Spelling suggestions: "subject:"varimax"" "subject:"arimax""
11 |
A Study Evaluating the Liquidity Risk for Non-Maturity Deposits at a Swedish Niche Bank / En studie som utvärderar likviditetsrisken för icke tidsbestämda inlåningsvolymer hos en svensk nischbankHilmersson, Markus January 2020 (has links)
Since the 2008 financial crisis, the interest for the subject area of modelling non-maturity deposits has been growing quickly. The area has been widely analysed from the perspective of a traditional bank where customers foremost have transactional and salary deposits. However, in recent year the Swedish banking sector has become more digitized. This has opened up opportunities for more niche banking actors to establish themselves on the market. Therefore, this study aims to examine how the theories developed and previously used in modelling liquidity volumes at traditional banks can be used at a niche bank focused on savings and investments. In this study the topics covered are short-rate modelling using Vasicek's model, liquidity volume modelling using SARIMA and SARIMAX modelling as well as liquidity risk modelling using an approach developed by Kalkbrener and Willing. When modelling the liquidity volumes the data set was divided depending on account and customer type into six groups, for four out of these the models had lower in and out of set prediction errors using SARIMA models for only two of the six models were there improvements made to the in and out of set prediction error using SARIMAX models. Finally, the resulting minimization of liquidity volume forecasting 5 years in the future gave reasonable and satisfactory results. / Sedan finanskrisen 2008 har intresset kring ämnesområdet gällande modellering av inlåningsvolymer utan en kontrakterad förfallodag ökat snabbt. Området har analyserats i stor utsträckning från perspektivet av en traditionell bank där kunder har framförallt transaktions- och lönekonton. De senaste åren har den Svenska banksektorn blivit mer digitaliserad. Detta har öppnat upp möjligheter för nischbanker att etablera sig på marknaden. Därför ämnar denna studie att undersöka hur teorier som har utvecklats och tidigare använts på traditionella banker för att modellera likviditetsvolymer kan användas på en nischbank som är fokuserad på sparande och investeringar. I denna studie modelleras korträntor med Vasicek's modell, likviditetsvolymer med SARIMA och SARIMAX modeller och likviditetsrisk med en modell utvecklad av Kalkbrener och Willing. För modelleringen av likviditetsvolymer delades likviditetsdatan upp i sex grupper baserat på konto- och kund typ. För fyra av dessa data set gav SARIMA-modeller lägre prediktionsfel och endast för två av de sex grupperna gav SARIMAX-modeller bättre resultat. Slutligen så gav den resulterande minimeringen av nödvändiga likviditetsvolymer på en 5 årig horisont rimliga och tillfredsställande resultat.
|
12 |
[en] DEMAND PROJECTION IN THE OMNICHANNEL CHANNEL OF A RETAILER / [pt] PROJEÇÃO DE DEMANDA NO CANAL OMNICHANNEL DE UMA VAREJISTABARBARA SEQUEIROS HUE LESSA 07 December 2023 (has links)
[pt] Tendo em vista mudanças significativas no varejo causadas pelo
crescimento de compras online no Brasil, este estudo tem como objetivo facilitar
um relevante lead time e um forte grau de assertividade na previsão de demanda do
Omnichannel de uma empresa do setor. Com a crescente relevância do
Omnichannel, é importante compreender as necessidades dos consumidores
tradicionais e digitais, integrar suas experiências e oferecer múltiplos canais de
compra. Nesse contexto, a previsão de demanda é crucial para apoiar as decisões
estratégicas, táticas e operacionais da organização. A utilização de séries temporais
hierárquicas auxilia na precisão das previsões e, portanto, na tomada de decisões,
permitindo gerar estimativas coerentes ao longo dos múltiplos níveis hierárquicos.
