• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 7
  • 2
  • 1
  • Tagged with
  • 40
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Design and Fabrication of Suspended Waveguides With Photonic Grating Structures

Lombardo, David 29 June 2020 (has links)
No description available.
32

Systeme d'imagerie hybride par codage de pupille / Hybrid imaging system with wavefront coding

Diaz, Frédéric 06 May 2011 (has links)
De nouveaux concepts d’imagerie permettent aux systèmes optiques d’être plus compacts et plus performants. Parmi ces nouvelles techniques, les systèmes d’imagerie hybrides par codage de pupille allient un système optique comprenant un masque de phase et un traitement numérique. La fonction de phase implantée sur le masque rend l’image insensible à un défaut du système optique, qui peut être une aberration ou de la défocalisation. Cet avantage est obtenu au prix d’une déformation connue de l’image qui est ensuite corrigée par un traitement numérique.L’étude des propriétés de ces systèmes a été effectuée en cherchant à augmenter la profondeur de champ d’un système d’imagerie. Un gain sur ce paramètre permet déjà d’envisager le relâchement de contraintes de conception optique telles que la courbure de champ, la défocalisation thermique, le chromatisme… Dans ces techniques d’imagerie, la prise en compte du bruit du capteur constitue l’un des paramètres critiques pour le choix et l’utilisation de méthodes de traitement d’image.Les travaux menés durant cette thèse ont permis de proposer une approche originale de conception conjointe de la fonction de phase du masque et de l’algorithme de restauration d’image. Celle-ci est basée sur un critère de rapport signal à bruit de l’image finale. Contrairement aux approches connues, ce critère montre qu’il n’est pas nécessaire d’obtenir une stricte invariance de la fonction de transfert du système optique. Les paramètres des fonctions de phase optimisés grâce à ce critère sont sensiblement différents de ceux usuellement proposés et conduisent à une amélioration significative de la qualité de l’image.Cette approche de conception optique a été validée expérimentalement sur une caméra thermique non refroidie. Un masque de phase binaire qui a été mis en œuvre en association avec un traitement numérique temps réel implémenté sur une carte GPU a permis d’augmenter la profondeur de champ de cette caméra d’un facteur 3. Compte-tenu du niveau de bruit important introduit par l’utilisation d’un capteur bolométrique, la bonne qualité des images obtenues après traitement démontre l’intérêt de l’approche de conception conjointe appliquée à l’imagerie hybride par codage de pupille. / New imaging techniques allow better and smaller systems. Among these new techniques, hybrid imaging systems with wavefront coding includes an optical system with a phase mask and a processing step. The phase function of the mask makes the system insensitive to a fault of the optical system, such as an aberration or a defocus. The price of this advantage is a deformation of the image acquired by a sensor, which is then processed. The study of the properties of these hybrid imaging systems has been completed by increasing the depth of field of an imaging system, which allows to relax some design constraints such as field curvature, thermal defocus, chromaticism… In these imaging techniques, the consideration the noise of the sensor is one the critical parameters when choosing the image processing method.The work performed during this thesis allowed to proposed an original approach for the cross-conception of the phase function of the mask and the processing step. This approach is based on a signal-to-noise criterion. Unlike known approaches, this criterion shows that a strict insensitivity of the modulation transfer function of the optics is not required. The parameters of the phase functions optimized thanks to this criterion are noticeably different from those usually proposed and lead to a significant increase of the image quality.This cross-conception approach has been validated experimentally on an uncooled thermal camera. A binary phase mask associated with a real-time processing implemented on a GPU allowed to increase the depth of field of this camera by a factor 3. Considering the important level of noise introduced by the use of a bolometric sensor, the good quality of the processed image shows the interest of the cross-conception for hybrid imaging system with wavefront coding.
33

Combinaison cohérente de lasers à cascade quantique / Coherent combining of quantum cascade lasers

