de séquence, nous avons sélectionné de nombreux résidus localisés dans différentes régions des sous-unités α et β de l'ATP synthase de Saccharomyces cerevisiae et susceptibles de participer au processus de fixation d'IF1. En utilisant le mutagenèse dirigée combinée à des experiences cinétiques, nous avons étudié les effects des mutations sur l’inhibition de l’ATP synthase par IF1 chez Saccharomyces cerevisiae. Dans ce travail, nous avons identifié des résidus ou motifs des sous-unités α et β de l’ATP synthase impliqués dans les étapes de reconaissance et/ou verrouillage d’IF1, ce qui nous permet de compléter les études structurales et d'esquisser un mécanisme de fixation d'IF1. / ATP synthase is an essential protein complex located in the mitochondrial inner membrane, which synthesize ATP by coupling to a rotary proton transport across the membrane at the expense of the electrochemical proton gradient created by the electron transport chain. This reaction guarantees the supply of energy to biological processes in a cell. When mitochondria get deenergized, i.e. the protomotive force across the mitochondrial inner membrane collapses, the ATP synthase switches from ATP synthesis to hydrolysis. This hydrolytic activity is then immediately prevented by a natural soluble mitochondrial ATPase inhibitor, IF1. This efficient reversible inhibition system protects cells from wasting energy. In yeast, IF1 is a small protein consisting of 63 amino acids. It binds to one of the three (αβ) catalytic interfaces of ATP synthase and thereby blocks the rotary catalysis. Although the crystal structure of the dead-end IF1 inhibited F1-ATPase complex has been resolved, IF1 initial binding and locking to ATPase still remain unclear events at the molecular level.During my thesis, we have been interested in the dynamic mechanism of ATPase inhibition by IF1. By means of analyses of published structures and protein sequence alignment, we selected numerous residues located in different regions of Saccharomyces cerevisiae ATP synthase α, β subunits, which might potentially paticipate in IF1 binding process. Using site-directed mutagenesis combined with kinetic experiments, we studied the effect of mutations of the selected candidates on the rate and extent of ATPase inhibition by IF1. In this way we identified residues or motifs in ATP synthase α, β subunits involved in IF1 recognition and/or locking steps, which allows complementing structural studies and drawing an outline of IF1 binding.
314

Contribution à l’étude de la régulation des complexes respiratoires par la phosphorylation chez Saccharomyces cerevisiae : -Etude générale du protéome et du phosphoprotéome mitochondrial selon le métabolisme -Cas particulier de deux sous-unités du complexe cytochrome c oxydase / Contribution to the Study of Regulation of Respiratory Complexes by Phosphorylation in Saccharomyces cerevisiae : -General Proteomic and Phosphoproteomic Analysis of Mitochondria According to Metabolism -Particular Study of two Subunits of Complex Cytochrome c Oxidase