Dessa forma, neste estudo, combinando as metodologias de previsão de séries
temporais ETS, ARIMA e SARIMAX, com métodos de reconciliação Bottom-up,
Top-down, MinTrace Combinação Ótima (OLS) e MinTrace WLS Struct, doze
modelos foram gerados. Baseado nas principais abordagens de séries temporais
hierárquicas, com uma sequência de sete passos, os modelos foram comparados,
por meio de métricas de avaliação de desempenho, para identificar qual deles
melhor se encaixa na série trabalhada. Ao final do estudo, o modelo SARIMAX
com Bottom-up se mostrou a combinação mais adequada para a série em análise. A
abordagem alcançou um MAPE de 22 por cento no nível mais agregado da hierarquia,
reduzindo em cinco pontos percentuais o MAPE original da empresa, além de
apresentar a melhor colocação na combinação das métricas comparativamente. / [en] In light of recent changes in retail caused by the growth of online shopping in Brazil, this study aims to enable a substantial lead time and a high degree of accuracy of the Omnichannel demand forecast for a retail company. As Omnichannel success continues to expand, it becomes increasingly important tounderstand the needs of both traditional and digital consumers, integrate their experiences and offer multiple purchase channels. In this context, demand forecasting is crucial for identifying market trends, growth opportunities, potentialstrategies and supporting strategic, tactical and operational decisions. The use of Hierarchical Time Series improves forecasts accuracy and, therefore, assists in decision-making, allowing the development of consistent estimations acrossmultiple hierarchical levels. Thus, this study combines the time series forecast generation methodologies ETS, ARIMA and SARIMAX, with Bottom-up, Top-down, MinTrace Optimal Combination (OLS) and MinTrace WLS Struct reconciliation methods, resulting in the generation of twelve models. Based on the main theories of Hierarchical Time Series and following a 7-steps sequence, the models were compared using performance evaluation metrics to identify the best fit for the investigated series. The research concludes that the SARIMAX model,together with the Bottom-up strategy, proves to be the most appropriate composition for the Hierarchical Time Series under analysis, as it demonstrates the best performance across the evaluation metrics, reaching a MAPE of 22 percent at the most aggregated level of the hierarchy and reducing the original company forecasting MAPE by five percentage points.
|
13 |
Evaluation of Machine Learning Methods for Time Series Forecasting on E-commerce Data / Utvärdering av Maskininlärningsmodeller för tidsserie-prognotisering på e-handels dataAbrahamsson, Peter, Ahlqvist, Niklas January 2022 (has links)
Within demand forecasting, and specifically within the field of e-commerce, the provided data often contains erratic behaviours which are difficult to explain. This induces contradictions to the common assumptions within classical approaches for time series analysis. Yet, classical and naive approaches are still commonly used. Machine learning could be used to alleviate such problems. This thesis evaluates four models together with Swedish fin-tech company QLIRO AB. More specifically, a MLR (Multiple Linear Regression) model, a classic Box-Jenkins model (SARIMAX), an XGBoost model, and a LSTM-network (Long Short-Term Memory). The provided data consists of aggregated total daily reservations by e-merchants within the Nordic market from 2014. Some data pre processing was required and a smoothed version of the data set was created for comparison. Each model was constructed according to their specific requirements but with similar feature engineering. Evaluation was then made on a monthly level with a forecast horizon of 30 days during 2021. The results shows that both the MLR and the XGBoost provides the most consistent results together with perks for being easy to use. After these two, the LSTM-network showed the best results for November and December on the original data set but worst overall. Yet it had good performance on the smoothed data set and was then comparable to the first two. The SARIMAX was the worst performing of all the models considered in this thesis and was not as easy to implement. / Inom efterfrågeprognoser, och specifikt inom området e-handel, innehåller den tillhandahållna informationen ofta oberäkneliga beteenden som är svåra att förklara. Detta motsäger vanliga antaganden inom tidsserier som används för de mer klassiska tillvägagångssätten. Ändå är klassiska och naiva metoder fortfarande