Bloom, Guillaume 14 February 2012 (has links)
Des applications comme les contre-mesures optiques nécessitent des sources puissantes et avec une bonne qualité de faisceau dans le moyen infrarouge. Le laser à cascade quantique (LCQ) est une solution prometteuse mais la puissance fournie par ces lasers n’est pas suffisante. La combinaison cohérente de plusieurs de ces sources devrait permettre de sommer leurs puissances tout en conservant la qualité de faisceau d’un émetteur unique et constitue donc une solution intéressante pour contourner l’actuelle limitation en puissance des LCQ.Nous présentons une étude théorique et expérimentale de la combinaison de faisceaux cohérente de LCQ dans une cavité externe commune utilisant un coupleur de faisceaux. La mise en phase est ici totalement passive puisque fondée sur la minimisation des pertes dans la cavité globale : on parle d’auto-organisation. Un modèle général permettant de quantifier l’efficacité de combinaison et la stabilité de telles cavités est développé. Dans un premier temps, on montre expérimentalement que la combinaison cohérente de deux LCQ dans une cavité Michelson est une solution efficace et stable. Pour combiner plus d’émetteurs il est nécessaire de concevoir des coupleurs de faisceaux dans le moyen infrarouge efficaces. Pour cela, nous avons étudié deux types de réseaux : les réseaux de phase binaire (réseaux de Dammann) et des structures à gradient d’indice composées de motifs sub-longueur d’onde. Le dessin et l’optimisation de telles structures fait appel à la théorie des milieux artificiels et nécessite l’utilisation d’un code de résolution rigoureuse des équations de Maxwell (RCWA). Enfin, la combinaison cohérente de cinq LCQ en cavité externe avec un coupleur de faisceaux est démontrée expérimentalement et la combinaison d’un plus grand nombre de LCQ est discutée. En conclusion, nous présentons une solution originale pour réaliser la combinaison cohérente passive de LCQ et ainsi apporter une solution à l’augmentation de puissance dans le moyen infrarouge. / Powerful sources in the mid-infrared with a good beam quality are highly needed for applications such as optical countermeasures. The quantum cascade laser (QCL) is a promising solution but the maximum power achievable is not sufficient. The coherent beam combining of several QCL could lead to higher output power in the same beam and thus is an interesting solution to circumvent the current power limitation of these sources.We present a theoretical and experimental study of the coherent beam combining of QCL in a common external cavity with a beam combiner. The phase locking is totally passive since it is only based on loss minimization in the external cavity: it is a self-organization process. A general model is developed to quantify the combining efficiency and the stability that can be obtained from this method. Experimentally, the coherent combining of two QCL in a Michelson cavity is studied first and demonstrated to be efficient and stable. In order to combine more emitters, an efficient beam combiner must be designed in the mid-infrared. For that purpose, two type of gratings, a classical binary phase grating (or Dammann grating) and a more complex gradient-index structure made of local sub-wavelength patterns are designed and compared. The calculation and optimization of this sub-wavelength structure is based on the artificial media theory and is achieved with rigorous coupled wave analysis (RCWA). Finally, the coherent combining of five QCL in an external cavity with a binary phase grating is demonstrated and the scalability to the combining of more emitters is discussed. In conclusion, we present an original solution to combine coherently several QCL and thus address the power scaling issue in the mid-infrared.
34

Dispersion Engineering : Negative Refraction and Designed Surface Plasmons in Periodic Structures

