• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 95
  • Tagged with
  • 195
  • 195
  • 194
  • 30
  • 28
  • 24
  • 21
  • 21
  • 21
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Développement de nouvelles membranes à base de polyimide pour la séparation Co2/Ch4

Chen, Xiao Yuan 19 April 2018 (has links)
Dans ce travail, on étudie la conception de membranes à base de polyimide et des membranes à matrices mixtes pour la séparation du mélange de gaz CO2/CH4. Une première série de membranes était entièrement constituée de polyimides. La synthèse et la fabrication des membranes a permis l'optimisation des propriétés de transport comme la perméabilité et la sélectivité pour les gaz purs et les mélanges gazeux. Par la suite, les propriétés de transport de gaz des membranes homo-polyimide (6FDA-ODA) et co-polyimides (6FDA-ODA/TeMPD) ont été étudiées pour différents rapports molaires de diamines (ODA et TeMPD). La perméabilité et le facteur de séparation en fonction de la fraction molaire de CO2 dans l'alimentation sont rapportés. Ensuite, les propriétés des membranes de polyimides (6FDA-ODA et 6FDA-ODA/TeMPD) réticulé par l'APTMDS sont rapportées en fonction du temps d'immersion ou de la concentration d'APTMDS. Dans ce cas, les résultats montrent que la performance des membranes 6FDA-ODA modifiées est au-dessus de la courbe limite supérieure de Robeson et que les membranes modifiées peuvent supporter des pressions assez élevées car la plastification est pratiquement éliminée. Finalement, des membranes composites sont produites en se servant de zeolites et de MOF comme phase dispersée dans le polyimide à base de 6FDA-ODA. La zéolite FAU/EMT greffée par l'aminopropyl méthyle éthoxysilane dans des solvants de polarités différentes et plusieurs types de MOF tels que MIL-53 et UIO-66 fonctionnalisés par des groupements amine sont étudiés. Les résultats montrent que les performances des MMM à base de 6FDA-ODA avec 25% poids de zéolite et différentes concentrations de A1-MIL-53-NH2 sont excellents pour la séparation CO2/CH4. Une étude détaillée de la relation entre les propriétés des membranes MMM et leur morphologie, selon leurs interactions avec l'aminé greffée sur la phase inorganique et l'agent de reticulation, est aussi rapportée.
102

Oxyde de tungstène et de molybdène fonctionnalisés par des composés organiques comme catalyseur hétérogène performant pour la coupure oxydante de l'acide oléique en acides carboxyliques

Enferadi-Kerenkan, Amir 23 May 2018 (has links)
Les huiles et corps gras d’origines végétales ou animales ont récemment attisé un grand intérêt comme matériel de base dans les industries oléochimiques. Cette attention ne provient pas uniquement des raisons environnementales mais aussi de l’avantage économique de ces nouveaux produits. Les acides gras insaturés, composants principaux des lipides, peuvent être oxydés pour la production de mono- ou de di-acides carboxyliques ; ces derniers sont à la base d’une grande variété de matériaux dans de nombreuses industries. Ce procédé d’oxydation est nommé « clivage oxydatif », en effet, durant la réaction, une double liaison carbone-carbone est brisée. L’exemple le plus représentatif est l’acide azélaique, C9 contenant une double fonction acide carboxylique - un produit à haute valeur ajoutée qui est obtenu à partir de l’acide oléique. Actuellement, cette réaction, en industrie, est effectuée par ozonolyse, or, ces réactions ont récemment été classées comme risqué dû aux problèmes associés à l’utilisation d’ozone. Cependant, l’utilisation d’un oxydant plus doux requiert l’utilisation d’un catalyseur. Dans les travaux présentés, nous avons développé un catalyseur hétérogène innovant à partir d’oxydes de tungstène et de molybdène pour la coupure oxydante de l’acide oléique utilisant le peroxyde d’hydrogène comme oxydant. Afin de trouver un catalyseur performant, différents catalyseurs ont été préparés et testés, tels que des oxydes de tungstène mésoporeux, possédant une très grande surface spécifique supportés par de l’alumine gamma, des nanoparticules (NPs) de trioxyde de tungstène de structures différentes (hydraté ou anhydre), de peroxyde de tungstène, d’oxyde de molybdène, mais aussi d’amas de polyoxotungstates (POTs) sous forme de structure de Keggin. Alors que l’utilisation de catalyseur