• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 349
  • 50
  • 46
  • 45
  • 42
  • 28
  • 17
  • 14
  • 13
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 696
  • 696
  • 121
  • 116
  • 99
  • 86
  • 82
  • 81
  • 75
  • 75
  • 65
  • 65
  • 62
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

Degradation of Flexible Cu(In,Ga)Se2 Solar Cells

Daume, Felix 30 November 2015 (has links) (PDF)
Untersuchungsgegenstand dieser Arbeit ist die Degradation flexibler Dünnschichtsolarzellen auf Basis von Cu(In,Ga)Se2 Absorbern. Zur beschleunigten Alterung unter Laborbedingungen wurden unverkapselte Solarzellen in Klimaschränken Wärme und Feuchte ausgesetzt. Die Auswirkungen von Wärme und Feuchte auf die Solarzellen wurden zunächst durch Messung von Strom–Spannungs–Kennlinien (IV) und Kapazitäts–Spannungs–Charakteristiken (CV) erschlossen. Mittels in–situ Messungen der IV–Kennlinien der Solarzellen unter Wärme und Feuchte konnte die Degradationskinetik untersucht werden. Es gelang zwei Phasen der Alterung, eine anfängliche Verbesserung und die eigentliche Degradation, zu unterscheiden. Außerdem war es dadurch möglich Degradationsraten zu bestimmen. Die Untersuchung der Stabilität der Flächenkontakte erfolgte im Schichtverbund der Solarzelle und separat. Dann wurde der Einfluss von Natrium, einem Bestandteil der Cu(In,Ga)Se2 Solarzellen, untersucht. Schichtzusammensetzung, Elementprofile und Oberflächenbeschaffenheit wurden mittels Laser–induzierter Plasmaspektroskopie (LIBS), Sekundärionen–Massenspektrometrie (SIMS), Rasterelektronenmikroskopie (SEM) und 3D–Lasermikroskopie gemessen. Die Rolle von Natrium für den Degradationsprozess konnte für zwei unterschiedliche Methoden der Natriumeinbringung in den Absorber (Ko–Verdampfung, Nachbehandlung) beschrieben werden. Schließlich wurde mittels Elektrolumineszenz (EL), Thermographie (DLIT) und der Messung Lichtstrahl–induzierter Ströme (LBIC) die Degradation ortsaufgelöst untersucht und Inhomogenitäten detektiert. Aus spannungsabhängigen Elektrolumineszenzaufnahmen gelang es Serienwiderstandskarten zu errechnen. Die Kombination der genannten Messmethoden erlaubte eine Identifizierung dominanter Degradationsprozesse in den flexiblen Cu(In,Ga)Se2 Solarzellen unter Wärme und Feuchte. Unter anderen wurde die Degradation der Grenzfläche zwischen Absorber und Rückkontakt diskutiert. Die Degradationskinetik konnte beschrieben, Solarzelllebensdauern abgeschätzt, die für die Wärme–Feuchte–Stabilität nachteilige Wirkung von Natrium identifiziert und laterale Inhomogenitäten des Degradationsprozesses aufgezeigt werden. Aus der Diskussion der Ergebnisse wurden Vorschläge zur Verbesserung der Wärme–Feuchte–Stabilität abgeleitet.
622

Electronic Structures and Energy Level Alignment in Mesoscopic Solar Cells : A Hard and Soft X-ray Photoelectron Spectroscopy Study

Lindblad, Rebecka January 2014 (has links)
Photoelectron spectroscopy is an experimental method to study the electronic structure in matter. In this thesis, a combination of soft and hard X-ray based photoelectron spectroscopy has been used to obtain atomic level understanding of electronic structures and energy level alignments in mesoscopic solar cells. The thesis describes how the method can be varied between being surface and bulk sensitive and how to follow the structure linked to particular elements. The results were discussed with respect to the material function in mesoscopic solar cell configurations. The heart of a solar cell is the charge separation of photoexcited electrons and holes, and in a mesoscopic solar cell, this occurs at interfaces between different materials. Understanding the energy level alignment between the materials is important for developing the function of the device. In this work, it is shown that photoelectron spectroscopy can be used to experimentally follow the energy level alignment at interfaces such as TiO2/metal sulfide/polymer, as well as TiO2/perovskite. The electronic structures of two perovskite materials, CH3NH3PbI3 and CH3NH3PbBr3 were characterized by photoelectron spectroscopy and the results were discussed with support from quantum chemical calculations. The outermost levels consisted mainly of lead and halide orbitals and due to a relatively higher cross section for heavier elements, hard X-ray excitation was shown useful to study the position as well as the orbital character of the valence band edge. Modifications of the energy level positions can be followed by core level shifts. Such studies showed that a commonly used additive in mesoscopic solar cells, Li-TFSI, affected molecular hole conductors in the same way as a p-dopant. A more controlled doping can also be achieved by redox active dopants such as Co(+III) complexes and can be studied quantitatively with photoelectron spectroscopy methods. Hard X-rays allow studies of hidden interfaces, which were used to follow the oxidation of Ti in stacks of thin films for conducting glass. By the use of soft X-rays, the interface structure and bonding of dye molecules to mesoporous TiO2 or ZnO could be studied in detail. A combination of the two methods can be used to obtain a depth profiling of the sample.
623