Ruan, Zhichao January 2007 (has links)
The dispersion property of periodic structures is a hot research topic in the last decade. By exploiting dispersion properties, one can manipulate the propagation of electromagnetic waves, and produce effects that do not exist in conventional materials. This thesis is devoted to two important dispersion effects: negative refraction and designed surface plasmons. First, we introduce negative refraction and designed surface plasmons, including a historical perspective, main areas for applications and current trends. Several numerical methods are implemented to analyze electromagnetic effects. We apply the layer-KKR method to calculate the electromagnetic wave through a slab of photonic crystals. By implementing the refraction matrix for semi-infinite photonic crystals, the layer-KKR method is modified to compute the coupling coefficient between plane waves and Bloch modes in photonic crystals. The plane wave method is applied to obtain the band structure and the equal-frequency contours in two-dimensional regular photonic crystals. The finite-difference time-domain method is widely used in our works, but we briefly discuss two calculation recipes in this thesis: how to deal with the surface termination of a perfect conductor and how to calculate the frequency response of high-Q cavities more efficiently using the Pad\`{e} approximation method. We discuss a photonic crystal that exhibits negative refraction characterized by an effective negative index, and systematically analyze the coupling coefficients between plane waves in air and Bloch waves in the photonic crystal. We find and explain that the coupling coefficients are strong-angularly dependent. We first propose an open-cavity structure formed by a negative-refraction photonic crystal. To illuminate the physical mechanism of the subwavelength imaging, we analyze both intensity and phase spectrum of the transmission through a slab of photonic crystals with all-angle negative refraction. It is shown that the focusing properties of the photonic crystal slab are mainly due to the negative refraction effect, rather than the self-collimation effect. As to designed surface plasmons, we design a structured perfectly conducting surface to achieve the negative refraction of surface waves. By the average field method, we obtain the effective permittivity and permeability of a perfectly conducting surface drilled with one-dimensional periodic rectangle holes, and propose this structure as a designed surface plasmon waveguide. By the analogy between designed surface plasmons and surface plasmon polaritons, we show that two different resonances contribute to the enhanced transmission through a metallic film with an array of subwavelength holes, and explain that the shape effect is attributed to localized waveguide resonances. / QC 20100817
35

Condensation de Bose-Einstein et simulation d’une méthode de piégeage d’atomes froids dans des potentiels sublongueur d’onde en champ proche d’une surface nanostructurée / Bose-Einstein condensation and simulation of a method to trap ultracold atoms in subwavelength potentials in the near-field of a nanostructured surface

Bellouvet, Maxime 30 November 2018 (has links)
Depuis plusieurs décennies un intérêt est né pour combiner deux systèmes quantiques pour former unsystème hybride quantique (SHQ) aux qualités qu’il serait impossible d’atteindre avec un seul des deuxsous-constituants. Parmi les systèmes quantiques, les atomes froids se distinguent par leur fort découplagede l’environnement, permettant un contrôle précis de leurs propriétés intrinsèques. En outre, les simulateursquantiques réalisés en piégeant des atomes froids dans des réseaux optiques présentent des propriétéscontrôlables (échelle d’énergie, géométrie,...) qui permettent d’étudier de nouveaux régimes intéressants enphysique de la matière condensée. Dans cette quête de phases quantiques exotiques (e.g., antiferromagnétisme),la réduction de l’entropie thermique est un défi crucial. Le prix à payer pour atteindre de si faiblestempérature et entropie est un long temps de thermalisation qui limite la réalisation expérimentale. La réductionde la période du réseau est une solution prometteuse pour augmenter la dynamique du système.Les SHQs avec des atomes froids offrent de riches perspectives mais requiert d’interfacer des systèmes quantiquesdans des états différents (solide/gaz) à des distances très proches, ce qui reste un défi expérimental.Le projet AUFRONS, dans lequel s’inscrit cette thèse, vise à refroidir un gaz d’atomes froids jusqu’aurégime de dégénérescence quantique puis de transporter et piéger ce nuage en champ proche d’une nanostructure.L’idée est d’obtenir un gaz d’atomes froids piégé dans un réseau bidimensionnel aux dimensionssublongueur d’onde, à quelques dizaines de nm de la structure. Un des objectifs est d’étudier les interactionsau sein du réseau mais également le couplage des atomes avec les modes de surface.Le travail réalisé durant cette thèse se décompose en une partie expérimentale et une partie théorique.Dans la première nous présentons le refroidissement d’atomes de 87Rb jusqu’au régime de dégénérescencequantique. La seconde partie est consacrée aux simulations théoriques d’une nouvelle méthode que nousavons implémentée pour piéger et manipuler des atomes froids à moins de 100 nm d’une nanostructure.Cette méthode, qui tire profit de la résonance plasmonique et des forces du vide (effet Casimir-Polder),permet de créer des potentiels sublongueur d’onde aux paramètres contrôlables. Nous détaillons ainsi lescalculs des forces optiques et des forces du vide que nous appliquons au cas d’un atome de 87Rb en champproche d’une nanostructure 1D. / An interest for hybrid quantum systems (HSQs) has been growing up for the last decades. This object combines two quantum systems in order to take advantage of both systems’ qualities, not available withonly one. Among these quantum systems, ultracold atoms distinguish themselves by their strong decoupling from environment which enables an excellent control of their intrinsic properties. Optical lattice quantum simulators with tunable properties (energy scale, geometry,...) allows one to investigate new regimes incondensed matter physics. In this quest for exotic quantum phases (e.g., antiferromagnetism), the reduction of thermal entropy is a crucial challenge. The price to pay for such low temperature and entropy is a longthermalization time that will ultimately limit the experimental realization. Miniaturization of lattice spacingis a promising solution to speed up the dynamics. Engineering cold atom hybrids offers promising perspectives but requires us to interface quantum systems in different states of matter at very short distances, which still remains an experimental challenge.This thesis is part of the AUFRONS project, which aims at cooling down an atomic gas until the quantum degeneracy regime then transport and trap this cloud in the near field of a nanostructure. The idea is to trapcold atoms in a two-dimensional subwavelength lattice, at a few tenth of nm away from the surface. One goal is to study atom-atom interactions within the lattice but also atom-surface modes coupling.The work realized during this thesis splits into an experimental part and a theoretical part. In the firstone, we present the cooling of 87Rb atoms until the quantum degeneracy regime. The second part is dedicated to theoretical simulations of a new trapping method we have implemented to trap and manipulate cold atoms below 100 nm from structures. This method takes advantage of plasmonic resonance and vacuum forces (Casimir-Polder effect). It allows one to create subwavelength potentials with controllable parameters.We detail the calculations of optical and vacuum forces to apply them to an atom of 87Rb in the vicinity of a 1D nanostructure.
36