Renvoisé, Margaux 13 October 2014 (has links)
La phosphorylation oxydative est un processus majeur du métabolisme énergétique qui est catalysée par les enzymes de la chaîne respiratoire (OXPHOS), localisées dans la membrane interne des mitochondries. Sa dérégulation est souvent associée à des pathologies, par exemple aux maladies mitochondriales et neurodégénératives. La régulation de la phosphorylation oxydative par la phosphorylation reste encore peu comprise et peu étudiée. Pourtant, la phosphorylation est une des modifications post-traductionnelles les plus répandues dans la cellule, régulant de nombreux aspects de la vie cellulaire et dont l’altération est associée à des pathologies au niveau cellulaire (Alzheimer, Parkinson, cancer). Concernant la phosphorylation oxydative, il est à noter que quelques sites de phosphorylation des complexes respiratoires, en particulier du complexe IV, ont été montrés comme ayant un effet sur leur stabilité et/ou leur activité. Toutefois la connaissance du phosphoprotéome mitochondrial n’est pas suffisamment documentée à ce jour pour identifier les différents rôles que pourraient jouer la phosphorylation au niveau de la mitochondrie et en particulier, de la chaîne respiratoire. Dans la première partie de la thèse, nous nous sommes intéressés à l’analyse du phosphoprotéome mitochondrial de Saccharomyces cerevisiae dans trois conditions de culture : respiratoire (YLAC), respiro-fermentaire (YPGalA) et fermentaire (YPGA). Nous avons quantifiés près de 300 sites de phosphorylation dans la mitochondrie, dont 90 ont un niveau de phosphorylation variable selon le substrat. Les données que nous avons obtenues constituent une base pour l’analyse de la phosphorylation mitochondriale et de la compréhension de son mécanisme. Les sites de phosphorylation de la voie métabolique énergie sont ceux présentant le plus de variation de leur niveau de phosphorylation. La localisation des résidus phosphorylés sur la structure des complexes respiratoires nous a permis d’émettre des hypothèses sur le rôle de ces résidus. Afin de normaliser la quantité des résidus phosphorylés dans les trois conditions de culture, nous avons aussi quantifié le protéome mitochondrial dans les trois conditions de culture. Ceci nous a permis d’argumenter en faveur d’un métabolisme respiro-fermentaire en YPGalA, question encore largement discutée à ce jour. Enfin, cette première étude quantitative du protéome et phosphoprotéome mitochondrial constitue une avancée dans l’étude de la régulation de la mitochondrie par la phosphorylation. Elle peut notamment apporter des informations applicables à l’étude du cancer : en effet, les cellules saines ont un métabolisme respiratoire tandis que les cellules tumorales, dérégulées, ont un métabolisme fermentaire. La seconde partie de la thèse concerne l’analyse du rôle de deux sous-unités du complexe IV de la chaîne respiratoire : les sous-unités Cox12p et Cox13p, encore peu étudiées à ce jour. De plus, deux sites de phosphorylation ont été identifiés sur la sous-unité Cox12p. Dans un premier temps, nous nous sommes intéressés au rôle de ces sous-unités, notamment au niveau de l’assemblage et de l’activité du complexe IV, en analysant des mutants Δcox12, Δcox13 et Δcox12Δcox13. Dans un deuxième temps, nous nous sommes intéressés au rôle des deux sites de phosphorylation de Cox12p : Ser7 et ser82. Nous avons généré les mutants phosphomimétiques de ces deux résidus et étudié leurs effets sur la stabilité et/ou l’activité du complexe IV. Cette seconde étude nous a notamment permis d’identifier un rôle de Cox12p sur la stabilité du complexe et un rôle de Cox13p dans sa dimérisation. La phosphorylation de Cox12p au niveau de la Ser7 semble aussi déstabiliser le complexe IV. De plus, la phosphorylation de la Ser7 et de la Ser82 semblent influencer l’interaction du cytochrome c avec le complexe IV. Cette hypothèse reste à vérifier mais est pertinente du fait de la proximité de Cox12p avec