• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 16
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Gene Therapy Targeting PCSK9

Katzmann, Julius L., Cupido, Arjen J., Laufs, Ulrich 02 June 2023 (has links)
The last decades of research in cardiovascular prevention have been characterized by successful bench-to-bedside developments for the treatment of low-density lipoprotein (LDL) hypercholesterolemia. Recent examples include the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) with monoclonal antibodies, small interfering RNA and antisense RNA drugs. The cumulative effects of LDL cholesterol on atherosclerosis make early, potent, and long-term reductions in LDL cholesterol desirable—ideally without the need of regular intake or application of medication and importantly, without side effects. Current reports show durable LDL cholesterol reductions in primates following one single treatment with PCSK9 gene or base editors. Use of the CRISPR/Cas system enables precise genome editing down to single-nucleotide changes. Provided safety and documentation of a reduction in cardiovascular events, this novel technique has the potential to fundamentally change our current concepts of cardiovascular prevention. In this review, the application of the CRISPR/Cas system is explained and the current state of in vivo approaches of PCSK9 editing is presented.
32

Dégradation des membres de la famille du LDLR par la convertase PCSK9 : troisième locus de l'hypercholestérolémie familiale

Poirier, Steve 12 1900 (has links)
Les maladies cardiovasculaires (MCV) sont les principales causes de mortalité et de morbidité à travers le monde. En Amérique du Nord, on estime à 90 millions le nombre d’individus ayant une ou plusieurs MCV, à près de 1 million le nombre de décès reliés par année et à 525 milliards de dollars les coûts directs et indirects en 2010. En collaboration avec l’équipe du Dre. Boileau, notre laboratoire a récemment identifié, le troisième locus impliqué dans l’hypercholestérolémie familiale. Une étude publiée dans le New Engl J Med a révélé que l’absence de la convertase PCSK9 réduit de 88% le risque de MCV, corrélé à une forte réduction du taux de cholestérol plasmatique (LDL-C). Il fut démontré que PCSK9 lie directement le récepteur aux lipoprotéines de faible densité (LDLR) et, par un mécanisme méconnu, favorise sa dégradation dans les endosomes/lysosomes provoquant ainsi une accumulation des particules LDL-C dans le plasma. Dans cet ouvrage, nous nous sommes intéressés à trois aspects bien distincts : [1] Quels sont les cibles de PCSK9 ? [2] Quelle voie du trafic cellulaire est impliquée dans la dégradation du LDLR par PCSK9 ? [3] Comment peut-on inhiber la fonction de PCSK9 ? [1] Nous avons démontré que PCSK9 induit la dégradation du LDLR de même que les récepteurs ApoER2 et VLDLR. Ces deux membres de la famille du LDLR (fortes homologies) sont impliqués notamment dans le métabolisme des lipides et de la mise en place de structures neuronales. De plus, nous avons remarqué que la présence de ces récepteurs favorise l’attachement cellulaire de PCSK9 et ce, indépendamment de la présence du LDLR. Cette étude a ouvert pour la première fois le spectre d’action de PCSK9 sur d’autres protéines membranaires. [2] PCSK9 étant une protéine de la voie sécrétoire, nous avons ensuite évalué l’apport des différentes voies du trafic cellulaire, soit extra- ou intracellulaire, impliquées dans la dégradation du LDLR. À l’aide de milieux conditionnées dérivés d’hépatocytes primaires, nous avons d’abord démontré que le niveau extracellulaire de PCSK9 endogène n’a pas une grande influence sur la dégradation intracellulaire du LDLR, lorsqu’incubés sur des hépatocytes provenant de souris déficientes en PCSK9 (Pcsk9-/-). Par analyses de tri cellulaire (FACS), nous avons ensuite remarqué que la surexpression de PCSK9 diminue localement les niveaux de LDLR avec peu d’effet sur les cellules voisines. Lorsque nous avons bloqué l’endocytose du LDLR dans les cellules HepG2 (lignée de cellules hépatiques pour l’étude endogène de PCSK9), nous n’avons dénoté aucun changement des niveaux protéiques du récepteur. Par contre, nous avons pu démontrer que PCSK9 favorise la dégradation du LDLR par l’intermédiaire d’une voie intracellulaire. En effet l’interruption du trafic vésiculaire entre le réseau trans-Golgien (RTG) et les endosomes (interférence à l’ARN contre les chaînes légères de clathrine ; siCLCs) prévient la dégradation du LDLR de manière PCSK9-dépendante. [3] Par immunobuvardage d’affinité, nous avons identifié que la protéine Annexine A2 (AnxA2) interagit spécifiquement avec le domaine C-terminal de PCSK9, important pour son action sur le LDLR. Plus spécifiquement, nous avons cartographié le domaine R1 (acides aminés 34 à 108) comme étant responsable de l’interaction PCSK9AnxA2 qui, jusqu’à présent, n’avait aucune fonction propre. Finalement, nous avons démontré que l’ajout d’AnxA2 prévient la dégradation du LDLR induite par PCSK9. En somme, nos travaux ont pu identifier que d’autres membres de la famille du LDLR, soit ApoER2 et VLDLR, sont sensibles à la présence de PCSK9. De plus, nous avons mis en évidence que l’intégrité du trafic intracellulaire est critique à l’action de PCSK9 sur le LDLR et ce, de manière endogène. Finalement, nous avons identifié l’Annexine A2 comme unique inhibiteur naturel pouvant interférer avec la dégradation du LDLR par PCSK9. Il est indéniable que PCSK9 soit une cible de premier choix pour contrer l’hypercholestérolémie afin de prévenir le développement de MCV. Cet ouvrage apporte donc des apports considérables dans notre compréhension des voies cellulaires impliquées, des cibles affectées et ouvre directement la porte à une approche thérapeutique à fort potentiel. / Cardiovascular disease (CVD) is the primary cause of death and morbidity worldwide, claiming about 900 000 lives yearly in North America alone. A high level of circulating LDL-cholesterol is a major risk factor positively correlated with premature development of complex CVD mainly due to a rapid buildup of lipid deposition in the arteries. In collaboration with Dre Boileau, we recently discovered that the convertase PCSK9 is the third locus of familial hypercholesterolemia. A study published in the New Eng J Med revealed that the absence of PCSK9 reduces the risk of CVD by ~88%, resulting from a strong reduction of cholesterol in the bloodstream (LDL-C). It has been shown that PCSK9 directly binds the low-density lipoprotein receptor (LDLR) and by an unknown mechanism, reroutes it towards degradation in late endosomes/lysosomes, resulting in the accumulation of LDL-C particles in plasma. In this thesis, we addressed three different aspects of PCSK9 biology: [1] What are the targets of PCSK9? [2] Which cellular trafficking components are involved in PCSK9-induced LDLR degradation? [3] How can we inhibit the function of PCSK9? [1] We first demonstrated that PCSK9 induces the degradation of the LDLR and two of its closest family members. These include the very-low-density-lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. In addition, we demonstrated that these receptors enhance the cellular association of PCSK9 independently of the presence of the LDLR. This study represents the first evidence that PCSK9 could target other proteins for degradation, reinforcing its role as a key regulator of some members of the LDLR family. [2] Since PCSK9 is a secreted protein, we decided to investigate the contributions of both the intra- and extracellular trafficking pathways in LDLR degradation. Using conditioned media derived from mice primary hepatocytes, we showed that endogenously secreted PCSK9 was not able to influence LDLR levels of PCSK9-deficient primary hepatocytes (Pcsk9-/-). By flow cytometry (FACS), we observed that overexpression of the gain-of-function PCSK9-D374Y, but not wild type PCSK9, decreases cell surface LDLR on adjacent cells suggesting that its spectrum of action is local. We also noticed that blockade of endocytosis in HepG2 cells (commonly used to study endogenous LDLR degradation by PCSK9) does not affect total LDLR protein levels. In contrast, disruption of the intracellular trafficking between the trans-Golgi network (TGN) and endosomes (siRNAs against clathrin light chains; CLCs) prevented LDLR degradation in a PCSK9-specific manner. [3] By Far Western blotting, we identified that Annexin A2 (AnxA2) specifically interacts with the C-terminal domain of PCSK9, which is crucial for its function in LDLR degradation. Moreover, we determined that the R1 domain (amino acids 34 to 108) is responsible for the PCSK9AnxA2 interaction, which confers a new function for this protein. Finally, we showed that addition of AnxA2 prevents PCSK9-induced LDLR degradation. In summary, this work allowed us to identify that PCSK9 induces the degradation of the LDLR and its closest family members, ApoER2 and VLDLR. We also highlighted that the integrity of the intracellular trafficking pathway is crucial for endogenous PCSK9-induced LDLR degradation. Furthermore, we discovered that AnxA2 is a unique, natural inhibitor capable of interfering with the action of PCSK9 in LDLR degradation. It is undeniable that PCSK9 is a genetically validated target to reduce circulating LDL-cholesterol and prevent CVD. This thesis brings forth important contributions in our understanding of the cellular pathways involved and opens the door for novel therapeutic approaches.
33