Photonic Applications Based on Bimodal Interferometry in Periodic Integrated Waveguides

Torrijos Morán, Luis 02 September 2021 (has links)
Tesis por compendio / [ES] La fotónica de silicio es una tecnología emergente clave en redes de comunicación e interconexiones de centros de datos de nueva generación, entre otros. Su éxito se basa en la utilización de plataformas compatibles con la tecnología CMOS para la integración de circuitos ópticos en dispositivos pequeños para una producción a gran escala a bajo coste. Dentro de este campo, los interferómetros integrados juegan un papel crucial en el desarrollo de diversas aplicaciones fotónicas en un chip como sensores biológicos, moduladores electro-ópticos, conmutadores totalmente ópticos, circuitos programables o sistemas LiDAR, entre otros. Sin embargo, es bien sabido que la interferometría óptica suele requerir caminos de interacción muy largos, lo que dificulta su integración en espacios muy compactos. Para mitigar algunas de estas limitaciones de tamaño, surgieron varios enfoques, incluyendo materiales sofisticados o estructuras más complejas, que, en principio, redujeron el área de diseño pero a expensas de aumentar los pasos del proceso de fabricación y el coste. Esta tesis tiene como objetivo proporcionar soluciones generales al problema de tamaño típico de los interferómetros ópticos integrados, con el fin de permitir la integración densa de dispositivos basados en silicio. Para ello, aunamos los beneficios tanto de las guías de onda bimodales como de las estructuras periódicas, en términos de la mejora del rendimiento y la posibilidad para diseñar interferómetros monocanal en áreas muy reducidas. Más específicamente, investigamos los efectos dispersivos que aparecen en estructuras menores a la longitud de onda y en las de cristal fotónico, para su implementación en diferentes configuraciones interferométricas bimodales. Además, demostramos varias aplicaciones potenciales como sensores, moduladores y conmutadores en tamaños ultra compactos de unas pocas micras cuadradas. En general, esta tesis propone un nuevo concepto de interferómetro integrado que aborda los requisitos de tamaño de la fotónica actual y abre nuevas vías para futuros dispositivos basados en funcionamiento bimodal. / [CA] La fotònica de silici és una tecnologia emergent clau en xarxes de comunicació i interconnexions de centres de dades de nova generació, entre altres. El seu èxit es basa en la utilització de plataformes compatibles amb la tecnologia CMOS per a la integració de circuits òptics en dispositius diminuts per a una producció a gran escala a baix cost. Dins d'aquest camp, els interferòmetres integrats juguen un paper crucial en el desenvolupament de diverses aplicacions fotòniques en un xip com a sensors biològics, moduladors electro-òptics, commutadors totalment òptics, circuits programables o sistemes LiDAR, entre altres. No obstant això, és ben sabut que la interferometría òptica sol requerir camins d'interacció molt llargs, la qual cosa dificulta la seua integració en espais molt compactes. Per a mitigar algunes d'aquestes limitacions de grandària, van sorgir diversos enfocaments, incloent materials sofisticats o estructures més complexes, que, en principi, van reduir l'àrea de disseny però a costa d'augmentar els processos de fabricació i el cost. Aquesta tesi té com a objectiu proporcionar solucions generals al problema de grandària típica dels interferòmetres òptics integrats, amb la finalitat de permetre la integració densa de dispositius basats en silici. Per a això, combinem els beneficis tant de les guies d'ones bimodals com de les estructures periòdiques, en termes de funcionament d'alt rendiment per a dissenyar interferòmetres monocanal compactes en àrees molt reduïdes. Més específicament, investiguem els efectes dispersius que apareixen en estructures menors a la longitud d'ona i en les de cristall fotònic, per a la seua implementació en diferents configuracions interferomètriques bimodals. A més, vam demostrar diverses aplicacions potencials com a sensors, moduladors i commutadors en grandàries ultres compactes d'unes poques micres cuadrades. En general, aquesta tesi proposa un nou concepte d'interferòmetre integrat que aborda els requisits de grandària de la fotònica actual i obri noves vies per a futurs dispositius basats en funcionament bimodal. / [EN] Silicon photonics is a key emerging technology in next-generation communication networks and data centers interconnects, among others. Its success relies on the ability of using CMOS-compatible platforms for the integration of optical circuits into small devices for a large-scale production at low-cost. Within this field, integrated interferometers play a crucial role in the development of several on-chip photonic applications such as biological sensors, electro-optic modulators, all-optical switches, programmable circuits or LiDAR systems, among others. However, it is well known that optical interferometry usually requires very long interaction paths, which hinders its integration in highly compact footprints. To mitigate some of these size limitations, several approaches emerged including sophisticated materials or more complex structures, which, in principle, reduced the design area but at the expense of increasing fabrication process steps and cost. This thesis aims at providing general solutions to the long-standing size problem typical of optical integrated interferometers, in order to enable the densely integration of silicon-based devices. To this end, we combine the benefits from both bimodal waveguides and periodic structures, in terms of high-performance operation and compactness to design single-channel interferometers in very reduced areas. More specifically, we investigate the dispersive effects that arise from subwavelength grating and photonic crystal structures for their implementation in different bimodal interferometric configurations. Furthermore, we demonstrate various potential applications such as sensors, modulators and switches in ultra-compact footprints of a few square microns. In general, this thesis proposes a new concept of integrated interferometer that addresses the size requirements of current photonics and open up new avenues for future bimodal-operation-based devices. / Financial support is also gratefully acknowledged through postdoctoral FPI grants from Universitat Politècnica de València (PAID-01-18). European Commission through the Horizon 2020 Programme (PHC-634013 PHOCNOSIS project). The authors acknowledge funding from the Generalitat Valenciana through the AVANTI/2019/123, ACIF/2019/009 and PPC/2020/037 grants and from the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencia Regional Government 2014–2020. / Torrijos Morán, L. (2021). Photonic Applications Based on Bimodal Interferometry in Periodic Integrated Waveguides [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172163 / TESIS / Compendio
37

Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion Relations

Nikkhah, Hamdam January 2018 (has links)
The widespread adoption of photonic circuits requires the economics of volume manufacturing offered by integration technology. A Complementary Metal-Oxide Semiconductor compatible silicon material platform is particularly attractive because it leverages the huge investment that has been made in silicon electronics and its high index contrast enables tight confinement of light which decreases component footprint and energy consumption. Nevertheless, there remain challenges to the development of photonic integrated circuits. Although the density of integration is advancing steady and the integration of the principal components – waveguides, optical sources and amplifiers, modulators, and photodetectors – have all been demonstrated, the integration density is low and the device library far from complete. The integration density is low primarily because of the difficulty of confining light in structures small compared to the wavelength which measured in micrometers. The device library is incomplete because of the immaturity of hybridisation on silicon of other materials required by active devices such as III-V semiconductor alloys and ferroelectric oxides and the difficulty of controlling the coupling of light between disparate material platforms. Metamaterials are nanocomposite materials which have optical properties not readily found in Nature that are defined as much by their geometry as their constituent materials. This offers the prospect of the engineering of materials to achieve integrated components with enhanced functionality. Metamaterials are a class of photonic crystals includes subwavelength grating waveguides, which have already provided breakthroughs in component performance yet require a simpler fabrication process compatible with current minimum feature size limitations. The research reported in this PhD thesis advances our understanding of the structure-property relations of key planar light circuit components and the metamaterial engineering of these properties. The analysis and simulation of components featuring structures that are only just subwavelength is complicated and consumes large computer resources especially when a three dimensional analysis of components structured over a scale larger than the wavelength is desired. This obstructs the iterative design-simulate cycle. An abstraction is required that summarises the properties of the metamaterial pertinent to the larger scale while neglecting the microscopic detail. That abstraction is known as homogenisation. It is possible to extend homogenisation from the long-wavelength limit up to the Bragg resonance (band edge). It is found that a metamaterial waveguide is accurately modeled as a continuous medium waveguide provided proper account is taken of the emergent properties of the homogenised metamaterial. A homogenised subwavelength grating waveguide structure behaves as a strongly anisotropic and spatially dispersive material with a c-axis normal to the layers of a one dimensional multi-layer structure (Kronig-Penney) or along the axis of uniformity for a two dimensional photonic crystal in three dimensional structure. Issues with boundary effects in the near Bragg resonance subwavelength are avoided either by ensuring the averaging is over an extensive path parallel to boundary or the sharp boundary is removed by graded structures. A procedure is described that enables the local homogenised index of a graded structure to be determined. These finding are confirmed by simulations and experiments on test circuits composed of Mach-Zehnder interferometers and individual components composed of regular nanostructured waveguide segments with different lengths and widths; and graded adiabatic waveguide tapers. The test chip included Lüneburg micro-lenses, which have application to Fourier optics on a chip. The measured loss of each lens is 0.72 dB. Photonic integrated circuits featuring a network of waveguides, modulators and couplers are important to applications in RF photonics, optical communications and quantum optics. Modal phase error is one of the significant limitations to the scaling of multimode interference coupler port dimension. Multimode interference couplers rely on the Talbot effect and offer the best in-class performance. Anisotropy helps reduce the Talbot length but temporal and spatial dispersion is necessary to control the modal phase error and wavelength dependence of the Talbot length. The Talbot effect in a Kronig-Penny metamaterial is analysed. It is shown that the metamaterial may be engineered to provide a close approximation to the parabolic dispersion relation required by the Talbot effect for perfect imaging. These findings are then applied to the multimode region and access waveguide tapers of a multi-slotted waveguide multimode interference coupler with slots either in the transverse direction or longitudinal direction. A novel polarisation beam splitter exploiting the anisotropy provided by a longitudinally slotted structure is demonstrated by simulation. The thesis describes the design, verification by simulation and layout of a photonic integrated circuit containing metamaterial waveguide test structures. The test and measurement of the fabricated chip and the analysis of the data is described in detail. The experimental results show good agreement with the theory, with the expected errors due to fabrication process limitations. From the Scanning Electron Microscope images and the measurements, it is clear that at the boundary of the minimum feature size limit, the error increases but still the devices can function.
38