vanliga. Maskininlärning skulle kunna användas för att lindra sådana problem. Detta examensarbete utvärderar fyra modeller tillsammans med det svenska fintechföretaget QLIRO AB. Mer specifikt en MLR-modell (Multiple Linear Regression), en klassisk Box-Jenkins-modell (SARIMAX), en XGBoost-modell och ett LSTM-nätverk (Long Short-Term Memory). Den tillhandahållna informationen består av aggregerade dagliga reservationer från e-handlare inom den nordiska marknaden från 2014. Viss dataförbehandling krävdes och en utjämnad version av datamängden skapades för jämförelse. Varje modell konstruerades enligt deras specifika krav men med liknande \textit{feature engineering}. Utvärderingen gjordes sedan på månadsnivå med en prognoshorisont på 30 dagar under 2021. Resultaten visar att både MLR och XGBoost ger de mest pålitliga resultaten tillsammans med fördelar som att vara lätta att använda. Efter dessa visar LSTM-nätverket de bästa resultaten för november och december på den ursprungliga datamängden men sämst totalt sett. Ändå visar den god prestanda på den utjämnade datamängden och var sedan jämförbar med de två första modellerna. SARIMAX var den sämst presterande av alla jämförda modeller och inte lika lätt att implementera.
|
14 |
Day-ahead modelling of the electricity balancing market : A study of linear machine learning models used for modelling predictions of mFRR volumesBankefors, John January 2024 (has links)
The study aimed to define and investigate relevant parameters affecting manual frequency restoration reserve (mFRR) volumes of the balancing market in the Finnish price area. It also aimed to find suitable models and investigate Day-ahead prediction possibilities of mFRR volumes. Parameters related to mFRR volumes Day-ahead predictions were identified in several earlier studies where of nine parameters were investigated. The correlations between mFRR volumes and the different parameters were investigated using Spearman’s correlation. Different linear machine learning models for Day-ahead predictions of mFRR volumes were builtand tested in Python. The resulting models used for predicting mFRR volumes in Python were one ARIMAX model and one SARIMAX model. The models were validated with a walk-forward method where Day-ahead predictions were conducted monthly for one year. The accuracy of the predictions was measured by the validation parameters Mean Absolute Value, Root Mean Square Error and Median Absolute Deviation. Results from the study show that it is difficult to predict absolute activated mFRR volumes. Although, it might be possible to predict that mFRR volumes will be activated or not, up- or down regulated to some extent. One explanation of the difficulties in predicting mFRR volumes is dueto mFRR being a balancing product whose function is to regulate disturbances in the electricity grid.
|
15 |
What would be the highestelectrical loads with -20°C inStockholm in 2022 ? : A study of the sensitivity of electrical loads to outdoor temperature in Stockholm region.Mellon, Magali January 2022 (has links)
In the last 10 years, no significant increase in the peak electricity consumption of the region of Stockholm has been observed, despite new customers being connected to the grid. But, as urbanization continues and with electrification being a decisive step of decarbonization pathways, more growth is expected in the future. However, the Swedish Transmission System Operator (TSO), Svenska Kraftnat, can only supply a limited power to Stockholm region. Distribution System Operators (DSOs) such as Vattenfall Eldistribution, which operates two thirds Stockholm region's distribution grid, need to find solutions to satisfy an increasing demand with a limited power supply. In these times, forecasting the worst-case scenarios, i.e., the highest possible loads, becomes a critical question. In Sweden, peak loads are usually triggered by the coldest temperatures, but the recent winters have been mild: this brings uncertainty about a possible underlying temperature adjusted growth that would be masked by relatively warm winters. Answering the question 'What would be the highest loads in 2022 with -20°C in Stockholm region ?' could help Vattenfall Eldistribution estimating the flexibility needed nowadays and designing the future grid with the necessary grid reinforcements. This master thesis uses a data-driven approach based on eleven years of hourly data on the period 2010-2021 to investigate the temperature sensitivity of aggregated electricity load in Stockholm region. First, an exploratory analysis aims at quantifying how large the growth