Implication de la convertase NARC-1 / PCSK9 au cours de la différenciation neuroectodermale

Poirier, Steve January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
34

Dégradation des membres de la famille du LDLR par la convertase PCSK9 : troisième locus de l'hypercholestérolémie familiale

Poirier, Steve 12 1900 (has links)
Les maladies cardiovasculaires (MCV) sont les principales causes de mortalité et de morbidité à travers le monde. En Amérique du Nord, on estime à 90 millions le nombre d’individus ayant une ou plusieurs MCV, à près de 1 million le nombre de décès reliés par année et à 525 milliards de dollars les coûts directs et indirects en 2010. En collaboration avec l’équipe du Dre. Boileau, notre laboratoire a récemment identifié, le troisième locus impliqué dans l’hypercholestérolémie familiale. Une étude publiée dans le New Engl J Med a révélé que l’absence de la convertase PCSK9 réduit de 88% le risque de MCV, corrélé à une forte réduction du taux de cholestérol plasmatique (LDL-C). Il fut démontré que PCSK9 lie directement le récepteur aux lipoprotéines de faible densité (LDLR) et, par un mécanisme méconnu, favorise sa dégradation dans les endosomes/lysosomes provoquant ainsi une accumulation des particules LDL-C dans le plasma. Dans cet ouvrage, nous nous sommes intéressés à trois aspects bien distincts : [1] Quels sont les cibles de PCSK9 ? [2] Quelle voie du trafic cellulaire est impliquée dans la dégradation du LDLR par PCSK9 ? [3] Comment peut-on inhiber la fonction de PCSK9 ? [1] Nous avons démontré que PCSK9 induit la dégradation du LDLR de même que les récepteurs ApoER2 et VLDLR. Ces deux membres de la famille du LDLR (fortes homologies) sont impliqués notamment dans le métabolisme des lipides et de la mise en place de structures neuronales. De plus, nous avons remarqué que la présence de ces récepteurs favorise l’attachement cellulaire de PCSK9 et ce, indépendamment de la présence du LDLR. Cette étude a ouvert pour la première fois le spectre d’action de PCSK9 sur d’autres protéines membranaires. [2] PCSK9 étant une protéine de la voie sécrétoire, nous avons ensuite évalué l’apport des différentes voies du trafic cellulaire, soit extra- ou intracellulaire, impliquées dans la dégradation du LDLR. À l’aide de milieux conditionnées dérivés d’hépatocytes primaires, nous avons d’abord démontré que le niveau extracellulaire de PCSK9 endogène n’a pas une grande influence sur la dégradation intracellulaire du LDLR, lorsqu’incubés sur des hépatocytes provenant de souris déficientes en PCSK9 (Pcsk9-/-). Par analyses de tri cellulaire (FACS), nous avons ensuite remarqué que la surexpression de PCSK9 diminue localement les niveaux de LDLR avec peu d’effet sur les cellules voisines. Lorsque nous avons bloqué l’endocytose du LDLR dans les cellules HepG2 (lignée de cellules hépatiques pour l’étude endogène de PCSK9), nous n’avons dénoté aucun changement des niveaux protéiques du récepteur. Par contre, nous avons pu démontrer que PCSK9 favorise la dégradation du LDLR par l’intermédiaire d’une voie intracellulaire. En effet l’interruption du trafic vésiculaire entre le réseau trans-Golgien (RTG) et les endosomes (interférence à l’ARN contre les chaînes légères de clathrine ; siCLCs) prévient la dégradation du LDLR de manière PCSK9-dépendante. [3] Par immunobuvardage d’affinité, nous avons identifié que la protéine Annexine A2 (AnxA2) interagit spécifiquement avec le domaine C-terminal de PCSK9, important pour son action sur le LDLR. Plus spécifiquement, nous avons cartographié le domaine R1 (acides aminés 34 à 108) comme étant responsable de l’interaction PCSK9AnxA2 qui, jusqu’à présent, n’avait aucune fonction propre. Finalement, nous avons démontré que l’ajout d’AnxA2 prévient la dégradation du LDLR induite par PCSK9. En somme, nos travaux ont pu identifier que d’autres membres de la famille du LDLR, soit ApoER2 et VLDLR, sont sensibles à la présence de PCSK9. De plus, nous avons mis en évidence que l’intégrité du trafic intracellulaire est critique à l’action de PCSK9 sur le LDLR et ce, de manière endogène. Finalement, nous avons identifié l’Annexine A2 comme unique inhibiteur naturel pouvant interférer avec la dégradation du LDLR par PCSK9. Il est indéniable que PCSK9 soit une cible de premier choix pour contrer l’hypercholestérolémie afin de prévenir le développement de MCV. Cet ouvrage apporte donc des apports considérables dans notre compréhension des voies cellulaires impliquées, des cibles affectées et ouvre directement la porte à une approche thérapeutique à fort potentiel. / Cardiovascular disease (CVD) is the primary cause of death and morbidity worldwide, claiming about 900 000 lives yearly in North America alone. A high level of circulating LDL-cholesterol is a major risk factor positively correlated with premature development of complex CVD mainly due to a rapid buildup of lipid deposition in the arteries. In collaboration with Dre Boileau, we recently discovered that the convertase PCSK9 is the third locus of familial hypercholesterolemia. A study published in the New Eng J Med revealed that the absence of PCSK9 reduces the risk of CVD by ~88%, resulting from a strong reduction of cholesterol in the bloodstream (LDL-C). It has been shown that PCSK9 directly binds the low-density lipoprotein receptor (LDLR) and by an unknown mechanism, reroutes it towards degradation in late endosomes/lysosomes, resulting in the accumulation of LDL-C particles in plasma. In this thesis, we addressed three different aspects of PCSK9 biology: [1] What are the targets of PCSK9? [2] Which cellular trafficking components are involved in PCSK9-induced LDLR degradation? [3] How can we inhibit the function of PCSK9? [1] We first demonstrated that PCSK9 induces the degradation of the LDLR and two of its closest family members. These include the very-low-density-lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. In addition, we demonstrated that these receptors enhance the cellular association of PCSK9 independently of the presence of the LDLR. This study represents the first evidence that PCSK9 could target other proteins for degradation, reinforcing its role as a key regulator of some members of the LDLR family. [2] Since PCSK9 is a secreted protein, we decided to investigate the contributions of both the intra- and extracellular trafficking pathways in LDLR degradation. Using conditioned media derived from mice primary hepatocytes, we showed that endogenously secreted PCSK9 was not able to influence LDLR levels of PCSK9-deficient primary hepatocytes (Pcsk9-/-). By flow cytometry (FACS), we observed that overexpression of the gain-of-function PCSK9-D374Y, but not wild type PCSK9, decreases cell surface LDLR on adjacent cells suggesting that its spectrum of action is local. We also noticed that blockade of endocytosis in HepG2 cells (commonly used to study endogenous LDLR degradation by PCSK9) does not affect total LDLR protein levels. In contrast, disruption of the intracellular trafficking between the trans-Golgi network (TGN) and endosomes (siRNAs against clathrin light chains; CLCs) prevented LDLR degradation in a PCSK9-specific manner. [3] By Far Western blotting, we identified that Annexin A2 (AnxA2) specifically interacts with the C-terminal domain of PCSK9, which is crucial for its function in LDLR degradation. Moreover, we determined that the R1 domain (amino acids 34 to 108) is responsible for the PCSK9AnxA2 interaction, which confers a new function for this protein. Finally, we showed that addition of AnxA2 prevents PCSK9-induced LDLR degradation. In summary, this work allowed us to identify that PCSK9 induces the degradation of the LDLR and its closest family members, ApoER2 and VLDLR. We also highlighted that the integrity of the intracellular trafficking pathway is crucial for endogenous PCSK9-induced LDLR degradation. Furthermore, we discovered that AnxA2 is a unique, natural inhibitor capable of interfering with the action of PCSK9 in LDLR degradation. It is undeniable that PCSK9 is a genetically validated target to reduce circulating LDL-cholesterol and prevent CVD. This thesis brings forth important contributions in our understanding of the cellular pathways involved and opens the door for novel therapeutic approaches.
35