homogène a été largement reportée pour cette réaction, les travaux effectués sur des catalyseurs hétérogènes sont moins rapportés. En effet, l’efficacité des catalyseurs solides est moindre compte tenu du plus faible nombre de sites actifs en contact avec la phase liquide et donc le substrat ; or pour les catalyseurs homogènes cette surface de contact est optimum. Pour s’affranchir de cet obstacle dans ces travaux, nous avons choisi d’utiliser des catalyseurs présentant des tensioactifs à partir de molécules organiques. Ces catalyseurs permettent d’augmenter les propriétés hydrophobes/hydrophiles de la surface de la nanoparticule, et aussi d’améliorer la compatibilité entre la surface du catalyseur solide, le substrat de la réaction - l’acide oléique - et l’oxydant en phase aqueuse. Pour remplir cet objectif, plusieurs cations d’amines quaternaire ont été utilisés dans la synthèse, tel que le l'hexadécyltriméthylammonium (CTA+), le étraméthylammonium (TMA+), le tétrapropylammonium (TPA+) et le tétrabutylammonium (TBA+). Nous avons développé une approche simple et écoresponsable pour la synthèse et le greffage de tensioactifs de nanoparticules d’oxyde de tungstène et de molybdène à partir de la dissolution oxydante de poudre micrométrique de tungstène et de molybdène métallique. Par la suite, avec quelques modifications dans l’approche ainsi que l’utilisation de sels d’amine quaternaire possédant une chaine alcane plus importante lors de la synthèse, nous avons réussi à mettre au point une nouvelle méthode de synthèse pour la préparation de POTs hybride, organique-inorganique. En termes de réaction catalytique, c’est la première fois que l’utilisation de POT comme catalyseurs hétérogènes pour des réactions d’oxydation d’acides gras insaturés est rapportée. Le catalyseur synthétisé présente généralement une excellente activité, comparé aux autres catalyseurs hétérogènes rapportés. Une conversion complète de l’acide oléique initial avec un rendement maximum pour le diacide espéré (acide azélaique) de 80% a pu être atteint en optimisant la quantité d’amine quaternaire cationique à la surface du catalyseur. Grâce à la présence de molécules organiques comme tensioactifs, ce catalyseur efficace en solution aqueuse ne présente pas de lixiviation significative. De plus, il est facilement récupérable et peut être réutilisé sans perte d’activité significative jusqu’à quatre cycles. / Oils and fats of vegetable and animal origin have recently attracted a growing interest as renewable raw materials in oleochemical industries. This attention arises from not only the environmental reasons, but also economic ones. Unsaturated fatty acids (UFAs), as the constituent of lipids, can be oxidized to produce mono- and dicarboxylic acids which are applicably valuable materials in different industries. This oxidation process is so-called oxidative cleavage, since during the reaction carbon-carbon double bond(s) get cleaved. The most striking instance is production of azelaic acid, a valuable C9 diacid, from oleic acid (C18:1). Currently, this reaction is carried out in industry via ozonolysis, which, nowadays, has been converted to a controversial challenge due to the hazardous problems associated with use of ozone. Employing an eco-friendlier oxidant requires an active catalyst to be employed, as well. In this research, we have developed advanced heterogeneous catalysts based on tungsten and molybdenum oxides for oxidative cleavage of oleic acid with hydrogen peroxide as oxidant. To find a highly efficient catalyst, different catalysts were prepared and tried including high surface area mesoporous tungsten oxide supported on γ-alumina, nanoparticles (NPs) of different structures of tungsten trioxide (hydrated and anhydrous), tungsten peroxide, and molybdenum oxide, as well as Keggin clusters of polyoxotungstates (POTs). While employing homogeneous catalysts in this reaction has been widely reported, the works on the heterogeneous catalysts are very rare, most probably due to the poor reactant/solid catalyst contact in liquid-phase reactions of lipids resulting in much lower catalytic efficiency of solid catalysts compared to the homogeneous ones. To tackle this obstacle in this research, we leveraged the strategy of organo-functionalization of the solid catalyst’s surface, to not