Analyse einer mit PbS-Nanopartikeln sensibilisierten Injektionssolarzelle mittels elektrochemischer und frequenzmodulierter Verfahren / Characterisation of a PbS Nanoparticle sensitized Injection Solar Cell by means of Electrochemical and Frequency-modulated Methods

Krüger, Susanne 29 March 2012 (has links) (PDF)
In the latter half of the 20th century the first active environmentalist movements such as Greenpeace and the International Energy Agency were born and initiated a gradual rethinking of environmental awareness. Against all expectations the sole agency under international law for climate protection policy, called the United Nations Framework Convention on Climate Change, was formed 20 years later. Today the awareness of sustained, regenerative and environmental policies permeates throughout all areas of life, science and industry. But energy provision is the most decisive topic, especially since the discussions concerning the phase out of nuclear power where the voices calling for alternative energy sources have become much more vociferous. In addition the depletion of fossil fuels is expected to occur in the not too distant future. All new energy generation methods are required to meet the present and future energy demands, need to be ecological and need to exhibit the same or significantly lower cost expenditure than current energy sources. Unfortunately mankind is confronted with the problem that current commercial alternative energies are more expensive and not yet remotely as efficient as the present energy sources. Although energy provision based on water, wind, sun and geothermal sources have a huge potential because of their continuous presence, unfortunately, they are plagued by inefficient energy conversion caused by the state of technology i.e. the conversion of sun light into electricity loses energy through heat emission, reflection of the sun light, the inability of the material to absorb the entire sun spectrum and the ohmic losses in the transmission of electric current. The sun power is the most exhaustless resource and moreover through photovoltaic action, one of the most direct and cleanest source for use in energy conversion. Presently incoming sun light is not transformed in its entirely, as much degradation occurs during photon absorption and electron transfer processes. A number of other innovative possibilities have also been researched. With respect to cost and efficiency one of the most promising devices is injection solar cells (ISC). By dint of the dye sensitised solar cell (DSSC) Grätzels findings provided the foundations for much research into this type of solar cell where the light absorbing molecule employed in is a dye.[1] The current is obtained through charge separation in the dye, which is initiated through the connection between the dye and a metal oxide on the one hand and a matched redox couple on the other. In a variant of the DSSC the charge separation processes can also occur between a nanoporous metal oxide and nanoparticles giving rise to a quantum dot sensitised solar cell (QDSSC).[2] The use of nanoparticle (NP) properties can be utilized for the harvesting of solar energy, as demonstrated by Kamat and coworkers[3] who were able to exploit these findings subsequently and prepare a number of nanoparticle based solar cells. Nanoparticle research has comprised a wide field of science and nanotechnology for a number of years. As the size of a material approaches dimensions on the nm scale the surface properties contribute proportionally more to the sum of the properties than the volume due to the increase in the surface to volume ratio. These dimensions also constitute a threshold in which quantum physical effects need to be taken into account. Hence the properties of devices or materials in this size regime are inevitably size dependent. The basic principles can be described by two different theories, one of which is based on molecular orbital theory in which the particle is treated as a molecule. For this reason n atomic orbitals with the same symmetry and energy can build up n molecular orbitals through their linear combination based on the LCAO method (Linear Combination of Atomic Orbitals).[4] In the case of solids the orbitals build up energy bands, where the unoccupied states form the quasi continous conduction band (CB) and the occuppied states form the quasi continous valence band (VB). The energy \"forbidden\" area in between these two bands is called the band gap. The band gap is a fixed material property for bulk solids but depends on size in the case of the nanoparticles. In contrast to the LCAO method, simplified solid state theory will be used throughout the present work, the theoretical background of which is provided by the effective mass approximation.[5] When an absorption of a photon occurs, an exciton (electron-hole pair) can be generated. By promoting an electron (e-) from the valence band into the conduction band a hole (h+) may be said to remain in the valence band. By comparison to bulk solids, in a small particle the free charges can sense the potential barrier i.e. the edges of the nanoparticle. Analogous to the particle in a box model this potential barrier interaction results in an increase in the band gap as the particle size decreases. In a solar cell NPs with a particle size which possess a band gap energy in the near infrared (NIR) may be utilised and therefore the NPs will be able to absorb in this spectral region. However NPs also have the ability to absorb higher energy photons due to the continuum present in their band structure, so that almost the entire sun spectral range from the NIR up to UV wavelengths may be absorbed just by using the appropriate NP material and size. Suitable NPs are metal chalcogenides e.g. MX (where M = cadmium, zinc or lead and X = sulfur, selenium or tellurium) because of their bandgap size[6–10] and their relative band positions compared to those of the semiconductor oxide states. Both the TiO2/CdSe[11–14] and TiO2/CdTe[15–18] systems have already been successfully fabricated and many of the anomalies reported.[3] Much interest in the lead chalcogenides has been generated by reports that they may feature the possibility to exhibit multiple exciton generation (MEG) where the absorption of one high energy photon can result in more than one electron-hole pairs.[19–25] Currently electrochemical impedance spectroscopy (EIS) is being used more and more to clarify processes at polarisable surfaces and materials such as nanoparticles. Likewise this method has been rediscovered in photovoltaic research and its use in the characterisation of DSSCs has been discussed in the literature.[26–31] In a number of publications the evaluation of nanoporous and porous structures has been quite extensively explored.