The impact of Niacin on PCSK9 levels in vervet monkeys (Chlorocebus aethiops)

Ngqaneka, Thobile January 2020 (has links)
Magister Pharmaceuticae - MPharm / Cardiovascular diseases (CVDs) such as ischaemic heart diseases, heart failure and stroke remain a major cause of death globally. Various deep-rooted factors influence CVD development; these include but are not limited to elevated blood lipids, high blood pressure, obesity and diabetes. A considerable number of proteins are involved directly and indirectly in the transport, maintenance and elimination of plasma lipids, including high and low-density lipoprotein cholesterol (HDL-C and LDL-C). There are several mechanisms involved in the removal of LDL particles from systemic circulation. One such mechanism is associated with the gene that encodes proprotein convertase subtilisin/kexin type 9 (PCSK9), which has become an exciting therapeutic target for the reduction of residual risk of CVDs. Currently, statins are the mainstay treatment to reduce LDL-C, and a need exists to further develop more effective LDL-C-lowering drugs that might supplement statins. This study was aimed at contributing to the generation of knowledge regarding the effect of niacin in reducing LDL levels through PCSK9 interaction. The aims/objectives of this study were achieved by utilizing two approaches, which included animal intervention with niacin followed by genetic screening of five prioritized genes involved in cholesterol synthesis and regulation. For animal intervention, 16 vervet monkeys were divided into two groups of eight animals consisting of a control and an experimental (niacin) group. The control group was given a normal standard diet of pre-cooked maize meal throughout the study, while the experimental group received the same diet supplemented with 100 mg/kg of niacin (SR) for 12 weeks. During the niacin intervention, blood was collected at baseline, every four weeks during the treatment period and the end of the washout period. The collected blood was used for biochemical analysis (total cholesterol, triglycerides, LDL-C, and HDL-C) and downstream genetic applications. The second phase included the screening of PCSK9, LDLR, SREBP-2, CETP and APOB-100 using genotyping and gene expression. Niacin administration produced statistically significant increases in plasma HDL-C at fourtime points (T1, T2, T3 and T4), which resulted in an overall increase in plasma HDL-C. Additionally, niacin administration resulted in a slight reduction in LDL-C and total cholesterol levels. Furthermore, the genotyping analysis revealed 13 sequence variants identified in PCSK9, LDLR, SREBP-2, CETP and APOB-100 genes. Five of these variants were predicted to be disease-causing and correlated with gene expression patterns. Three identified PCSK9 variants (H177N, R148S, G635G) were categorized as LOF mutations, and this was supported by a decline in gene expression in animals harbouring these variants. The LDLR also had LOF variants that were the reason for its decreased mRNA expression. Additionally, SREBP-2 proved to be a key mediator of cholesterol pathways. Therefore, the findings of the study conclusively suggest that niacin does increase HDL-C and decrease LDL-C and total cholesterol. Moreover, an interaction between niacin administration and PCSK9 was observed which resulted in decreased gene expression.
36

La stéatose hépatique et ses effets sur la régulation du métabolisme du cholestérol chez le rat