Nouveaux concepts de filtres spectraux ultra-sélectifs pour spectroscopie embarquée / New ultra-narrow band optical filters for embedded spectroscopy

Sharshavina, Ksenia 06 December 2016 (has links)
Les filtres spectraux à réseaux résonants, ou GMRF (Guided-Mode Resonance Filters), sont une nouvelle génération de filtres à bande étroite et constituent une alternative très prometteuse aux filtres conventionnels multicouches Fabry-Pérot. Le pic de résonance d'un GMRF peut être très fin spectralement et de longueur d'onde de centrage accordable en fonction de l'angle d'incidence. Ces propriétés sont particulièrement importantes pour la spectroscopie. Les travaux antérieurs ont permis de mettre en œuvre une structure originale comportant deux réseaux 1D croisés. Les performances de ce filtre surpassent celles des filtres conventionnels par leur réponse spectrale subnanométrique, leur accordabilité, et leur capacité à s'affranchir de l'influence de la polarisation de l'onde incidente sous incidence oblique. Le but de ce travail est d'explorer les performances ultimes de ce type de dispositif en termes de résolution et taux de réjection, par une approche mêlant théorie, technologie et caractérisation. Nous présentons des résultats expérimentaux d'un filtre en réflexion indépendant de la polarisation, accordable sur 40 nm avec 8.3nm/° d'accordabilité, ayant une réflexion de 10-3 sur une plage de 90nm en dehors de la résonance et un facteur de qualité supérieur à 5000. / Guided Mode Resonance Filters ( GMRF ) are a new generation of narrowband optical filters and are a very promising alternative to conventional multilayer Fabry-Perot filters. The resonance peak of GMRF can be spectrally extremely thin and with a centering wavelength tunable according to the angle of incidence of the light. These properties are particularly important for spectroscopy. Previous works have helped to implement an original structure with two 1D crossed gratings. The performance of this filter overpasses those of conventional filters in their spectral subnanometric response, tunability and their ability to overcome the influence of the polarization of the incident wave under oblique incidence. The aim of this work is to explore the final performances of such devices in terms of resolution and rejection rate, thanks to an approach combining theory, fabrication technology and characterization. We present experimental results of a polarization independent reflective filter, tunable over 40nm with a tunability of 8.3nm / °, having a reflection of 10-3 on a 90nm range outside the resonance and a quality factor over 5000.
39