[28,29,32–34] Since the mid-20th century Jaffé’s[35] theoretical work concerning the steady- state ac response of solid and liquid systems lead to the formation of the basics of EIS. Further developments in the measurement technology have lead to a broader range of analysis becoming possible. Nevertheless the most challenging part still remains the interpretation of the results and especially to merge the measured data with the theoretical model. EIS quantifies the changes in a small ac current response at electrode electrolyte interfaces i.e. the rate at which the polarized domain will respond, when an ac potential is applied. In this way dielectric properties of materials or composites, such as charge transfers, polarization effects, charge recombination and limitations can be measured as a function of frequency and mechanistic information may be unveiled. Hence EIS allows one to draw a conclusion concerning chemical reactions, surface properties as well as interactions between the electrodes and the electrolyte. Other very useful tools that may be employed for quantifying electron transfer processes and their time domains are intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS). IMPS permits the generation of time-resolved plots of particular photo-processes in the system, each of which may be specifically addressed through varying the excitation wavelength. For the IMPS technique a sinusoidal wave with a small amplitude is applied, analogous to that of electrochemical impedance spectroscopy, but in this case the modulation is applied to a light source and not to the electrochemical cell as in EIS.[35] The current response is associated with the photogenerated charge carriers which flow through the system and finally discharge into the circuit. The amount of generated and discharged charge carriers is often different due to the presence of recombination and capture processes in surface or trap states. Ultimately the phase shift and magnitude of these currents reveal the kinetics of such processes. The only processes that will be addressed will be those that occur in the same frequency domain or on the same time scale as that of the modulated frequency of the illuminated light. In the literature some explanation of the kinetics of simple systems can be found and basic theories and introductive disquisitions may be found elsewhere.[36–38] Furthermore in solar cell research a multiplicity of studies are available which give an account of IMPS measurements on TiO2 nanoporous structures. Such studies permitted proof for the electron trapping and detrapping mechanism in TiO2 surface states.[39,40] An analysis of TiO2 electrodes combined with a dye sensitization step was established in the work of Peter and Ponomarev.[41–43] Hickey et.al.[44,45] have previously published kinetic studies on CdS nanoparticle (NP) modified electrodes. A theory was presented which allows for the IMPS data to be the interpreted in the case of CdS NP based electrodes. The back transfer, recombination and surface states have been demonstrated to be important as was determined from their inclusion in the theory. Similar attempts to explain the kinetics of CdS quantum dots are described by Bakkers et.al.[46]. In the present work the most important questions concern the behaviour of the photovoltaic assembly. Such assemblies can be equated with an electrode in contact with an electrolyte. Preliminary remarks about such electrodes as components of an electrochemical cell will be introduced in the first part of chapter 2. Thereafter the properties of electrodes in contact with the electrolyte and under illuminated conditions are illustrated. This is followed by a description of the important electrochemical and opto-electrochemical methods which have been employed in these studies. In particular, two separate subsections are dedicated to the methods of EIS and IMPS and the experimental section which are then linked to the theoretical section. The synthesis of all substances used and the preparation of the solar cell substrates are also dealt with in this section as will the equipment used and the instrument settings employed. The optical response of the working photoactive electrode is not only dependent on the substances used but also on their arrangement and linkage. The substrate which was employed in chapter 3 consists of a nanoporous ZnO gel layer upon which an organic linker has been placed in order to connect the oxide layer with the light absorbing component, the PbS NPs. Chapter 3 deals with the linker dependence on the ZnO layer and reports the typical optical characteristics and assembly arrangements of six different linkers on the ZnO layer which is an important intermediate stage in the fabrication of an ISC. The questions concerning how the type of linking affects the photo response and other electrochemical interactions of the complete solar cell substrate will be outlined in chapter 4. Further an examination of the electrochemical and opto-electrochemical behaviours of the samples will be presented similar to that presented in chapter 3. The most interesting substrate resulting from the investigations as described in chapter 3 and 4 will be used for a more in-depth characterisation by EIS in chapter 5. A suitable model and the results of the calculation of the ISC and the intermediate stages will be presented. The potential dependence, the dependence on the illuminated wavelength and also the size dependence of the PbS nanoparticles will be discussed. It will be revealed that ZnO is chemically unstable in contact with some of the linkers. For that reason the same linker study has been repeated with the more stable TiO2 employed as the wide band metal oxide. Comparisons between the different semiconductor metal oxides are made in chapter 6. In addition a number of open questions which previously had remained unanswered due to the instability of the ZnO can now be answered. In chapter 7 another highly porous structure different from that of the ZnO gel structure has been studied to determine its suitability as an ISC substrate. The structure arises from the electrodeposition of a ZnO reactant in the presence of eosin Y dye molecules. In the end the desorption of the dye provides a substrate with a high degree of porosity. Compared to the ZnO gel which was prepared and used for measurements in chapter 3 and 4, the electrodeposited ZnO is of a higher crystallinity and possesses a more preferential orientation. This results in a lower amount of grain boundaries which in turn results in fewer trap processes and subsequently yields a higher effective diffusion of the electron through the layer.[47,48] Optical and (opto-)electrochemical methods have been used for the basic characterisation of the untreated ZnO/Eosin Y and all other materials used in the fabrication of the ISC and a comparison with the ZnO gel used in chapter 3 and 4 will be made. Finally in chapter 8 an alternative metal oxide structure will be discussed. The background to this last chapter is to examine the influence of the ISC where the oxidic layer is present as a highly periodic arrangement, known as a photonic crystal. The TiO2 metal oxide which was also used in chapter 6 has been structured to form an inverse opal. First preparative findings and the first illustration of the (opto-)electrochemical results are presented. Consequently suggestions for improvements will be made. It is envisaged that the information gathered and presented here will help to achieve a deeper understanding of solar cells and help to improve the device efficiency and the interplay of the materials. Elementary understanding paves the way for further developments which can also contribute to providing devices for more efficient energy conversion.
624