St-Amand, Roxane 07 1900 (has links)
Cette maitrise a été fait en co-direction : Jean-Marc Lavoie (UdeM) et David St-Pierre (UQAM). / Mise en contexte : La présente étude a pour but de tester l’hypothèse selon laquelle l’accumulation excessive de lipides au foie perturbe le métabolisme du cholestérol. La stéatose hépatique perturberait ainsi principalement les voies métaboliques qui impliquent les récepteurs de LDL au foie. Méthodologie: Des rats Wistar (n/groupe = 10) ont été soumis soit à une diète standard (SD), une diète enrichie en lipides (HFD : High Fat Diet) ou à une diète occidentale (WD : Western Diet) pour une durée de 2 ou 6 semaines. Au niveau de la composition des diètes, 60% de l’apport calorique de la diète enrichie en lipides provient des lipides tandis que la diète occidentale est composée à 40% de lipides et 35% de sucrose dont 17,5% de fructose. Résultats: Comparativement aux animaux traités pendant 2 semaines, le poids des tissus adipeux était environ trois fois plus élevé (~ 20 vs 7 g) chez les animaux soumis à 6 semaines de diètes obésogènes. Une augmentation significative du gain de poids (~ 40g) a été observée uniquement après 6 semaines chez les groupes soumis à la HFD ou la WD (P < 0.01). Comparativement aux animaux soumis à la diète conventionnelle, les niveaux de triglycérides (TG) hépatiques étaient significativement supérieurs chez les rats nourris avec la HFD et WD (P < 0.01) et ce, indépendamment de la durée du traitement. Après deux semaines, des concentrations de TG hépatiques significativement plus élevées (P < 0.05) ont été observés chez les animaux avec la WD comparativement à celles des rats avec la HFD. Des niveaux de cholestérol plasmatiques significativement plus élevés (P < 0.05) ont été mesurés chez les animaux avec la WD par rapport à la SD et la HFD et ce indépendamment de la durée. Après 2 et 6 semaines de diètes, l’expression génique au foie de LDL-R, PCSK9 et SREBP2, qui sont impliqués dans la captation des LDL-cholestérol, a significativement diminué chez les animaux soumis à la WD comparativement à ceux nourris avec la diète SD ou HFD (P < 0.01). De la même manière, des niveaux d’ARNm de LRP1 et ACAT2 significativement diminués (P < 0.01) ont été mesurés chez les animaux nourris avec WD comparativement ceux du groupe SD. L’expression de l’HMGCoAR, l’enzyme limitante impliquée dans la régulation de la synthèse endogène de cholestérol, a été significativement 6 diminuée chez les animaux soumis à la WD comparativement à ceux traités avec la SD ou la HFD après 2 (P < 0.001) et 6 semaines (P < 0.05). Dû au fait que la diète soit enrichie en sucrose et conséquemment en fructose, la WD a fortement favorisé l’expression de ChREBP et ACC, deux régulateurs majeurs dans la voie de la lipogenèse de novo. Conclusion: Ces résultats suggèrent que la diète de type occidentale augmenterait les niveaux de TG en favorisant simultanément la captation exogène de lipides ainsi que leur production endogène par l’activation de la lipogenèse de novo. L’altération de la voie de la captation du cholestérol par les LDL-R favoriserait une augmentation rapide des taux plasmatiques de cholestérol. / Background: The present study was designed to test the hypothesis that excessive fat accumulations impair cholesterol metabolism mainly through alterations in the LDL-receptor (LDL-R) pathway in liver. Method: Rats were either submitted to standard (SD), high fat (HFD; 60% kcal) or western (WD; 40% fat + 35% sucrose (17.5% fructose)) diets for 2 or 6 weeks. Results: Weight gain (~ 40g) was observed only following 6 weeks of the obesogenic diets (P < 0.01). Compared to the 2-week treatment, obesogenic diets tripled fat pad weight (~ 20 vs 7 g) after 6 weeks. Hepatic triglyceride (TG) levels were greater in response to both the WD and HFD compared to the SD (P < 0.01) at 2 and 6 weeks and their concentrations were greater (P < 0.05) in WD than HFD at 2 weeks. Plasma cholesterol levels were higher (P < 0.05) in animals submitted to WD compare to SD and HFD. After 2 and 6 weeks, liver expression of LDL-R, PCSK9 and SREBP2, involved in LDL-cholesterol uptake, was lower in animals submitted to WD than in others treated with HFD or SD (P < 0.01). Similarly, LRP1 and ACAT2 mRNA levels were lower (P < 0.01) among WD compared to SD-fed rats. Expression of the gene coding the main regulator of endogenous cholesterol synthesis, HMGCoAR was reduced in response to WD compared to SD and HFD at 2 (P < 0.001) and 6 (P < 0.05) weeks. Being enriched in fructose, the WD strongly promoted the expression of ChREBP and ACC, two key regulators of de novo lipogenesis. Conclusion: These results show that the WD promptly increased TG levels in the liver by potentiating dietary fat storage and de novo lipogenesis. This effect impaired hepatic cholesterol uptake via the LDL-R axis and promoted a rapid increase in plasma cholesterol levels.
37

The effect of exercise training on cholesterol and bile acid metabolism in ovariectomized rats