Cox2p, qui porte le lieu de fixation du cytochrome c. / Mitochondria are the powerhouses of cells, providing energy in the form of adenosine triphosphate (ATP). The synthesis of ATP is achieved by oxidative phosphorylation (OXPHOS), a process catalyzed by the respiratory chain, which is located in the inner membrane of mitochondria. Deregulation of OXPHOS is often associated to diseases. Deregulation is particularly observed in mitochondrial diseases and neurodegenerative diseases, but regulation of respiration by phosphorylation is still poorly understood.However, phosphorylation is one of the most frequent post-translational modifications in the cell, modulating most processes, and defects at a cellular level are observed in some diseases (Alzheimer, Parkinson, cancer). Moreover, some phosphorylation sites have been identified in the respiratory complexes, particularly in the complex IV; some of them have an effect on the stability and/or activity of the complex, but we still lack a comprehensive study about mitochondrial phosphoproteome. Such analysis would be necessary to extend the role of phosphorylation in the regulation of mitochondrial functions in general, and in the regulation of the respiratory chain in particular.In the first part of this thesis, we focused on the analysis of the mitochondrial phosphoproteome of Saccharomyces cerevisiae. We studied the mitochondrial phosphoproteome in three growth conditions: in the respiratory condition (YLAC), in the fermentable condition (YPGA) and in an intermediate one (YPGalA). We quantified around 300 mitochondrial phosphorylation sites in which 90 displayed a different level of phosphorylation according to the substrate. This study is a first step towards understanding mitochondrial phosphorylation and its mechanism. Phosphorylation sites with varying levels of phosphorylation according to their conditions are mostly located on proteins involved in energy metabolism. We localized the phosphosites on the structure of the respiratory complexes when it was possible. This allowed us to make hypotheses on the role of these residues. In order to normalize the quantity of phosphorylation sites in the three growth conditions, we also studied the mitochondrial proteome in the three conditions. These results helped us to understand the energetic metabolism of galactose, which is surely intermediate between respiration and fementation, a question still debated nowadays.Finally this proteomic and phosphoproteomic study is a step forward in the comprehension of regulation of mitochondria by phosphorylation. These results can be used as a model to study cancer cells because they display a deregulation in the energetic metabolism: normal cells display respiratory metabolism whereas cancer cells exhibit fermentable metabolism.The second part of this thesis was the study of two subunits of complex IV of the respiratory chain: Cox12p and Cox13p, which had been poorly studied. Moreover, two phosphorylation sites had been identified in the subunit Cox12p. First we were interested in the role of these two proteins, thus we compared the mitochondria of mutants Δcox12, Δcox13 et Δcox12Δcox13 with wild-type mitochondria. We particularly focused on the assembly and the activity of complex IV. Secondly, we analyzed the role of the two phosphosites of Cox12p: Ser7 and Ser82. We generated phosphomimetic mutants of these two residues and observed their effects on the stability and/or activity of complex IV.All of these results allowed us to identify a role of Cox12p in the stability of complex IV and a role of Cox13p in the dimerization of complex IV. Phosphorylation of Ser7 of Cox12p seemed to destabilize the complex. Moreover phosphorylation of both Ser7 and Ser82 of Cox12p seemed to modify the interaction between cytochrome c and complex IV; this hypothesis remains to be tested but is relevant according to the proximity between Cox12p and the subunit Cox2p, where the cytochrome c interacts.
315