Ortsaufgelöste Untersuchung massengedruckter Polymersolarzellen auf flexiblem Substrat

Zillger, Tino 04 January 2016 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die ortsaufgelöste Untersuchung der Schichtdicke und der elektrischen Eigenschaften von Funktionsschichten in gedruckten Polymersolarzellen. Die massendrucktechnische Realisierung der großflächigen Polymersolarzellen mit dem Schichtaufbau Zink/ZnO/P3HT:PCBM/PEDOT:PSS erfolgt im Tief- und Siebdruckverfahren auf einem papierbasierten Bedruckstoff. Die gedruckten Funktionsschichten werden mit verschieden optischen und elektrischen Messverfahren charakterisiert und die Eignung der Verfahren wird diskutiert. Abschließend wird die gesamte Polymersolarzelle mit einer Kombination aus spektraler und elektrischer Messung positionsgenau untersucht. Dadurch kann ein Zusammenhang zwischen den Solarzelleneigenschaften und den ortsaufgelösten Messwerten aufgezeigt werden. / The aim of this work is the space-resolved investigation of the layer thickness and the electrical properties of functional layers in printed polymer solar cells. The realization of the large-area polymer solar cells with a layer structure of zinc/ZnO/P3HT:PCBM/PEDOT:PSS occurs by gravure and screen printing on a paper-based substrate. The printed functional layers are characterized by different optical and electrical measurement methods and the suitability of these methods is discussed. Finally, the complete polymer solar cell is examined dependent on a position by using a combination of spectral and electrical measurement techniques. With this analysis a correlation between the solar cell characteristics and the space-resolved measurements can be shown.
625

Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane / Hierarchical porous TiO2 and ionic liquid-like polysiloxane electrolyte for solid state-Dye-Sensitized Solar Cells