Farahnak, Zahra 11 1900 (has links)
Il existe un nombre grandissant de preuves au cours des dernières années que la diminution de la sécrétion des œstrogènes chez les animaux ovariectomisés (Ovx) et chez les femmes ménopausées conduit à une accumulation importante de triglycérides (TG) dans le foie. Cependant, les évidences de perturbations dans le métabolisme du cholestérol, en lien avec la diminution des œstrogènes, sont limitées à des observations de niveaux élevés de cholestérol total dans le plasma trouvés chez la femme ainsi que chez les animaux. En fait, l'impact de la suppression des œstrogènes sur le métabolisme du cholestérol dans le foie a reçu peu d'attention et montre quelques controverses. Par conséquent, les trois études présentées dans cette thèse ont été réalisées chez des rats Ovx, comme modèle animal de femmes post-ménopausées, afin de documenter les effets du retrait des œstrogènes sur les marqueurs moléculaires clés du métabolisme du cholestérol et des acides biliaires dans le foie et dans l'intestin et des effets potentiels de l’entraînement physique. Il a été en effet démontré que l'entraînement physique peut réduire le niveau plasmatique de cholestérol. Une amélioration du transport du cholestérol en périphérie vers le foie pour sa sécrétion subséquente dans la bile et pour son l'excrétion de l'organisme a été suggérée, bien que les mécanismes sous-jacents ne soient pas entièrement compris. Dans la première étude, nous avons démontré que les rattes Ovx nourris avec une diète standard et une diète standard + cholestérol avait un taux de cholestérol total dans le foie plus élevé (P <0,05) que les rattes avec une ovariectomie simulée (Sham) nourris avec ces deux derniers types de diète, tandis que la teneur en triglycérides du foie était plus élevée chez les rattes Ovx que chez les rattes Sham nourris avec une diète standard, une diète standard + cholestérol et aussi une diète riche en grasses + cholestérol. Étonnement, la diète standard + cholestérol a été associée à un niveau plasmatique plus faible (P <0,001) de cholestérol total et de triglycérides chez les rats Ovx que les rats Sham, ce qui suggère une diminution de la sécrétion de lipoprotéines à très basses densités (VLDL). Par conséquent, la transcription de plusieurs marqueurs clés de la synthèse des VLDL, y compris la microsomal triglyceride transfer Protein (MTP) et apoB-100, ont été réduites (P <0,05) chez les rattes Ovx par rapport aux rattes Sham nourris avec tous les trois types diètes et cette diminution de MTP et apoB-100 était plus prononcée chez les rats nourris avec la diète standard + cholestérol. Pour aller un peu plus loin, dans la deuxième étude, nous avons déterminé les effets de l'entraînement physique sur les marqueurs clés hépatiques de la voie farnesoid X receptor (FXR) - small heterodimer partner (SHP) - de cholestérol 7 alpha-hydroxylase (CYP7A1) (FXR-SHP-CYP7A1) impliquée dans la conversion de cholestérol en acides biliaires et de leur excrétion chez les rat Ovx nourris avec une diète standard + cholestérol. Notre groupe expérimental principal comprenait des rats Ovx nourris avec une diète riche en cholestérol (Ovx-Chol). Ce groupe a été comparé à un groupe de rats Ovx nourris avec une diète standard (Ovx-SD) et un groupe de rats Sham nourris avec une diète riche en cholestérol (Sham-Chol) pour observer, respectivement, l'effet de l'alimentation et l’effet du retrait de l'œstrogène. Les résultats de cette étude ont démontré que les niveaux de cholestérol total dans le plasma et dans le foie ne sont pas affectés par l'entraînement physique dans aucune des conditions expérimentales. L'alimentation en cholestérol a induit une accumulation plus importante chez les rats Sham et Ovx a mené à une accumulation du cholestérol dans le foie significativement plus élevée (P <0,001) que chez les rats Ovx-SD. Un effet principal d'entraînement physique (P <0,05) a été trouvée dans l’expression génique du SHP et de CYP7A1. Ce dernier gène est reconnu pour son implication majeure sur le contrôle de la biosynthèse des acides biliaires à partir du cholestérol. De plus, cette étude a montré que le récepteurs des LDL (LDL-R) et proprotein convertase subtilisin/kexin type 9 (PSCK9) au foie, qui sont impliqués dans l'absorption du cholestérol de la circulation, ne sont pas influencés par l’entraînement physique. Ces résultats suggèrent que l'entraînement physique module le métabolisme du cholestérol chez les animaux Ovx par un réglage positif de la formation des acides biliaires. Un nombre croissant de preuves récentes suggèrent que le transport inverse du cholestérol (RCT) peut également passer par une voie non-biliaire connue sous le nom « transintestinal cholesterol excretion » (TICE). En effet, le foie et l'intestin sont impliqués dans l'excrétion du cholestérol excédentaire du corps. Dans cette optique, dans la troisième étude, nous avons élargi nos recherches afin de déterminer si l'entraînement physique module l’expression des récepteurs de cholestérol de la membrane intestinale qui sont impliqués dans TICE chez les rats intacts et Ovx nourris avec une diète standard et une diète riche en cholestérol. Les résultats de cette étude ont montré que l'entraînement physique a augmenté (P <0,01) l’expression génique intestinale de LDL-R et de PCSK9 impliquées dans la captation du cholestérol intestinal de la circulation et de leur récepteur nucléaire, « sterol regulatory element-binding protein 2 » (SREBP2) (P <0,05) chez les rats Sham et Ovx par rapport aux rats sédentaires (Sed). D'autre part, l’expression des gènes hépatiques de LDL-R et de PCSK9 ont été supprimées (P <0,01) par l’alimentation riche en cholestérol, mais pas affectée par l'entraînement physique. L'expression du gène « flavin monooxygénase 3 » (FMO3), en tant que régulateur de l'équilibre du cholestérol dans le foie, a été diminuée de façon significative (P <0,01) par le cholestérol alimentaire chez les rats Sham et Ovx par rapport aux rats nourris avec la diète standard, mais demeure inchangée suite à l'entraînement physique et le retrait des œstrogènes. Un réglage positif de l'expression de gènes du LDL-R et PCSK9 intestinale par l'entraînement physique chez les rats intacts et Ovx suggère que l'entraînement physique peut contribuer à l’accroissement de l'élimination de cholestérol par la voie TICE. Dans l'ensemble, nos résultats indiquent qu'une combinaison d’une diète riche en cholestérol et un retrait des œstrogènes a mené à une diminution de l'expression des gènes des marqueurs essentiels de la synthèse de VLDL, ce qui implique une réduction de l'excrétion du cholestérol du foie. Il semble que la réduction de LDL-R hépatique pourrait être due à l'accumulation du cholestérol dans le foie. De plus, nos résultats ont présenté l’entraînement physique comme une intervention non pharmacologique appropriée pour stimuler l'excrétion du cholestérol excédentaire de l'organisme par le réglage positif des gènes impliqués dans la biosynthèse des acides biliaires dans le foie et les récepteurs intestinaux de cholestérol dans la voie TICE. / There has been accumulating evidence in recent years that the estrogen deficient state in ovariectomized (Ovx) animals and in postmenopausal women results in substantial liver triglyceride (TG) accumulation. However, evidence of disturbances in cholesterol metabolism in link with estrogen deficiency is limited to observations of higher plasma total cholesterol levels found in human as well as in animals. In fact, the impact of estrogen withdrawal on liver cholesterol metabolism has received little attention and shows some controversies. Therefore, the three studies presented in this thesis have been conducted in Ovx rats, as an animal model of post-menopausal women, to investigate the effects of estrogen withdrawal on key molecular markers of cholesterol and bile acid metabolism in liver and in transintestinal cholesterol excretion (TICE), and also to determine the potential role of exercise training as a positive alternative intervention. It has been shown that exercise training can improve plasma cholesterol levels. An enhanced transport of peripheral cholesterol toward the liver for subsequent secretion into bile and excretion from the body has been suggested; however, the underlying mechanism for this action is not fully understood. In the first study, we showed that estrogen withdrawal was associated with higher (P < 0.05) liver total cholesterol under the standard diet and the standard diet + cholesterol diet, while liver triglyceride (TG) content was higher in Ovx than in Sham rats in all three dietary conditions which are the standard diet, the standard diet + cholesterol and the high fat diet + cholesterol. Surprisingly, the standard diet + cholesterol was associated with lower (P < 0.001) plasma total cholesterol and TG levels in Ovx than in Sham rats, suggesting a decrease in very low-density lipoprotein (VLDL) secretion. Accordingly, several transcripts of key markers of VLDL synthesis including microsomal triglyceride transfer protein (MTP) and apoB-100 were decreased (P < 0.05) in Ovx compared to Sham rats under the three dietary conditions and even more so for MTP and apoB-100 when rats were fed the standard diet + cholesterol. To go one step further, in the second study we determined the effects of exercise training on hepatic key markers of farnesoid X receptor (FXR)-small heterodimer partner (SHP)-cholesterol 7 alpha-hydroxylase (CYP7A1) (FXR-SHP-CYP7A1) pathway, involved in cholesterol conversion into bile acid and excretion from the body, in Ovx cholesterol fed rats. Our main experimental group was Ovx rats fed a high cholesterol diet (Ovx-Chol) that was compared, on one hand, to a group of Ovx rats fed a standard diet (Ovx-SD) to observe the effects of the diet and, on the other hand, compared to a group of Sham operated rats fed the cholesterol diet (Sham-Chol) to observe the effect of estrogen withdrawal. Results of this study showed that plasma and liver total cholesterol levels were not affected by exercise training in any of the experimental conditions. Cholesterol feeding in both Sham and Ovx rats resulted in significantly (P<0.001) higher hepatic cholesterol accumulation than in Ovx-SD rats. A main effect of training (P< 0.05) was, however, found for transcripts of SHP and CYP7A1. The SHP and CYP7A1 transcripts were increased by training. These results suggest that exercise training through up-regulation of genes involved in bile acid formation may modulate cholesterol metabolism in Ovx animals. Finally, a recent growing body of evidence suggests that reverse cholesterol transport (RCT) can also proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). Indeed, both liver and intestine are involved in excretion of the excess cholesterol from the body. Based on this concept, we expanded our research to determine whether exercise training has an effect on intestinal membrane cholesterol receptors involved in TICE pathway in intact and Ovx rats fed a normal and a high cholesterol diet. Results of the third study showed that exercise training increased (P< 0.01) transcripts of intestinal LDL-R and PCSK9, which are involved in intestinal cholesterol uptake from circulation, and their nuclear transcription factor, intestinal sterol regulatory element-binding protein 2 (SREBP2) (P< 0.05) in both Sham and Ovx rats compared to rats remaining sedentary (Sed). On the other hand, hepatic LDL-R and PCSK9 gene expression was suppressed (P< 0.01) by cholesterol feeding but not affected by exercise training. Flavin monooxygenase 3 (FMO3) gene expression, as a cholesterol balance regulator in liver, was significantly decreased (P<0.01) by cholesterol feeding in both Sham and Ovx rats compared to rats were fed the SD diet but unchanged following exercise training and estrogen withdrawal. An up-regulation of intestinal gene expression of LDL-R and PCSK9 following voluntary wheel running in intact and Ovx rats suggests that exercise training may contribute to increased cholesterol elimination through the TICE pathway. Overall, our results indicate that a high cholesterol diet and ovariectomy combine to decrease the gene expression of key markers of VLDL synthesis suggesting a reduction in cholesterol excretion from the liver. Alternatively, it seems that reduced hepatic LDL-R transcript found in Ovx animals might be due to hepatic cholesterol accumulation. Moreover, our findings introduced exercise training as an appropriate non-pharmacological intervention to stimulate the excretion of the excess cholesterol from the body through upregulation of genes involved in bile acid biosynthesis in liver and intestinal basolateral cholesterol transporters in TICE.
38