has been in the past ten years and at understanding how and when peak loads occur. The insights obtained help design two innovative regression techniques that investigate the evolution of the loads across years and provide first estimates of peak loads. Then, a Seasonal Autoregressive Integrated Moving Average with eXogenous regressors (SARIMAX) process is used to model a full winter of load as a function of temperatures. This third method provides new and more reliable estimates of peak loads in 2022 at e.g. -20°C. Eventually, the SARIMAX estimates are kept and a synthesis of the global outlooks of the three methods and possible extensions of the SARIMAX method is presented in a final section. The results conclude on a significant increase in the load levels in southern Stockholm ('Stockholm Sodra') between 2010 and 2015 and stable evolution onwards, while the electric consumption in Northern Stockholm remained stable during the period 2010-2021. During a very cold winter, the electricity demand is expected to exceed the subscription levels during about 300h in Stockholm Sodra and 200h in Stockholm Norra. However, this will be a rare occurrence, which suggests that short-term solutions could be privileged rather than costly grid extension work. Many questions arise, and the capability of local heat & power production and electricity prices signals to regulate today's demand are yet to investigate. Additional work exploring future demand scenarios at a smaller scale could also be contemplated. / Under den senaste årtionden har Stockholms toppkonsumtion av el inte ökat markant trots nya elkunder som ansluter till elnätet. Med en snabb urbanisering, är ökad elektrifiering en huvudlösning för att uppnå ett fossilfritt samhälle och denna trend förväntas fortsätta under kommande årtionden. Samtidigt börjar den svenska transmissionsnätoperatören (TSO) Svenska kraftnät få problem med att leverera elkraft till Stockholmsregionen, på grund av en begränsad överföringskapacitet. Därför måste lokala eldistributörer (DSO), liksom Vattenfall Eldistribution, som är Sveriges största DSO med systemansvar för distributionssystem, undersöka nya lösningar för att uppfylla den ökande efterfrågan på el. Det blir dessutom mycket viktigt att identifiera de värsta tänkbara scenario, som att göra prognos av högsta möjliga elförbrukning. Stockholm konsumerar exempelvis mest el när det är som kallast – men de senaste vintrarna har varit milda jämfört med till exempel vintrarna 2010 – 2011 eller 2012 – 2013 då temperaturer i Stockholmsregion mättes till under -20°C grader för flera dagar i sträck. Detta resulterar i en relevant frågeställning: ” Vad skulle Stockholms elkonsumtion vid -20°C bli 2021 eller 2022?”. Att kvantitativt kunna besvara denna fråga skulle hjälpa Vattenfall med att designa framtidens elnät samt se till att det finns rätt mängd flexibilitet i reserv i nuvarande Stockholm Flex elmarknad. Detta examensarbete utgår från att kvantitativt analysera denna frågeställning. Utgångsläget är ett datadrivet tillvägagångssätt baserat på tio års tidseriedata för att undersöka temperaturkänsligheten för det aggregerade elbehovet i Stockholmsregionen, och dra slutsatser om dess utveckling genom åren. I första hand, utförs en explorativ analys för att förstå när och hur toppbelastning kan hända. Då hjälper dessa insikter till att utforma två innovativa regressionsmetoder för att undersöka utvecklingen av elförbrukning under det senaste decenniet och uppskatta värdet på toppbelastningen. Därefter används ett säsongmässigt autoregressivt integrerat rörligt genomsnitt med exogena faktorer (SARIMAX) för att modellera en vinter som en funktion av temperaturerna. Denna tredje metod behandlar nya och mer tillförlitliga beräkningar av toppbelastning värden i 2022 på -20°C. Huvudslutsatser från examensarbetet är att elförbrukningen skulle öka i området Stockholm Södra speciellt mellan 2010 och 2015, medan elförbrukningen skulle vara stabil under hela perioden i området Stockholm Norra. Det finns en risk för att under ett antal timmar vid riktigt kall vinter, ha ett elbehov högre än Vattenfall Eldistributions summa av abonnemang. Dock är det väldigt låg sannolikhet att detta händer, vilket innebär att det förmodligen finns andra sätt att hantera denna efterfråga på el än att öka överföringskapaciteten i elnätet. Examensarbetet resulterar i flera frågor. Exempelvis att utreda möjligheter i att utnyttja lokala el och värmekraftverk och använda elprissignaler. Ytterligare arbete kan också undersöka scenarier av den framtida elförbrukning i en mindre skala.