Bharwal, Anil 11 January 2018 (has links)
DSSC est une technologie photovoltaïque de 3ème génération avec un fort potentiel économiquement et une efficacité importante de conversion des photons en électricité. Le DSSC à l'état solide à base d'électrolyte polymère solide prévient la perte et l'évaporation du solvant pendant la fabrication et le fonctionnement des cellules, ce qui prolongera efficacement la durée de vie de la cellule. Cependant, il souffre d'une faible conductivité ionique et d'une faible infiltration des pores.La présente thèse est dédiée au développement concomitant d'électrolytes polymères à base de polysiloxane d'un côté et de photoanodes TiO2 à porosité controlée de l'autre côté et leur incorporation dans des cellules solaires contrastants à l'état solide (ss-DSSC), dans le but d'améliorer leur efficacité photovoltaïque et la stabilité à long terme. À notre connaissance, les DSSC comprenant des couches de TiO2 bimodales et des électrolytes de polysiloxane n'ont jamais été rapportés.La conductivité ionique et le coefficient de diffusion des tri-iodures des liquides poly (ioniques) (PILs) à base de polysiloxane ont été largement améliorés par addition de liquides ioniques (ILs) ou de carbonate d'éthylène (EC), conduisant à des conductivités ioniques de l'ordre de 10-4 -10-3 Scm-1. Les DSSC fabriqués avec les électrolytes optimisés ont montré des rendements jusqu'à 6%, avec une stabilité à long terme pendant 250 jours.Des films de TiO2 bimodaux à double porosité (méso et macroporosité) ont été fabriqués par revêtement par centrifugation, en utilisant des modèles mous et durs. Les films à double matrice bénéficient d'une taille de pores accrue tout en maintenant une surface spécifique élevée pour l'adsorption de colorant. Les films bimodaux se sont révélés plus efficaces lorsqu'ils ont été testés avec des électrolytes polymères, ayant des efficacités comparables avec l'électrolyte liquide dans les DSSC, malgré une absorption plus faible de colorant.Cette thèse apporte une contribution significative dans le domaine des DSSC en tant que cellules solaires efficaces et stables qui ont été préparés à partir d'électrolytes polymères et de films bimodaux nouvellement synthétisés. / DSSC is a 3rd generation photovoltaic technology with potential to economically harvest and efficiently convert photons to electricity. Full solid state-DSSC based on solid polymer electrolyte prevents the solvent leaking and evaporation during cell fabrication and operation, which will effectively prolong the cell life time. However, it suffers from low ionic conductivity and poor pore infiltration.The present thesis is dedicated to the concomitant development of polysiloxane-based polymer electrolytes on one side, and TiO2 photoanodes with tuned porosity on the other side, and their incorporation in solid state dye sensitised solar cell (ss-DSSCs), with the aim to improve their photovoltaic efficiency and the long term stability. To best of our knowledge, DSSCs comprising bimodal TiO2 layers and polysiloxane electrolytes have never been reported.The ionic conductivity and tri-iodide diffusion coefficient of the polysiloxane-based poly(ionic) liquids (PILs) were largely improved by adding of ionic liquids (ILs) or ethylene carbonate (EC), achieving ionic conductivities of 10−4 -10−3 Scm−1. The DSSCs fabricated with the optimized electrolytes showed efficiencies up to 6%, with long term stability for 250 days.Bimodal TiO2 films with dual porosity (meso- and macro-porosity) were fabricated by spin-coating, by using soft and hard templating. The dual templated films benefit from increased pore size while maintaining high surface area for dye adsorption. Bimodal films were shown to be more efficient when tested with polymer electrolytes, having comparable efficiencies with liquid electrolyte when in DSSCs, despite lower dye uptake.This thesis brings a significant contribution to the field of DSSCs as efficient and stable solar cells were prepared from newly synthesized polymer electrolytes and bimodal films.
626

Evaluation d’une filière technologique de cellules photovoltaïques multi-jonctions à base de matériaux antimoniures (III-V)-Sb pour applications aux très fortes concentrations solaires / Evaluation of a technological process of photovoltaic cells multi-junction based antimonide materials (III-V)-Sb for use under highly concentrated solar flux