Étude du trafic cellulaire de la convertase de proprotéine PCSK9 responsable de la dégradation du récepteur des lipoprotéines de faible densité (LDLR)

Ait Hamouda, Hocine 06 1900 (has links)
Les maladies cardiovasculaires (MCV) sont la principale cause de mortalité dans les pays industrialisés. L'hypercholestérolémie constitue un facteur de risque majeur pour les MCV. Elle est caractérisée par des niveaux élevés de lipoprotéines de faible densité (LDL, aussi appelé “mauvais cholestérol”). La présence prolongée de haut niveaux de LDL dans la circulation augmente le risque de formation de plaques athérosclérotiques, ce qui peut conduire à l'obstruction des artères et l'infarctus du myocarde. Le LDL est normalement extrait du sang par sa liaison au récepteur du LDL (LDLR) qui est responsable de son endocytose dans les hépatocytes. Des études génétiques humaines ont identifié PCSK9 (proprotein convertase subtilisin/kexin type 9) comme le troisième locus responsable de l'hypercholestérolémie autosomique dominante après le LDLR et son ligand l’apolipoprotéine B-100. PCSK9 interagit avec le LDLR et induit sa dégradation, augmentant ainsi les niveaux plasmatiques de LDL. Les mutations gain de fonction (GF) de PCSK9 sont associées à des niveaux plasmatiques élevés de LDL et à l'apparition précoce des MCV, alors que les mutations perte de fonction (PF) de PCSK9 diminuent le risque de MCV jusqu’à ~ 88% grâce à une réduction du LDL circulant. De ce fait, PCSK9 constitue une cible pharmacologique importante pour réduire le risque de MCV. PCSK9 lie le LDLR à la surface cellulaire et/ou dans l'appareil de Golgi des hépatocytes et provoque sa dégradation dans les lysosomes par un mécanisme encore mal compris. Le but de cette étude est de déterminer pourquoi certaines mutations humaines de PCSK9 sont incapables de dégrader le LDLR tandis que d'autres augmentent sa dégradation dans les lysosomes. Plusieurs mutations GF et PF de PCSK9 ont été fusionnées à la protéine fluorecente mCherry dans le but d'étudier leur mobilité moléculaire dans les cellules hépatiques vivantes. Nos analyses quantitatives de recouvrement de fluorescence après photoblanchiment (FRAP) ont montré que les mutations GF (S127R et D129G) avaient une mobilité protéique plus élevée (> 35% par rapport au WT) dans le réseau trans- Golgien. En outre, nos analyses quantitatives de recouvrement de fluorescence inverse après photoblanchiment (iFRAP) ont montré que les mutations PF de PCSK9 (R46L) avaient une mobilité protéique plus lente (<22% par rapport au WT) et une fraction mobile beaucoup plus petite (<40% par rapport au WT). Par ailleurs, nos analyses de microscopie confocale et électronique démontrent pour la toute première fois que PCSK9 est localisée et concentrée dans le TGN des hépatocytes humains via son domaine Cterminal (CHRD) qui est essentiel à la dégradation du LDLR. De plus, nos analyses sur des cellules vivantes démontrent pour la première fois que le CHRD n'est pas nécessaire à l'internalisation de PCSK9. Ces résultats apportent de nouveaux éléments importants sur le mécanisme d'action de PCSK9 et pourront contribuer ultimement au développement d'inhibiteurs de la dégradation du LDLR induite par PCSK9. / Coronary heart diseases (CHD) are a leading cause of death in Western societies. Hypercholesterolemia is a major risk factor for CHD. It is characterized by high levels of circulating low-density lipoprotein cholesterol (LDL, also called "bad cholesterol"). The prolonged presence of elevated levels of LDL in the circulation increases the risk of formation of atherosclerotic plaques, which can lead to obstruction of arteries and myocardial infarction. LDL is normally cleared from the blood through the binding of its sole protein constituent apolipoprotein B100 to hepatic LDL receptor (LDLR), which mediates its endocytosis in the liver. Human genetic studies have identified PCSK9 as the third gene responsible of autosomal dominant hypercholesterolemia after LDLR and its ligand apolipoprotein B100. PCSK9 interacts with the LDLR and induces its degradation thereby causing plasma LDL levels to rise. PCSK9 gain-of-function (GOF) mutations are associated with elevated plasma LDL levels and premature CHD while PCSK9 loss-offunction (LOF) mutations reduce the risk of CHD up to ~88% owing to reduction of circulating LDL. Accordingly, PCSK9 is recognized as a major pharmacological target to lower the risk of CHD. PCSK9 binds the LDLR at the cell surface and/or in the Golgi apparatus of hepatocytes and causes its degradation in lysosomes by a mechanism not yet clearly understood. The goal of this study was to determine why some human PCSK9 mutations fail to induce LDLR degradation while others increase it in lysosomes. Several PCSK9 LOF and GOF mutations were fused to the fluorescent protein mCherry to study their molecular mobility in living human liver cells. Our quantitative analysis of fluorescence recovery after photobleaching (FRAP) showed that PCSK9 GOF mutations S127R and D129G have a higher protein mobility (>35% compared to WT) at the trans- Golgi network (TGN). Our quantitative analysis of inverse fluorescence recovery after photobleaching (iFRAP) showed that PCSK9 LOF mutation R46L presented a much slower protein mobility (<22% compared to WT) and a much slower mobile fraction (<40% compared to WT). In addition, our confocal and electron microscopy analyses demonstrate for the first time that PCSK9 is localized and concentrated at the TGN of human hepatocytes. Furthermore, our results demonstrate that PCSK9 localization in the TGN is mediated through its C-terminal cysteine and histidine-rich domain (CHRD), which is essential for LDLR degradation. Also, our live-cell analyses demonstrate for the first time that the CHRD is not required for internalization of PCSK9. These results provide important new information on the mechanism of action of PCSK9 and may ultimately help in the development of inhibitors of the PCSK9-induced LDLR degradation.
39