only tune the hydrophobicity/hydrophilicity properties of the surface, but also improve the compatibility of the solid catalysts with the organic substrate, oleic acid, and the aqueous oxidant. For this purpose, different quaternary ammonium cations were employed in the synthesis including cetyltrimethylammonium (CTA+), tetramethylammonium (TMA+), tetrapropylammonium (TPA+), and tetrabutylammonium (TBA+). We have developed a green and straightforward approach for the synthesis and organo-functionalization of tungsten and molybdenum oxide NPs based on oxidative dissolution of micrometer-scale bare W and Mo powders. Interestingly, with some slight modifications in this approach and using larger quaternary ammonium salts in the synthesis we have succeeded to present a novel synthesis method for preparation of hybrid organic-inorganic POTs. In terms of catalytic reaction, application of heterogeneous POT catalysts in oxidation of UFAs has been reported for the first time in this work. The synthesized catalysts, generally, exhibited excellent activity compared to the reported heterogeneous ones. Full conversion of the initial oleic acid, with the highest yield of production of the desired diacid (azelaic acid) ~80 %, was achieved by optimization of the amount of the quaternary ammonium cation on the catalyst’s surface. Thanks to the organo-functionalization, these water-tolerant catalysts exhibited no significant leaching, as well as convenient recovery and steady reuse without noticeable decrease in activity, at least up to four cycles.
103

Optimisation des procédés de concentration de la lizardite et de l'antigorite des résidus miniers de chrysotile

Kabombo, Dieudonné 25 July 2018 (has links)
La nouvelle loi canadienne sur l’amiante chrysotile décrétée par le gouvernement fédéral devrait entrer en vigueur au courant de l’année 2019 et les nouvelles normes environnementales qui en découleront nous forcent déjà à trouver des solutions pour réduire de façon significative l’impact environnemental et de revaloriser des résidus d’exploitation du chrysotile. Une des façons de réduire cet impact environnemental et revaloriser ce résidu consiste à concentrer la lizardite et l’antigorite comme matériaux générateurs de magnésium (Mg) et éliminer le chrysotile (cancérigène). Ces minéraux sont abondants dans les résidus miniers d’exploitation du chrysotile de l’ancienne mine Carey Canadian à East-Broughton dans le sud du Québec. La présente étude propose donc une revue des procédés de séparation physique des phases minérales serpentiniques et une étude détaillée sur la séparation gravimétrique par voie humide (hydrocyclonage/décantation) pour différentes classes granulométriques et une étape finale de séparation magnétique à sec pour l’extraction des minéraux magnétiques (magnétite) dans le concentré de la décantation. Les propriétés physiques, chimiques et minéralogiques du résidu initial ont été obtenues par tamisage grossier, par analyse de densité et surface spécifique, par fluorescence aux rayons X, par spectroscopie RAMAN, par MEB-EDS et par DRX. Les résultats les plus importants de cette étude sont qu’il est possible d’éliminer le chrysotile, sous forme de surverse, par hydrocyclonage en régime dilué (30% solides dans la pulpe) tout en concentrant la lizardite et l’antigorite (sousverse) avec des récupérations en Mg de l’ordre de 70 à 80 % en poids de Mg en sousverse. La séparation liquide-solide a été effectuée à 5 % de solides dans la pulpe et a permis d’augmenter la pureté du concentré d’hydrocyclonage (sousverse) avec des récupérations en Mg dans la sousverse variant entre 36 et 70 % partant des fines particules vers les grossières. La séparation magnétique a permis d’augmenter la pureté du concentré de décantation (sousverse) par l’extraction du fer. Ce qui a conduit à des récupérations croissantes en fer de 30 à 60 % à partir de particules grossières vers les fines. Les rapports Si/Mg et Fe/Si en fonction de la taille des particules pour les fractions non-magnétiques (concentrés) ont également été examinés dans une tentative d’estimation du fer résiduel présent par substitution intra-réseau Fe-Mg et Fe-Si dans les concentrés non-magnétiques. Mots clés: Hydrocyclone, Décantation, Séparation magnétique, Chrysotile, Lizardite, Antigorite. / Canada's new law on