Giudicelli, Emmanuel 20 June 2016 (has links)
La conversion photovoltaïque (PV) de l’énergie solaire repose sur la capacité qu’ont certains matériaux à convertir l’énergie des photons en courant électrique. Le développement des systèmes de conversion PV ces trente dernières années a permis des améliorations considérables en terme de coût et de performances dans le domaine des énergies renouvelables.Une cellule multi-jonctions (MJ), à base de matériaux semi-conducteurs III-V, est un empilement de sous-cellules aux gaps décroissants qui permet notamment une plus large utilisation du spectre solaire. Soumettre ces cellules PV à un flux solaire concentré permet d’augmenter significativement la puissance électrique créée par celles-ci, et ainsi d’abaisser substantiellement le coût de l’électricité produite.Le record du monde est actuellement détenu par le partenariat Soitec / Fraunhofer ISE avec un rendement de 46,0 % mesuré sur une cellule quadruple-jonctions en GaInP/GaAs//InGaAsP/InGaAs pour un taux de concentration de 508 X (où 1 X =1 soleil = 1 kW/m²).L’objectif du travail réalisé dans le cadre de cette thèse est de proposer une alternative aux cellules existantes plus simple à mettre en œuvre avec des cellules MJ monolithiques accordées sur substrat de GaSb pour des concentrations solaire de 1 000, soit une irradiance directe de 1 MW/m². Ce type de cellules, du fait de la très bonne complémentarité des gaps des matériaux et ses alignements de bandes favorables, constitue une alternative crédible et originale aux cellules existantes pour une utilisation sous flux solaire fortement concentré.Afin de mieux comprendre la cellule multijonctions III-Sb optimale, les travaux réalisés ont porté sur la fabrication et la caractérisation des trois sous-cellules fabriquées indépendamment. Ces trois échantillons épitaxiés sont l’Al0,9Ga0,1As0,07Sb0,93 (cellule Top), l’Al0,35Ga0,65As0,03Sb0,97 (cellule Middle) et le GaSb (cellule Bottom) ayant comme gaps respectifs 1,6 eV, 1,22 eV et 0,726 eV à 300 K.Le travail présenté dans cette thèse porte sur :- La réalisation et la mise au point de toutes les étapes technologiques nécessaires à la fabrication des cellules (dépôts métalliques, gravure humide et sèche par plasma …).- La caractérisation des métallisations par structure TLM (Transmission Line Method) dont le meilleur résultat obtenu concerne une métallisation tri-couche Cr/Pd/Au (30/30/30 nm) sur substrat GaSb type P.- La caractérisation sous obscurité courant-tension des paramètres électriques des cellules PV à température ambiante et en fonction de la température.- La caractérisation thermique par mesure de la conductivité thermique des matériaux et une cartographie de température de surface en fonction du flux solaire concentré en conditions réelles.- La caractérisation électro-optique par réponse spectrale, à partir de laquelle nous avons calculé le rendement quantique externe qui représente le rapport entre la quantité d’électrons créés et la quantité de photons incidente.- La caractérisation sous illumination à 1 soleil (1 000 W/m²) sous simulateur solaire et en conditions solaire dont nous avons comparé les paramètres électriques.- La caractérisation des cellules sous flux solaire (fortement) concentré au laboratoire PROMES. Les meilleurs rendements obtenus pour les cellules PV Bottom, Middle et Top respectifs de 4,6 % à 40 X (proche de l’état de l’art), 8,2 % à 96 X et 5,4 % à 185 X (première mondiale pour ces matériaux quaternaires).Ce travail a été cofinancé par le Ministère de l’Education et de la Recherche (Allocation ED) et le Labex SOLSTICE.Photovoltaic (PV) solar energy consists on the ability of certain materials to convert the photon energy into electric current. The development of PV conversion systems in the past thirty years has led to considerable improvements in terms of cost and performance in the field of renewable energies. / Photovoltaic (PV) solar energy consists on the ability of certain materials to convert the photon energy into electric current. The development of PV conversion systems in the past thirty years has led to considerable improvements in terms of cost and performance in the field of renewable energies.A multi-junction (MJ) cell, based on III-V semiconductor materials, is a stack of sub-cells with decreasing gaps which notably allows wider use of the solar spectrum. Exposing these PV cells to a concentrated solar flux can significantly increase the electrical power generated, and therefore substantially lower the cost of electricity yielded.The world record is currently held by the partnership Soitec / Fraunhofer ISE with an efficiency of 46.0 % measured on a four-junction cell GaInP/GaAs//InGaAsP/InGaAs for a concentration ratio of 508 X (where 1 X = 1 sun = 1 kW/m²).The objective of the work in this thesis is to propose an alternative to existing cells, easier to implement with monolithic MJ cells grown on a GaSb substrate for solar concentrations of 1 000, which corresponds to a direct irradiance of 1 MW/m². This type of cell, due to the good complementary of the material gaps and its favorable band alignments, is a realistic and original alternative to existing cells for use under highly concentrated solar flux.To better understand the optimal multijunction III-Sb cell, the work carried out consisted on the manufacturing and characterization of the three sub-cells independently.These three epitaxial samples are Al0,9Ga0,1As0,07Sb0,93 (Top cell), the Al0,35Ga0,65As0,03Sb0,97 (Middle cell) and GaSb (Bottom cell) having as respective gaps 1.6 eV, 1.22 eV and 0.726 eV at 300 K.The work presented in this thesis is:- The establishment of all the technological steps required to manufacture the cells (metal deposition, wet and dry plasma etching ...).- The characterization of metallization by TLM structure (Transmission Line Method) with the best result being a three-layer metallization Cr/Pd/Au (30/30/30 nm) on a GaSb P-type substrate.- The characterization under dark of current-voltage electrical parameters of PV cells at room temperature and in function of the temperature.- The thermal characterization by measuring the thermal conductivity of the materials and a surface temperature mapping in function of the concentrated solar flux in realistic conditions.- The electro-optical characterization by spectral response, from which we calculated the external quantum efficiency which is the ratio between the amount of electrons created and the amount of incident photons.- The characterization under 1 sun illumination (1 000 W/m²) in a solar simulator and in realistic conditions of which we compared the electrical parameters.- The characterization of solar cells under (highly) concentrated solar flux in the PROMES laboratory.The best efficiencies for Bottom, Middle and Top PV cells respectively are 4.6 % for 40 X (close to the state of the art), 8.2 % for 96 X and 5.4 % for 185 X (world first for these quaternary materials).This work was cofounded by the Ministry of Education and Research (ED Research grant) and Labex SOLSTICE.
627