Modélisation gros grains et simulation multi-agents - Application à la membrane interne mitochondriale

Lales, Charles 13 December 2007 (has links) (PDF)
Cette thèse porte sur la modélisation de la membrane interne mitochondriale et des complexes enzymatiques de la chaîne respiratoire imbriqués dans cette bicouche phospholipidique. Une alternative aux techniques de la mécanique moléculaire qui représentent les objets biologiques au niveau atomique sont les modèles à grains d'atomes, ou modèles « gros grains », qui offrent la possibilité d'étudier les phénomènes biologiques à des échelles de temps de l'ordre du dixième de microseconde et d'espace de l'ordre du dixième de micromètre, ce qui correspond à des valeurs beaucoup plus proches de celles nécessaires pour l'étude de phénomènes comme la formation de replis de la membrane. Le modèle proposé représente les phospholipides, constituants de la membrane, sous la forme de trimères rigides rectilignes avec un solvant implicitement modélisé. Ce modèle gros grains donne lieu à une conception orientée agent qui est implémentée sous la forme d'un Système Multi-Agents (SMA) appelé MitoMAS. Des différentes simulations réalisées avec MitoMAS, nous pouvons retenir que l'hydrophobie des phospholipides peut être modélisée avec un solvant implicite comme l'atteste l'apparition de micelles à partir d'une mixture initiale. Une distance de coupure (« cutoff » ) pour les potentiels intermoléculaires d'1nm se révèle être un bon compromis entre réalisme et efficacité des simulations. Sous certaines contraintes de pression latérale, les bicouches forment des replis semblables à ceux de la membrane interne. Les simulations de systèmes hétérogènes nous ont permis de retrouver les observations de radeaux (portions membranaires constituées d'un seul type de phospholipide) et celles de systèmes mixtes phospholipides/protéines, le confinement des complexes intramembranaires dans les replis de la bicouche lipidique. Les perspectives sont nombreuses. Outre l'exploration « in silico » de nouveaux potentiels et de leurs paramètres, il est possible d'envisager des modèles mixtes type gros grains / surfaces maillées afin d'étudier l'interactome d'une cellule.
316