chrysotile asbestos is expected to come into force in 2019 by the federal government, and the resulting new environmental standards are already forcing us to find solutions to significantly reduce the environmental impact and revalorize chrysotile mining residues. One of the ways to reduce this environmental impact and enhance this residue is to concentrate lizardite and antigorite as magnesium (Mg) generating materials and eliminate chrysotile (carcinogenic). These minerals are abundant in the chrysotile mining tailings of the former Carey Canadian mine in East-Broughton in southern Quebec. The present study therefore proposes a review of the physical separation processes of serpentine mineral phases and a detailed study on wet gravimetric separation (hydrocycloning / decantation) for different granulometric classes and a final dry magnetic separation step for the extraction of minerals magnetic minerals (magnetite) in the concentrate of the decantation. The physical, chemical and mineralogical properties of the initial residue were obtained by coarse sieving, density and surface area analysis, X-ray fluorescence, RAMAN spectroscopy, SEM-EDS and XRD spectroscopy. The most important results of this study are that it is possible to eliminate chrysotile, in the form of overflow product, by dilute hydrocycloning (30% solids in the pulp) while concentrating lizardite and antigorite (underflow) with recoveries in Mg of the order of 70 to 80% by weight of Mg underflow. The liquid-solid separation was carried out at 5% solids in the pulp and made it possible to increase the purity of the hydrocyclone concentrate (underflow) with Mg recoveries in the underflow varying between 36 and 70% starting from the fine particles to the coarse ones. Magnetic separation made it possible to increase the purity of the settling concentrate (underflow) by extracting iron. This led to increasing recoveries of iron from 30 to 60% from coarse particles to fine ones. Si / Mg and Fe / Si ratios as a function of particle size for non-magnetic fractions (concentrates) were also examined in an attempt to estimate the residual iron present by intra-network substitution Fe-Mg and Fe- Si in non-magnetic concentrates. Keywords: Hydrocyclone, Decantation, Magnetic separation, Chrysotile, Lizardite, Antigorite.
104

Photocatalytic valorization of biobased alcoholic wastes: a sustainable approach for the generation of green products

Karimi Estahbanati, Mahmood Reza 28 October 2019 (has links)
Ces dernières années, une attention croissante a été portée à la valorisation de différents types de résidus en produits chimiques à valeur ajoutée. La valorisation des résidus peut non seulement résoudre les problèmes environnementaux croissants et actuels, mais elle peut contribuer également au développement durable de la société. Les résidus alcooliques constituent une catégorie à fort potentiel de valorisation en différents types de produits chimiques. Dans ce contexte, la valorisation photocatalytique des résidus alcooliques est une approche prometteuse du point de vue du développement durable. L'objectif principal de la thèse était d'étudier la valorisation photocatalytique de différents résidus alcooliques biosourcés en produits à valeur ajoutée. À cet égard, ces travaux ont principalement porté sur (i) l'analyse des effets individuels et d'interaction des paramètres opératoires et l'optimisation de la production d'hydrogène à partir de glycérol (ii) l'étude de la cinétique de la production d'hydrogène à partir de glycérol et d'éthanol, (iii) la mise au point de catalyseurs nanocomposites au TiO2 utilisant des biomatériaux à base de carbone (nanotubes de carbone et sphères de carbone) pour la production d'hydrogène à partir de glycérol, et (iv) l'étude du mécanisme et de la cinétique de la valorisation photocatalytique du cyclohexanol en cyclohexanone. Pour la production d’hydrogène à partir du glycérol, les modèles « Réseau de neurones artificiels » ainsi que « Méthode des surfaces de réponses » ont été utilisés pour évaluer l’effet et l’importance des principaux paramètres opératoires (pourcentage de glycérol, catalyseur, et Pt (co-catalyseur), ainsi que pH). La comparaison de ces modèles a révélé une meilleure précision du premier, qui a été par la suite sélectionnée pour une optimisation basée