Transparent solar cell techniques : From a solar irradiance- and environmental perspective

Nilsson, Andreas January 2017 (has links)
The task of this master thesis was to investigate the possibility of using transparent solar panels as windows and how they compare to other solar energy technologies. The idea is then to use the UV and IR light to produce energy while letting the visual light pass through. With this also receiving the advantage of less indoor heating of the building and therefore a decreased need for cooling. To make it into a more concrete example the Sergelhuset building in Stockholm, Sweden was chosen as an example. The investigation was made through a solar irradiation simulation for four different cases and an environmental analysis of the alternatives. The result is that the most common way of mounting polycrystalline modules, is the most cost effective alternative but it might not be so good from an environmental perspective in Sweden because of the already low g CO2eq/kWh and not the best location for solar panels. Façade mounted CIGS perform well in energy production but the high investment costs set it down. However, it is better than polycrystalline panels from an environmental perspective. The semitransparent CdTe window will be hard to make economically viable and from an environmental perspective it is debatable. The transparent alternatives focus its absorption on UV and IR light but there are also semi-transparent alternatives that uses also part of the visible light, which makes it not completely transparent.
628

Complexos de rutênio supramoleculares do tipo metal-orgânico e sua aplicação em fotoeletroquimica / Supramolecular ruthenium complexes of the metalorganic type and their application in photoelectrochemistry

Wilmmer Alexander Arcos Rosero 04 June 2018 (has links)
O presente trabalho tem como objetivo contribuir para o conhecimento, entendimento e desenvolvimento das células solares sensibilizadas por corantes. Assim foram abordadas rotas sintéticas com o fim de obter novas espécies supramoleculares constituídos por fragmentos que apresentam separadamente ótimas propriedades eletrônicas e eletroquímicas. A abordagem sintética feita é muito importante dado que dá as bases para sistemas supramoleculares como o apresentado nas perspectivas, nos quais estase visando diminuir os processos de recombinação e melhor aproveitamento do espectro solar através da estabilização do corante foto-oxidado e da transferência vetorial de elétron/energia. Na série de complexos apresentada e aplicada no presente trabalho realizou-se um estudo comparativo buscando determinar qual é o melhor sistema de injeção de elétrons na banda de condução do TiO2, obtendo uma diferença considerável entre os sistemas estudados, sendo assim o sistema com o ligante acido 2,2 -bipiridine-4,4 -dicarboxilico o complexo que melhor injeta elétrons na BC. / The present work aims to contribute to the knowledge, understanding and development of solar cells sensitized by dyes. Thus, synthetic routes were approached in order to obtain new supramolecular species constituted by fragments that separately present excellent electronic and electrochemical properties. The synthetic approach is very important since it provides the basis for supramolecular systems such as that presented in the perspectives, in which stasis is aimed at decreasing the processes of recombination and better utilization of the solar spectrum through the stabilization of the photo-oxidized dye and the vectorial transfer of electron /energy. In the series of complexes presented and applied in the present work, a comparative study was carried out to determine which is the best electron injection system in the conduction band of TiO2, obtaining a considerable difference between the studied systems, being thus the complex with the ligand 2,2 -Bipyridine-4,4 -dicarboxylic acid the best system that injects electrons into BC.
629

A Meta-Analysis on Solar Cell Technologies / A Meta-Analysis on Solar Cell Technologies

Mohammadi, Farid January 2017 (has links)
The objective of this study is analysing the characteristics of five different solar cell technologies regarding their efficiency, fill factor, cost and environmental impacts and comparing their improvement records over years considering their efficiency. The five solar cell technologies of interest are amorphous silicon, monocrystalline silicon, polycrystalline silicon, cupper indium gallium selenide thin film and cadmium telluride thin film. The structure and manufacturing process of each of cell technologies were discussed. The study was conducted by the aid of available scientific reports regarding the electrical characteristics of different solar cell technologies. The extracted information regarding efficiency rate and fill factor was analysed using graphs and significant findings are discussed. The five technologies are also compared regarding their cost and ease of fabrication and their impacts on environment and recycling challenges. The result of this study is suggesting the most promising technology that may be the optimal option for further investment and research.
630