Fonction de la glycoprotéine Golgi apparatus protein 1 (GLG1) dans la différenciation des adipocytes et l'effet de la forme de type sauvage et la forme tronquée de GLG1 sur le métabolisme des lipides

Katbe, Alisar 08 1900 (has links)
Golgi apparatus protein 1 (GLG1) est une protéine transmembranaire de 160 kDa qui interagit avec l’apolipoprotéine B100 (apoB100), le récepteur des lipoprotéines de basse densité (LDLR) et la proprotein convertase subtilisin/kexin type 9 (PCSK9). Cependant, son mécanisme d’action et sa régulation post-traductionnelle sont inconnus. Des études ont montré que GLG1 subit deux clivages résultant en fragments solubles secrétés de 150 kDa et 55 kDa. Dans cette étude, notre premier objectif est d’identifier les enzymes responsables de la protéolyse de GLG1 ainsi que l’effet du clivage sur sa fonction dans le métabolisme des lipides. De plus, les résultats de nos collaborateurs montrent que les souris adultes déficientes en GLG1 ont un plus grand nombre d’adipocytes mais de taille plus petite que les souris de type sauvage. Notre deuxième objectif est de mesurer la variation de l’expression ainsi qu’identifier l’effet de GLG1 lors de la différentiation des fibroblastes en adipocytes. Pour le premier objectif, les cellules HEK293T surexprimant GLG1 ont été soit transfectées avec des convertases de proprotéines (PCSK) soit incubées avec différents inhibiteurs d’enzymes. Les milieux et les lysats cellulaires ont été analysés par immunobuvardage à la Western. Il n’y a pas eu de nouveaux fragments générés en présence des PCSK. Cependant, en présence d’inhibiteurs des sérines protéases apparentées à la trypsine soit AEBSF et Gabexate mesylate, il y a eu une réduction de la formation du fragment de 55 kDa. Pour identifier la métalloprotéase responsable du clivage de l’ectodomaine générant le fragment de 150 kDa, GLG1 a été transfectée avec les Tissue Inhibitor of Metalloproteinase (TIMP 1-4). Nos résultats ont montré que TIMP3 empêche la relâche de l’ectodomaine de GLG1 dans le milieu de culture. Finalement, nos analyses de plasma de souris par immunobuvardage à la Western ont montré la présence des fragments de 150 kDa et 55 kDa de GLG1 in vivo. Pour le deuxième objectif de l’étude, les fibroblastes préadipocytaires de souris 3T3-L1 ont été différenciés en adipocytes. Des lysats cellulaires et l’isolation d’ARN ont été effectués aux jours 0, 2, 4, 6, 8 et 10 de la différenciation. Des immunobuvardages à la Western ainsi que des RT-qPCR ont été réalisés pour analyser l’expression de GLG1 au cours de la différenciation. Nos résultats ont montré que l’expression de GLG1 augmente durant la différenciation. Bref, nos résultats démontrent que des enzymes trypsin-like clivent GLG1 et génèrent le fragment de 55 kDa. L’inhibition du clivage de l’ectodomaine de GLG1 par TIMP3 suggère que les ADAMs sont impliquées dans la relâche du fragment de 150 kDa. De plus, nous avons montré que l’expression de GLG1 augmente au cours de la différenciation adipocytaire. / Golgi apparatus protein 1 (GLG1) is a 160 kDa transmembrane protein interacting with apolipoprotein B100 (apoB100), low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the protein’s posttranslational regulation and mechanism of action are poorly understood. Previous studies showed that GLG1 is cleaved resulting in two fragments of 150 kDa and 55 kDa secreted at the cell surface and in the extracellular matrix. The first objective of this study is to identify enzymes responsible for GLG1 proteolysis and the effect of cleavage on its function in lipid metabolism. Furthermore, our collaborators showed that mice with GLG1 knockout have a higher number of adipocytes, but those cells are smaller in size compared to those in wild type mice. Therefore, the second objective of the study is to measure the variation of GLG1 expression during adipocytes differentiation and to identify the effects of GLG1 knockout on adipocytes differentiation. For the first objective, HEK293T cells overexpressing GLG1 were either transfected with basic amino acid-specific proprotein convertases (PCSK) or treated with enzyme inhibitors. Media and cell lysates were analyzed by Western blot. No new fragments were detected in media of PCSK-transfected cells. Cell treatment with trypsin-like serine proteases inhibitors, AEBSF and Gabexate mesylate, reduced the secretion of the 55 kDa fragment. To identify the metalloproteinase responsible for GLG1 shedding, GLG1 was co-transfected with Tissue Inhibitors of Metalloproteinase (TIMP1-4). Our results showed that TIMP3 inhibits shedding of the 150 kDa fragment. Finally, wild-type mouse plasma was analyzed by Western blot and showed the presence of both fragments in vivo. For the second objective of the study, fibroblasts 3T3-L1 cells were differentiated into adipocytes and GLG1 mRNA and protein expression were measured at day 0, 2, 4, 6, 8 and 10 by qPCR and Western Blot. Our results showed that GLG1 expression increased during differentiation and a peak was observed at day 4. To conclude, in the first objective of our study, our results showed that trypsin-like enzymes cleave GLG1 and produce a 55 kDa fragment. Shedding of GLG1 is inhibited by TIMP3, which suggests that ADAM10 or ADAM17 are involved in the release of the 150 kDa fragment. In addition, both 55 kDa and 150 kDa fragments were found in normal mouse plasma supporting the relevance of our findings in vivo. In the second objective of our study, GLG1 expression increased during adipocyte differentiation suggesting a role in adipose tissue development and/or morphology. In conclusion, our study will help elucidate how proteolysis of GLG1 impacts its role in the regulation of apoB and PCSK9 secretion and lipid metabolism and how can GLG1 expression affect adipocytes differentiation.
40