ETUDE DES REMANIEMENTS LIPIDIQUES DES CELLULES VEGETALES EN CARENCE DE PHOSPHATE

Jouhet, Juliette 25 November 2005 (has links) (PDF)
Dans de nombreux sols, le phosphate est un élément limitant pour la croissance des plantes. Au niveau cellulaire, la carence de phosphate induit une diminution de la teneur en phospholipides, permettant la mobilisation du phosphate contenu dans ces molécules. Cette baisse est compensée par une augmentation de la teneur en glycolipides plastidiaux non phosphorés tels que le digalactosyldiacylglycérol (DGDG). Nous avons montré qu'au cours de la carence de phosphate, une partie des phospholipides est reconvertie en phosphatidylcholine (PC), produisant, au temps court de carence, une accumulation transitoire de PC dans les cellules. La PC est ensuite hydrolysée en diacylglycérol (DAG) qui s'accumule en carence de phosphate et nourrit la synthèse du DGDG. Nos résultats suggèrent un transfert direct du DAG à partir des membranes non plastidiales vers l'enveloppe des plastes, lieu de synthèse du DGDG. Le DGDG est ensuite exporté dans des membranes extraplastidiales. Nous avons mis en évidence la présence de DGDG dans les mitochondries et son transfert des plastes vers les mitochondries à partir de contacts entre des domaines spécialisés de l'enveloppe des plastes et des mitochondries. Enfin, pour identifier des protéines impliquées dans ces mécanismes de remaniement des lipides, nous avons collaboré à une analyse transcriptomique du génome d'Arabidopsis thaliana en carence de phosphate. Nous avons notamment sélectionné une phospholipase D, PLDzéta2, qui semble impliquée dans le contrôle de la teneur intracellulaire en phosphate inorganique et dans l'hydrolyse de la PC pour l'approvisionnement en DAG de la synthèse des galactolipides.
317

A mitochondrial perspective on striated muscle physiopathology: insights from sepsis, denervation, and dystrophinopathies.

Godin, Richard 05 1900 (has links)
La mitochondrie est de plus en plus reconnue pour sa contribution à la dégénerescence musculaire. Les dysfonctions mitochondriales, en plus de causer une défaillance énergétique, contribuent à la signalisation apoptotique, stimule la production de ROS et peuvent induire une surcharge calcique. Ces caractéristiques sont tous reliées à certains types de myopathies. Cette thèse met en lumières comment certaines dysfonctions mitochondriales peuvent intervenir dans la pathogenèse de diverses myopathies. Nous démontrons que les dysfonctions mitochondriales sont impliqués dans l’atrophie dû à la perte d’innervation. Par contre, la désensabilisation de l’ouverture du pore mitochondrial de transition de perméabilité, via ablation génétique de cyclophiline-D, ne prévient ni la signalisation apoptotique mitochondrial ni l’atrophie. Nous avons aussi observé des dysfonctions mitochondriales dans le muscle atteint de dystrophie musculaire de Duchenne qui furent améliorés suite à une transfection de PGC1-α, laquelle résulta aussi en une amélioration de la pathologie. Finalement, nous démontrons que le recyclage de mitochondrie par les voies de mitophagies et de contrôles de la qualité impliquant Parkin et possiblement d’autres voies de signalisation inconnues sont cruciales au recouvrement cardiaqe lors d’un choc septique. / Mitochondria are increasingly being recognized for their role in contributing in cellular damage. Mitochondrial dysfunctions, in addition to causing energy failure, contribute to apoptotic signaling, stimulate ROS production and calcium overload. These are all features of various types of myopathies. This thesis sheds light on how mitochondrial dyfunctions may contribute to the pathogenesis in certain myopathies that have been found to show mitochondrial abnormalities. Specifically, we found that although mitochondrial dysfunctions are involved in denervation-associated atrophy, desensitizing mitochondrial permeability transition pore opening through genetic ablation of CyclophilinD does not prevent mitochondrial apoptotic signaling nor atrophy in this model of chronic inactivity. We also observed mitochondrial dysfunctions in the Duchenne dystrophic muscle that were improved after PGC1-α transfection, which also resulted in an amelioration of the disease presentation. Finally, we found that mitochondrial recycling, led by Parkin and alternate mitophagy pathways a crucial component of cardiac recovery in sepsis.
318