|
16 |
An Exploration of and Case Studies in Demand Forecast Accuracy: Replenishment, Point of Sale, and Bounding ConditionsSmyth, Kevin Barry January 2017 (has links)
No description available.
|
17 |
Modeling of non-maturing deposits / Modellering av icke-tidsbunda inlåningsvolymerStavrén, Fredrik, Domin, Nikita January 2019 (has links)
The interest in modeling non-maturing deposits has skyrocketed ever since thefinancial crisis 2008. Not only from a regulatory and legislative perspective,but also from an investment and funding perspective.Modeling of non-maturing deposits is a very broad subject. In this thesis someof the topics within the subject are investigated, where the greatest focus inon the modeling of the deposit volumes. The main objective is to providethe bank with an analysis of the majority of the topics that needs to be cov-ered when modeling non-maturing deposits. This includes short-rate model-ing using Vasicek’s model, deposit rate modeling using a regression approachand a method proposed by Jarrow and Van Deventer, volume modeling usingSARIMA, SARIMAX and a general additive model, a static replicating port-folio based on Maes and Timmerman’s to model the behaviour of the depositaccounts and finally a liquidity risk model that was suggested by Kalkbrenerand Willing. All of these models have been applied on three different accounttypes: private transaction accounts, savings accounts and corporate savingsaccounts.The results are that, due to the current market, the static replicating portfoliodoes not achieve the desired results. Furthermore, the best volume model forthe data provided is a SARIMA model, meaning the effect of the exogenousvariables are seemingly already embedded in the lagged volume. Finally, theliquidity risk results are plausible and thus deemed satisfactory. / Intresset för att modellera inlåningsvolymer utan en kontrakterad förfallodaghar ökat markant sedan finanskrisen 2008. Inte bara sett utifrån ett perspek-tiv att uppfylla krav som ställs av tillsynsmyndigheter, men också sett utifrånbankens investerings-och finansieringsperspektiv.Målet med det här arbetet är att förse banken med en analys av majoritetenav de olika områdena som man behöver ta hänsyn till när man ska model-lera inlåningar utan förfallodatum, men med ett fokus på volymmodellering.I den här rapporten modelleras räntor (kortränta och kontoränta), kontovoly-merna, kontobeteendet samt likviditetsrisken. Detta görs med hjälp av Vasicekför korträntan, en regressionsmetod samt en metod som föreslagits av Jarrowoch Van Deventer för kontoräntan, SARIMA, SARIMAX och en generell ad-ditiv regressionsmetod för volymerna, en statisk replikeringsportfölj baseradpå Maes och Timmermans modell för att imitera kontona och slutligen så mo-delleras likviditetsrisken med ett ramverk som föreslagits av Kalkbrener ochWilling. Alla dessa nämnda modeller appliceras, där det är möjligt, på de treolika kontotyperna: privatkonton, sparkonton samt företagssparkonto.Resultatet är att räntemodelleringen samt replikeringsportföljen inte ger ade-kvata resultat på grund av den rådande marknaden. Vidare så ger en SARIMA-modell den bästa prediktionen, vilket gör att slutsatsen är att andra exogenavariabler redan är inneslutna i den fördröjda volymvariabeln. Avslutningsvisså ger likviditetsmodellen tillfredsställande resultat och antas vara rimlig.