Genetics and molecular epidemiology of metabolic syndrome-related traits:focus on metabolic profiling of lipid-lowering therapies and fatty liver, and the role of genetic factors in inflammatory load

Sliz, E. (Eeva) 14 May 2019 (has links)
Abstract Metabolic syndrome is a constellation of metabolic abnormalities predisposing to cardiovascular diseases (CVD), type 2 diabetes, and increased mortality. Due to the high prevalence and severe co-morbidities, metabolic syndrome constitutes a major burden for both public health and the global economy. Improved understanding of the detailed molecular mechanisms could provide novel strategies for the treatment and preferably prevention of the metabolic syndrome-related health issues. Recent advancements in ‘omics’ technologies have facilitated the development of novel tools to examine the links between genetic variation and human health. The new techniques allow determination of millions of genotypes or quantification of hundreds of metabolic measures from a single blood sample. In this thesis, genomics and metabolomics approaches are coupled to improve our understanding of the metabolic syndrome-related health issues. More precisely, my projects evaluate the metabolic effects of two lipid-lowering therapies and non-alcoholic fatty liver, as well as assess genetic determinants of chronic inflammation. The present results indicate generally consistent metabolic effects of statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) genetic inhibition. The subtle discrepancies observed could potentially contribute to differences in the efficacy to lower CVD risk between statins and PCSK9 inhibitors. The dissimilar metabolic effects of the four genetic variants that increase the risk of non-alcoholic fatty liver disease (NAFLD) highlight the heterogeneity of the molecular mechanisms involved in NAFLD pathogenesis. The results further suggest that fatty liver by itself might not promote unfavourable metabolic aberrations associated with fatty liver on a population level. The newly identified loci associating with inflammatory phenotypes elucidate the genetic mechanisms contributing to the inflammatory load. In particular, the present results suggest the important role of the locus determining the ABO blood types in the regulation of the soluble adhesion molecule levels. To conclude, this thesis successfully complements the knowledge of the molecular mechanisms involved in metabolic syndrome-related traits and provides examples of how to couple omics technologies in the study of complex traits or in the evaluation of drug effects. / Tiivistelmä Metabolinen oireyhtymä on tila, jossa useiden aineenvaihdunnallisten riskitekijöiden kasautuminen suurentaa riskiä sairastua tyypin 2 diabetekseen ja sydän- ja verisuonitauteihin sekä lisää kokonaiskuolleisuutta. Vakavista liitännäissairauksista ja suuresta esiintyvyydestä johtuen metabolinen oireyhtymä kuormittaa merkittävästi sekä terveydenhuoltoa että kansantaloutta. Jotta metabolisen oireyhtymän hoitoon ja ennaltaehkäisyyn voitaisiin kehittää uusia keinoja, on tärkeää ymmärtää paremmin oireyhtymän syntyyn vaikuttavat täsmälliset molekyylimekanismit. Niin sanottujen ’omiikka-tekniikoiden’ viimeaikainen kehitys tarjoaa uusia mahdollisuuksia tutkia geenimuutosten vaikutuksia terveyteen. Uusien tekniikoiden avulla voidaan määrittää miljoonia genotyyppejä tai satoja aineenvaihdunnan merkkiaineita yhdestä verinäytteestä. Tässä väitöskirjatyössä yhdistetään genomiikan ja metabolomiikan menetelmiä metaboliseen oireyhtymään liittyvien terveysongelmien tutkimiseksi. Väitöskirjani osatöissä arvioin kahden lipidilääkkeen sekä ei-alkoholiperäisen rasvamaksan aineenvaihdunnallisia vaikutuksia sekä pyrin tunnistamaan krooniseen tulehdukseen vaikuttavia geneettisiä tekijöitä. Tulosten mukaan statiinien ja PCSK9:n (engl. proprotein convertase subtilisin/kexin type 9) geneettisen eston aineenvaihduntavaikutukset ovat hyvin samankaltaiset. Kuitenkin havaitut pienet poikkeavuudet tietyissä merkkiaineissa voivat vaikuttaa eroavaisuuksiin siinä, kuinka tehokkaasti lääkeaineet alentavat sydäntautiriskiä. Suuret erot rasvamaksan riskiä lisäävien geenimuutosten vaikutuksissa aineenvaihduntaan korostavat rasvamaksaan liittyvien molekyylimekanismien monimuotoisuutta. Tulosten perusteella vaikuttaa siltä, että rasvan kertyminen maksaan ei luultavasti itsessään aiheuta suuria muutoksia verenkierron aineenvaihduntatuotteiden pitoisuuksiin. Tulehdusmerkkiaineisiin assosioituvat uudet geenialueet täydentävät tulehduksen molekyylimekanismeihin liittyvää tietoa. Tulokset korostavat ABO-veriryhmän määräävän geenin vaikutusta liukoisten adheesiomolekyylien pitoisuuksiin. Kaiken kaikkiaan väitöskirjan osatyöt tuovat uutta tietoa metaboliseen oireyhtymään liittyvien terveysongelmien molekyylimekanismeihin. Projektit havainnollistavat, miten omiikka-tekniikoita voidaan hyödyntää monitekijäisten fenotyyppien tutkimuksessa sekä lääkeaineiden aineenvaihduntavaikutusten arvioinnissa.

Page generated in 0.0296 seconds