sur un algorithme génétique. La plus grande quantité d'hydrogène produite s'est révélée être à 50% de glycérol dans l'eau (v/v), à une masse de catalyseur de 3,9 g/L, à 3,1% de Pt et à un pH de 4,5. Finalement, une analyse basée sur la méthode de Garson pour évaluer l’importance relative des paramètres opératoires a montré que les pourcentages de glycérol et de catalyseur affectent de façon différente la production d’hydrogène. L'effet des plus importants paramètres opératoires (catalyst loading, glycerol%, intensité de la lumière, and temps) sur la valorisation photocatalytique du glycérol en hydrogène a été analysé et un modèle cinétique a été développé sur la base d'un mécanisme proposé. La capacité du modèle à prédire le taux de production d'hydrogène pour différents substrats, photocatalyseurs et paramètres opératoires a été confirmée en comparant les valeurs calculées avec des données expérimentales de la littérature. Le rôle des composants carbonés (CT) biosourcées en tant que matrice, cocatalyseur et adsorbant dans les composites TiO2@CT a été étudié en utilisant des nanotubes de carbone et des sphères de carbone. L'analyse morphologique a permis d'examiner le rôle de la matrice et d’évaluer la formation uniforme du TiO2 sur le CT. Les expériences photocatalytiques ont été ensuite utilisées pour analyser les rôles du co-catalyseur et de l'adsorbant. Fait intéressant, les résultats ont révélé que l’incorporation de CNT dans un composite de TiO2 pouvait presque doubler le taux de production d’hydrogène (i) en l’absence de Pt ou (ii) à faible concentration en glycérol. Par conséquent, il a été constaté qu’en plus d’être une matrice, le CNT peut jouer deux autres rôles importants, comme co-catalyseur et adsorbant. Pour évaluer la valorisation des résidus alcooliques en produits liquides à valeur ajoutée, la conversion photocatalytique sélective du cyclohexanol en cyclohexanone a été investiguée par des études cinétiques et spectroscopiques. Un mécanisme de réaction a été proposé sur la base des résultats de l'analyse in situ ATR-FTIR et un modèle cinétique a été développé pour prédire le taux de production de cyclohexanone. Une très grande sélectivité de la cyclohexanone a été confirmée à la fois par des analyses spectroscopiques que chromatographiques (HPLC et GC-MS), démontrant que l'approche photocatalytique est une alternative prometteuse pour la production sélective de cyclohexanone. En résumé, les résultats de cette thèse ont montré que la photocatalyse est une alternative prometteuse pour la valorisation des résidus alcooliques biosourcés en produits à valeur ajouté. La conversion photocatalytique de ces résidus peut conduire à la production d'hydrogène comme carburant vert prometteur pour l'avenir. D'autre part, la photocatalyse peut être appliquee pour produire des composes liquides avec une sélectivité élevée. / In the recent years, increasing attention has been paid to valorizing different types of waste materials to valuable chemicals. Waste valorization not only reduces the growing modern environmental issues, but also contributes to the sustainable development of the society. The alcoholic waste is an important category with high potential to be valorized into different types of valuable chemicals. As example, glycerol is a substantial alcoholic waste of biodiesel production process whose generation increased significantly during the recent years. In this context, photocatalytic valorization of alcoholic wastes is a promising approach from a sustainable development point of view. The main objective of the thesis was to study the photocatalytic valorization of different biobased alcoholic wastes to value-added products. In this regard, this work focused on (i) analyzing individual and interaction effect of operating parameters and optimization of hydrogen production from glycerol (ii) studying the kinetics of hydrogen production from glycerol and ethanol, (iii) developing TiO2 nanocomposite catalysts using biobased carbonaceous materials (carbon nanotubes and carbon spheres) and studding the roles of carbonaceous materials in hydrogen production from glycerol, and (iv) investigating the mechanism and kinetics of the photocatalytic valorization of cyclohexanol to cyclohexanone. For hydrogen production from glycerol, Artificial Neural Network (ANN) as well as Response Surface Methodology (RSM) models were employed to evaluate the effect and importance of the main operating parameters (glycerol%, catalyst loading, Pt (cocatalyst)%, and pH). Comparison of these models revealed that the ANN model had a better accuracy and it was therefore selected for a Genetic Algorithm-based optimization. The highest amount of hydrogen production was found to be at 50% glycerol in water (v/v), 3.9 g/L catalyst loading, 3.1% Pt, and pH of 4.5. Finally, a Garson’s method-based analysis of the relative importance of the operating parameters showed that the glycerol% and catalyst loading are, respectively, the least and most influential parameters on hydrogen production. The important operating parameters (catalyst loading, substrate%, light intensity, and time) of the process of photocatalytic valorization of glycerol and ethanol to hydrogen were analyzed and a kinetic model was developed based on a proposed mechanism. The ability of the model to predict the rate of hydrogen production for different substrates, photocatalysts, and ranges of operating parameters was confirmed by comparing the model predictions with the experimental data from literature. Carbon nanotube (CNT) and carbon sphere (CS) were used to prepare carbonaceous TiO2 composites and then the role of these biobased carbonaceous materials (CT) as template, cocatalyst, and adsorbent was investigated. The morphology analysis helped in examination of the template role and find the uniformity of the formed TiO2 on the template. On the other hand, the photocatalytic experiments assisted in the analysis of the cocatalyst and adsorbent roles of CT. Interestingly, the results revealed that CNT incorporation in TiO2 composite can almost double the rate of hydrogen production (i) in the absence of Pt or (ii) at low glycerol concentrations. Consequently, it was found that in addition to being a template, the CNT can play two important roles as cocatalyst and adsorbent. To evaluate the valorization of alcoholic wastes to valuable liquid product, photocatalytic selective conversion of cyclohexanol to cyclohexanone was analyzed kinetically and spectroscopically. A reaction mechanism was proposed based on the in-situ ATR-FTIR analysis results and a kinetic model was developed to predict the rate of cyclohexanone production. Experimental data were used to evaluate the kinetic parameters using genetic algorithm method and confirm the accuracy of model predictions. A very high selectivity of cyclohexanone was confirmed by both spectroscopic and chromatographic (HPLC and GCMS) analyses, demonstrating that the photocatalytic approach is a promising alternative for selective production of cyclohexanone. In summary, the results of this thesis showed that photocatalysis is a promising alternative for valorization of biobased alcoholic wastes to value-added products. Photocatalytic conversion of alcoholic wastes can lead to the production of hydrogen as a promising green fuel for the future. On the other hand, the conversion of alcoholic wastes can be engineered to produce valuable liquid product with high selectivity.
105

Une nouvelle classe de catalyseurs hétérogènes au palladium et au platine pour la chimie organique de synthèse

Pandarus, Valerica 23 September 2019 (has links)
Les catalyseurs à base de palladium/platine (Pd/Pt) étudiés font partie d'une nouvelle gamme de catalyseurs hétérogènes développée chez SiliCycle pour la chimie fine et la chimie pharmaceutique. Ces catalyseurs sont des nanoparticules (NPs) de Pd/Pt séquestrées dans les cages mésoporeuses d’un support organosilicique MeSiO₁, ₅. Le caractère hydrophobe des catalyseurs est généré par la présence des groupes méthyle du silane méthyltriétoxysilane (MTES) utilisé comme monomère dans la synthèse du support. Ces catalyseurs hétérogènes, stables à l’air et à l’humidité, se sont révélés hautement réactifs dans de nombreuses réactions chimiques, notamment dans des conditions douces de température et de pression, comme par exemple dans des réactions de couplages carbone-carbone, d’hydrogénation ou d’hydrosilylation. La problématique est que ces catalyseurs se sont révélés réactifs seulement pour des faibles teneurs en métal (0,5 % massique de Pd et 2,0 % massique de Pt) et que leur activité catalytique