Near-infrared plasmonics in planar tunable structures

Travkin, Evgenij 21 June 2023 (has links)
In dieser Arbeit werden planare plasmonische Schichtsysteme unter Verwendung der transparenten leitfähigen Oxide (TCOs) Zinkgalliumoxid (GZO) und Indiumzinnoxid (ITO) untersucht, die mittels Molekularstrahlepitaxie realisiert werden. Es wird gezeigt, dass solche hochdotierten Schichten aus GZO und ITO sich wie ein Drude-Metall mit einer einstellbaren Plasmafrequenz verhalten und Oberflächenplasmon-Polaritonen (SPPs) aufweisen, die über einen breiten NIR-Spektralbereich abstimmbar sind. Die TCOs können in mehreren Schichten mit unabhängig voneinander einstellbaren Dicken und Dotierungen der einzelnen Schichten gezüchtet werden. Diese abstimmbaren Mehrschichtstrukturen ermöglichen die Realisierung plasmonischer Konfigurationen, die für eine Vielzahl komplexer hybridisierter SPP-Zustände maßgeschneidert sind. Unter anderem wird unter Ausnutzung der Photon-Plasmon-Hybridisierung ein Stopped-Light-Resonator auf Basis von ITO demonstriert. Das Mehrschichtenregime kann zu einem Übergitter aus periodisch abwechselnd dotierten und undotierten TCO-Schichten erweitert werden, das ein hyperbolisches Metamaterial (HMM) darstellt. Die Parameter dieses HMM können nach Bedarf eingestellt werden, was HMMs mit einer maßgeschneiderten Zusammensetzung ihrer einzigartigen spektralen Permittivitätsintervalle ermöglicht. Mithilfe von GZO wird ein HMM in eine planare optische Mikrokavität monolitisch eingebettet. Dieser neuartige NIR-Resonator weist eine anomale Modendispersion auf, einschließlich einem Kontinuum von Moden hoher Ordnung und einer von der Resonatorlänge unabhängigen Mode nullter Ordnung, welche Subwellenlängen-Resonanzen ermöglichen können. Es wird gezeigt, dass die Mode nullter Ordnung bei einer Kavitätslänge deutlich unterhalb ihrer Wellenlänge fortbesteht und ihre Dispersion durch den Füllfaktor des HMM steuerbar ist. Die Ergebnisse stellen somit ein neues allgemeines Konzept für die Realisierung eines Subwellenlängenresonators auf der Basis eines abstimmbaren HMM dar. / In this work, planar, layered plasmonic systems utilizing the transparent conducting oxides (TCOs) zinc gallium oxide (GZO) and indium tin oxide (ITO) facilitated by molecular beam epitaxy are investigated. It is shown that such highly doped layers of GZO and ITO prepared with behave as a Drude metal with a tunable plasma frequency and feature surface plasmon polaritons (SPPs) that are tunable over a broad NIR spectral range. TCOs can be grown in the multilayer regime with independently adjusted thicknesses and doping levels of the individual layers. These tunable multilayer structures allow for the realization of plasmonic configurations tailored to support a variety of intricate hybridized SPP states. Particularly, exploiting photon-plasmon hybridization, a stopped-light cavity is demonstrated using highly doped ITO. The multilayer regime can be extended into a superlattice of periodically alternating doped and undoped TCO layers that constitutes a hyperbolic metamaterial (HMM). The parameters of such an HMM can be set on-demand, thus allowing HMMs with a tailored composition of its unique spectral permittivity intervals. Utilizing GZO, an HMM is embedded in a planar optical microcavity monolithically. This novel type of a NIR optical resonator exhibits an anomalous resonant mode dispersion, including features like a high-order mode continuum and a cavity size independent zeroth-order mode, which can enable subwavelength resonances. It is demonstrated that the zeroth-order mode persists at cavity sizes significantly below its wavelength and its dispersion can be controlled by the fill factor of the HMM. Thus, the results propose a novel general concept for the realization of a subwavelength resonator on the basis of a tunable HMM.
40

Plasmonic properties and applications of metallic nanostructures

Zhen, Yurong 16 September 2013 (has links)
Plasmonic properties and the related novel applications are studied on various types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure, the motion of free electrons in a metal-film with nanoscale thickness is confined in its normal dimension and free in the other two. Describing the free-electron motion at metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation of such motions and is well known. When further perforated with periodic array of holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate the coupling between free-space photon and SPP. We applied this concept to achieve a plasmonic perfect absorber. The experimentally observed reflection dip splitting is qualitatively explained by a perturbation theory based on the above concept. If confined in 2D, the nanostructures become nanowires that intrigue a broad range of research interests. We performed various studies on the resonance and propagation of metal nanowires with different materials, cross-sectional shapes and form factors, in passive or active medium, in support of corresponding experimental works. Finite- Difference Time-Domain (FDTD) simulations show that simulated results agrees well with experiments and makes fundamental mode analysis possible. Confined in 3D, the electron motions in a single metal nanoparticle (NP) leads to localized surface plasmon resonance (LSPR) that enables another novel and important application: plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the excited plasmon will decay into heat in the particle and will heat up the surrounding liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP to liquid will undergo an explosive process and make a vapor envelop: nanobubble. We characterized the size, pressure and temperature of the nanobubble by a simple model relying on Mie calculations and continuous medium assumption. A novel effective medium method is also developed to replace the role of Mie calculations. The characterized temperature is in excellent agreement with that by Raman scattering. If fabricated in an ordered cluster, NPs exhibit double-resonance features and the double Fano-resonant structure is demonstrated to most enhance the four-wave mixing efficiency.

Page generated in 0.0684 seconds