Processus post-transcriptionnels inédits dans la mitochondrie des diplonémides

Kiethega, Nabonswende Georgette 03 1900 (has links)
Notre laboratoire a récemment découvert un mode d’expression des gènes mitochondriaux inédit chez le protozoaire biflagellé Diplonema papillatum. Outre son ADNmt formé de centaines de chromosomes circulaires, ses gènes sont fragmentés. Le gène cox1 qui code pour la sous unité I de la cytochrome oxydase est formé de neuf modules portés par autant de chromosomes. L’ARNm de cox1 est obtenu par épissage en trans et il est également édité par insertion de six uridines entre deux modules. Notre projet de recherche a porté sur une étude globale des processus post-transcriptionnels du génome mitochondrial de diplonémides. Nous avons caractérisé la fragmentation de cox1 chez trois autres espèces appartenant aux deux genres du groupe de diplonémides à savoir : Diplonema ambulator, Diplonema sp. 2 et Rhynchopus euleeides. Le gène cox1 est fragmenté en neuf modules chez tous ces diplonémides mais les modules sont portés par des chromosomes de taille et de séquences différentes d’une espèce à l’autre. L’étude des différentes espèces a aussi montrée que l’édition par insertion de six uridines entre deux modules de l’ARNm de cox1 est commune aux diplonémides. Ainsi, la fragmentation des gènes et l’édition des ARN sont des caractères communs aux diplonémides. Une analyse des transcrits mitochondriaux de D. papillatum a permis de découvrir quatre autres gènes mitochondriaux édités, dont un code pour un ARN ribosomique. Donc, l'édition ne se limite pas aux ARNm. De plus, nous avons montré qu’il n’y a pas de motifs d’introns de groupe I, de groupe II, de type ARNt ou d’introns impliqués dans le splicéosome et pouvant être à l’origine de l’épissage des modules de cox1. Aucune complémentarité significative de séquence n’existe entre les régions flanquantes de deux modules voisins, ni de résidus conservés au sein d’une espèce ou à travers les espèces. Nous avons donc conclu que l’épissage en trans de cox1 chez les diplonémides fait intervenir un nouveau mécanisme impliquant des facteurs trans plutôt que cis. L’épissage et l’édition de cox1 sont dirigés probablement par des ARN guides, mais il est également possible que les facteurs trans soient des molécules protéiques ou d’ADN. Nous avons élucidé les processus de maturation des transcrits mitochondriaux de D. papillatum. Tous les transcrits subissent trois étapes coordonnées et précises, notamment la maturation des deux extrémités, l’épissage, la polyadénylation du module 3’ et dans certains cas l’édition. La maturation des extrémités 5’ et 3’ se fait parallèlement à l’épissage et donne lieu à trois types d’intermédiaires. Ainsi, un transcrit primaire avec une extrémité libre peut se lier à son voisin. Cet épissage se fait apparemment sans prioriser un certain ordre temporel alors que dans le cas des transcrits édités, l’édition précède l`épissage. Ces études donnant une vue globale de la maturation des transcrits mitochondriaux ouvrent la voie à des analyses fonctionnelles sur l’épissage et l’édition chez D. papillatum. Elles sont le fondement pour finalement élucider les mécanismes moléculaires de ces deux processus post-transcriptionnels de régulation dans ce système intriguant. / Our laboratory has recently discovered an unprecedented mode of expression of mitochondrial genes in D. papillatum, a biflagellate protozoan. In addition to its mtDNA formed of hundreds of circular chromosomes, genes are fragmented. For example, the cox1 gene which encodes the subunit one of the cytochrome oxidase complex, comprises nine modules carried by nine chromosomes. The cox1 mRNA is obtained by trans-splicing and is also edited by the insertion of six uridines between two modules. My thesis project focused on the study of post-transcriptional processes in diplonemid mitochondria. We characterized the fragmentation of cox1 in three other species belonging to two diplonemids genera: Diplonema ambulator, Diplonema sp. 2 and Rhynchopus euleeides. The cox1 gene is fragmented into nine modules in all species but the modules are carried by chromosomes of different size and sequences from one species to another. We have shown that there are no motifs for classical introns, including spliceosomal and archaeal introns, as well as introns of group I and II, that might be implicated in the trans-splicing of cox1 modules. No significant complementarity exists between the flanking regions of two neighboring modules, nor are any conserved residues within a species or across species. We therefore concluded that the trans-splicing of cox1 in diplonemids involves a novel mechanism implicating trans rather than cis-factors. Trans-splicing and editing of cox1 probably involve guide RNAs, but it is also possible that the trans-factors are proteins or DNA molecules. The study of different species has also shown that the insertion of six uridines between two cox1 modules in mRNA is a shared trait in these diplonemids. We discovered that four other mitochondrial genes are also edited in D. papillatum and that RNA editing is not limited to mRNA. So, fragmented genes and RNA editing are common characteristics of diplonemids. We elucidated D. papillatum’s mitochondrial transcript maturation steps. All transcripts undergo three coordinated and precise processes including end processing, trans-splicing and / or editing and polyadenylation. The processing of the 5 'and 3' ends gives rise to three kinds of maturation intermediates. A primary transcript with one free end can bind to its neighbor and trans-splicing occurs without directionality. In the case of edited transcripts, editing precedes trans-splicing. These studies have prepared the ground for functional studies of trans-splicing and RNA editing with the long term goal to elucidate the molecular mechanisms involved in post-transcriptional regulation in this intriguing system.
319