Intégration des systèmes à absorption solaire de petites puissances aux bâtiments - approche multifonction solaire : chauffage, ECS et rafraîchissement / Integration of low capacity solar absorption systems into buildings - a solar multifunction approach : heating, domestic hot water and cooling

Jabbour, Noel 30 September 2011 (has links)
L’introduction des nouvelles machines frigorifiques à absorption des petites puissances ouvre des nouvelles perspectives pour les systèmes solaires multifonction multi-source (SYSMFS) qui exploitent le potentiel de l’énergie solaire pour le chauffage, le refroidissement et la préparation de l’eau chaude sanitaire (ECS). Les systèmes solaires combinés (SSC), qui ont précédés les SYSMFS, manquaient néanmoins une procédure adaptée pour le dimensionnement de leurs composants principaux : le panneau solaire et le ballon solaire de stockage thermique. De point de vue de l’énergie et du coût d’investissement et d’exploitation, une méthode de dimensionnement basée sur le pic de charge ne conviendrait pas si la source d’énergie n’est pas garantie d’être stable dans le temps. Une optimisation des composants principaux par la simulation peut être alors une solution clef pour le dimensionnement optimal de SYSMFS. À partir des informations sur les SSC trouvées dans la littérature et celles de fabricant de la machine frigorifique, un schéma hydraulique initial a été élaboré pour un SYSMFS. La modélisation de ce schéma est complexe car des simulations et des modifications répétitives ont été nécessaires pour éliminer les problèmes potentiels de convergence de la solution. A partir de cette expérience, une méthodologie de conception assistée par simulation a été élaborée afin d’en profiter pour des modélisations similaires. En tant que telle, le modèle devrait être prêt pour la phase l’optimisation. Une étude paramétrique a été menée sur le modèle SYSMFS ; elle offre les donnés requises pour la comparaison des algorithmes d’optimisation qui sont testés par la suite. Le résultat de cette étude est une surface de réponse qui représente le coût du SYSMFS en fonction de la superficie du panneau solaire et du volume de stockage thermique du ballon solaire. Pour réduire le nombre des simulations requis par une étude paramétrique complète, l’utilisation d’un algorithme d’optimisation est nécessaire. Un algorithme basé sur le plan d’expérience (OptDOE) a été développé et sa performance est comparée avec celles d’un algorithme d’optimisation hybride sur une fonction de référence de Rosenbrock et sur le modèle SYSMFS. Comparé à l’algorithme hybride, OptDOE a montré une bonne performance. Le nombre de simulations est réduit et les valeurs optimales trouvées, par cette méthode, sont porches de celles de l’étude paramétrique L’OptDOE permet également de décrire le comportement du modèle SYSMFS au voisinage de l’optimum avec une fonction coût approximée. Cette information est importante surtout au cas où la fonction coût a la forme d’une vallée. Dans ce cas, des valeurs différentes de l’optimum donnent presque le même coût global. / The introduction of new low capacity absorption chillers opens new prospects for the multifunction multisource solar systems (MFSSYS) which exploit the full potential of the solar energy for heating, cooling and production of domestic hot water (DHW) purposes. The solar combisystems (SCS), which preceded the MFSSYS, lacked an adapted procedure for the sizing of their main components: the solar collector and the solar thermal storage tank. From the point of view of the energy and investment cost, a sizing method based on the peak load may fail if the energy source is not guaranteed to be stable. An optimization of the main components by simulation may be then a key solution for an optimal sizing of the MFSSYS. An initial hydraulic schematic is elaborated for the MFSSYS based on information found in the literature about the SCS and the data made available by the chiller manufacture. The modeling of this schematic is complex as redundant simulation and modification were necessary in order to eliminate the potential problems of solution convergence. From this experience, a method of simulation aided design is elaborated. Parametric runs were carried out on the MFSSYS model. They offer needed information for the comparison of the optimization algorithms which are tested later on. The outcome of these parametric runs is a response surface which represents the cost of the MFSSYS as a function of the solar collector surface area and the volume of the solar thermal storage tank. In order to reduce the number of simulations required by a complete parametric runs method, the use of optimization algorithm become a necessity. An optimization algorithm based on the design of experiments (OptDOE) is developed; its performance is compared with the one of a hybrid optimization algorithm in two cases: a reference function of Rosenbrock and the model of the MFSSYS. Compared to the hybrid optimization algorithm, OptDOE has showed good performance. The number of simulations is reduced and the optimized values, found by this method, are close to those of the parametric runs. The main advantage of OptDOE is to describe the behavior of the cost function in the neighborhood of the optimum. This information is valuable especially when the cost function has a valley-like form, which is the case for the systems we studied. In this case, the cost has approximately the same value for a large variation range of the optimized parameters.

Page generated in 0.0386 seconds