|
18 |
Utvecklingen av marknadsvärdet för svenska frekvenshållningsreserver 2024–2030 : En prognos för utvecklingen av marknadsvärdet för frekvenshållningsreserverna FCR-N, FCR-D upp och FCR-D ned på den svenska balansmarknaden mellan 2024 och 2030 / The Development of the Market Value of Swedish Frequency Containment Reserves 2024–2030 : A forecast for the development of the market value for the frequency containment reserves FCR-N, FCR-D up and FCR-D down in the Swedish balancing market between 2024 and 2030Ludvig, Aldén, Gustav, Espefält, Gabriel, Gabro January 2024 (has links)
I takt med en ökad andel variabel förnybar elproduktion i Sveriges energimix blir elnätets flexibilitet allt viktigare för att upprätthålla en stabil elförsörjning. Detta arbete undersöker framtida prognoser för priser och volymer på de svenska frekvenshållningsreserverna FCR-N, FCR-D upp och FCR-D ned fram till år 2030. Prognoser för sådan utveckling är viktiga för elmarknadens aktörer och deras beslut att investera i flexibilitetsresurser. SARIMAX-modeller utvecklades baserade på historisk data och antaganden om framtida utvecklingar, vilka i sin tur grundades på en intervju med en branschexpert samt aktuella kartläggningar och rapporter. Resultaten visar på en markant nedåtgående pristrend. För FCR-N prognostiseras priserna sjunka med 367 % från 2024 till 2030, från 29 euro/MW till 5 euro/MW. FCR-D upp förväntas följa en liknande trend med ett prisfall på 325 %, från 20 euro/MW år 2024 till 4 euro/MW år 2030. Den kraftigaste prisnedgången prognostiseras för FCR-D ned, där priserna beräknas rasa med över 1900 % under samma period - från 61 euro/MW år 2024 till endast 3 euro/MW år 2030. Vad gäller volymer visar prognoserna på en relativt stabil utveckling kring upphandlingsplanerna, med en viss ökning för FCR-D ned på 44 % från 2024 till 2030. Den pågående etableringen av batterilager förutses ha stor påverkan genom att öka konkurrensen och pressa priserna nedåt. De låga prisnivåerna 2030 kan dock göra det utmanande att motivera investeringar enbart baserat på intäkter från FCR-marknader. Vidare diskuteras modellernas begränsningar samt behovet av framtida forskning kring batteriteknik, råvaruaspekter och avancerade simuleringsmodeller för att bättre förstå marknadsdynamiken. / As the share of variable renewable electricity production increases in Sweden's energy mix, the flexibility of the power grid becomes increasingly important to maintain a stable electricity supply. This study aims to forecast prices and volumes of the Swedish frequency containment reserves FCR-N, FCR-D up, and FCR-D down until 2030. Forecasts of such developments are important for electricity market participants and their decisions to invest in flexibility resources. SARIMAX models were developed based on historical data and assumptions about future developments, which in turn were based on an interview with an industry expert as well as current reports. The results indicate a significant downward price trend. For FCR-N, prices are forecasted to decrease by 367% from 2024 to 2030, dropping from 29 euros/MW to 5 euros/MW. FCR-D up is expected to follow a similar trend with a 325% price drop, from 20 euros/MW in 2024 to 4 euros/MW in 2030. The sharpest price decline is forecasted for FCR-D down, where prices are estimated to plummet by over 1900% during the same period - from 61 euros/MW in 2024 to only 3 euros/MW in 2030. Regarding volumes, the forecasts show a relatively stable development around the procurement plans, with a certain increase for FCR-D down by 44% from 2024 to 2030. The ongoing establishment of battery storage is expected to have a major impact by increasing competition and putting downward pressure on prices. However, the low price levels in 2030 may make it challenging to justify investments based solely on revenues from FCR markets. Furthermore, the limitations of the models are discussed, as well as the need for future research on battery technology, raw material aspects, and advanced simulation models to better understand market dynamics.
|
Page generated in 0.0378 seconds