Identification et caractérisation de facteurs impliqués dans la réplication et la stabilité des génomes des organelles de plantes

Parent, Jean-Sébastien 11 1900 (has links)
Comparativement au génome contenu dans le noyau de la cellule de plante, nos connaissances des génomes des deux organelles de cette cellule, soit le plastide et la mitochondrie, sont encore très limitées. En effet, un nombre très restreint de facteurs impliqués dans la réplication et la réparation de l’ADN de ces compartiments ont été identifiés à ce jour. Au cours de notre étude, nous avons démontré l’implication de la famille de protéines Whirly dans le maintien de la stabilité des génomes des organelles. Des plantes mutantes pour des gènes Whirly chez Arabidopsis thaliana et Zea mays montrent en effet une augmentation du nombre de molécules d’ADN réarrangées dans les plastides. Ces nouvelles molécules sont le résultat d’une forme de recombinaison illégitime nommée microhomology-mediated break-induced replication qui, en temps normal, se produit rarement dans le plastide. Chez un mutant d’Arabidopsis ne possédant plus de protéines Whirly dans les plastides, ces molécules d’ADN peuvent même être amplifiées jusqu’à cinquante fois par rapport au niveau de l’ADN sauvage et causer un phénotype de variégation. L’étude des mutants des gènes Whirly a mené à la mise au point d’un test de sensibilité à un antibiotique, la ciprofloxacine, qui cause des bris double brin spécifiquement au niveau de l’ADN des organelles. Le mutant d’Arabidopsis ne contenant plus de protéines Whirly dans les plastides est plus sensible à ce stress que la plante sauvage. L’agent chimique induit en effet une augmentation du nombre de réarrangements dans le génome du plastide. Bien qu’un autre mutant ne possédant plus de protéines Whirly dans les mitochondries ne soit pas plus sensible à la ciprofloxacine, on retrouve néanmoins plus de réarrangements dans son ADN mitochondrial que dans celui de la plante sauvage. Ces résultats suggèrent donc une implication pour les protéines Whirly dans la réparation des bris double brin de l’ADN des organelles de plantes. Notre étude de la stabilité des génomes des organelles a ensuite conduit à la famille des protéines homologues des polymérases de l’ADN de type I bactérienne. Plusieurs groupes ont en effet suggéré que ces enzymes étaient responsables de la synthèse de l’ADN dans les plastides et les mitochondries. Nous avons apporté la preuve génétique de ce lien grâce à des mutants des deux gènes PolI d’Arabidopsis, qui encodent des protéines hautement similaires. La mutation simultanée des deux gènes est létale et les simples mutants possèdent moins d’ADN dans les organelles des plantes en bas âge, confirmant leur implication dans la réplication de l’ADN. De plus, les mutants du gène PolIB, mais non ceux de PolIA, sont hypersensibles à la ciprofloxacine, suggérant une fonction dans la réparation des bris de l’ADN. En accord avec ce résultat, la mutation combinée du gène PolIB et des gènes des protéines Whirly du plastide produit des plantes avec un phénotype très sévère. En définitive, l’identification de deux nouveaux facteurs impliqués dans le métabolisme de l’ADN des organelles nous permet de proposer un modèle simple pour le maintien de ces deux génomes. / Compared to the nuclear genome, very little is known about the genomes of the two plant cytoplasmic organelles, the plastid and the mitochondria. Indeed, very few factors involved in either the replication or the repair of these genomes have been identified. Here we show the implication of the Whirly protein family in the maintenance of organellar DNA. Indeed, mutations in Whirly genes lead to DNA rearrangements in both Arabidopsis thaliana and Zea mays plastids. These rearrangements are the product of microhomology-mediated break-induced replication that rarely occurs in wild-type plants but increases in absence of Whirly proteins. In a mutant plant devoid of plastidial Whirly proteins, these new DNA molecules can be amplified up to fifty times the normal DNA level and cause a variegated phenotype. In the course of the study of the Whirly mutant plants, we developed a strategy, based on the use of the antibiotic ciprofloxacin, to induce DNA double-strand breaks specifically in plant organelles. The Arabidopsis mutant plants without Whirly proteins in the plastids are more sensitive to the antibiotic ciprofloxacin than wild-type plants. Accordingly, there is a much larger increase in the number of rearranged DNA molecules in the plastids of the mutant plants than in the control plants. Surprisingly, while the mutant plants devoid of Whirly proteins in the mitochondria do not show increased sensitivity to the drug, they do accumulate more rearrangements in their mitochondrial DNA compared to wild-type plants. These results suggest that the Whirly proteins are involved in the repair of DNA double-strand breaks in the plant organelle genomes. Our study of the plant organelle genome stability has lead us to a family of proteins homologous to the DNA polymerase I in bacteria. This family has been proposed to be responsible for most of the DNA-synthesis activity in the plant organelles. We bring genetic proof to support this hypothesis using mutants of the two PolI genes of Arabidopsis. The combined mutation of both genes is lethal and the single mutations cause a decrease in the relative DNA levels in the organelles, thus confirming the involvement of both genes in DNA replication. Interestingly, mutants of the PolIB but not PolIA gene shows increase sensitivity to ciprofloxacin suggesting a function in DNA repair. In line with these results, a cross between a PolIB mutant and the mutant of plastid Whirly genes resulted in plants with severe growth defects and numerous rearrangements in the plastid DNA. In conclusion, we have identified two factors involved in the metabolism of organelle DNA and proposed a simple model of how these genomes are maintained in the plant cell.
320

Study of cox1 trans-splicing in Diplonema papillatum mitochondria

Yan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.

Page generated in 0.0466 seconds