diminue considérablement lors des essais de réutilisation à température et pression éllevées. Dans ces conditions, les catalyseurs ne sont plus réutilisables. L’objectif principal de cette thèse est d’apporter des améliorations à cette classe de catalyseurs hydrophobes afin d’augmenter d’avantage leur activité catalytique et leur sélectivité. Ainsi, des nouveaux matériaux catalytiques hétérogènes, caractérisés par une meilleure résistance mécanique et une meilleure stabilité de NPs métalliques de Pd/Pt au frittage avec une capacité de réutilisation élevée dans des conditions douces, mais également à des températures et des pressions élevées, ont été développés. Leur activité catalytique a été évaluée dans des applications vertes à fort impact industriel. L’activité catalytique des catalyseurs au Pd a été évaluée dans l’hydrogénation du squalène en squalane, un hydrocarbure entièrement saturé, facilement adopté par les formulateurs en cosmétique pour ses excellentes propriétés, comme par exemple sa grande stabilité à l’oxydation, au rancissement et à la chaleur. L’activité catalytique des catalyseurs au Pt a été évaluée dans la réaction d’hydrosilylation, l’une des méthodes les plus importantes pour la synthèse des composés organosiliciés et en particulier, pour la production des organosilanes par l’addition des liaisons Si-H aux doubles liaisons à l’échelle industrielle. / Tout d’abord, le support organosilicique a été dopé avec des unités Al₂O₃. Les nouveaux catalyseurs à base de NPs de Pd/Pt sur un support organosilicique dopé avec des unités Al₂O₃, Pd⁰/MeSiO₁, ₅- Al₂O₃ et Pt⁰/MeSiO₁, ₅- Al₂O₃, se sont démarqués par une stabilité élevée à l'air et à l'humidité. L’ajout de 2 % massique d’Al₂O₃ a permis d’augmenter la teneur en Pd de 0,5 à 2,0 % massique et la teneur en Pt de 2,0 à 5,0 % massique tout en maintenant une très grande dispersion du métal (NPs de Pd/Pt d’environ 2-4 nm). L’ajout d’Al₂O₃ a également augmenté leur activité catalytique autant dans des conditions douces qu’à température et pression élevées, en raison de la présence des sites acides. Cependant, les deux catalyseurs de morphologie irrégulière, synthétisés par une méthode sol-gel in-situ, ont échoué dans les essais de réutilisation. Cela est expliqué par la faible résistance mécanique du support en favorisant le frittage des NPs métalliques Afin d’augmenter la résistance mécanique du support et d’améliorer l’activité catalytique des catalyseurs hétérogènes au Pd/Pt, le procédé de synthèse sol-gel in-situ générant des matériaux de morphologie incontrôlable a été remplacé par un procédé de précipitation dans lequel des NPs métalliques ont été séquestrées dans les cages mésoporeuses d’une matrice 100 % organosilicique de morphologie sphérique. La synthèse des particules sphériques a été réalisée par un procédé d’émulsion huile-dans-eau en utilisant seulement du MTES comme précurseur de silice. Ce type de synthèse a permis de faire une condensation à une température de 90 °C pendant 24 h, ce qui a fortement augmenté la robustesse du support. L’activité catalytique du catalyseur de morphologie sphérique Pd⁰/MeSiO₁, ₅ avec une teneur en Pd de 2,5 % massique (NPs de Pd de 2-3 nm), a été évaluée dans l’hydrogénation catalytique du squalène végétal en l’absence de solvant, dans des conditions douces mais également dans des conditions plus sévères de température et de pression. Le catalyseur s’est avéré actif à des températures supérieures à 70 °C et à des pressions d’H₂ de 3 à 20 atm, pour des pourcentages molaires de Pd par rapport au squalène de 0,50 à 0,05 mol %. Le catalyseur a été facilement récupéré et réutilisé dans huit réactions consécutives avec de très petites quantités de Pd lessivé dans le produit brut de réaction (inférieure à 1 mg kg⁻¹), ouvrant ainsi la voie à une hydrogénation écologique et moins coûteuse du squalène végétale. L’activité catalytique du catalyseur de morphologie sphérique Pt⁰/MeSiO₁, ₅ avec une teneur en Pt de 5 % massique (NPs de Pt de 4-7 nm) a été évaluée dans l’hydrosilylation des oléfines en l’absence de solvant et à l’air. / Le catalyseur s’est avéré actif pour des pourcentages molaires de Pt par rapport à l’oléfine de 0,100 à 0,005 mol %. Le catalyseur a été facilement récupéré et réutilisé dans trois réactions consécutives avec de très faibles quantités de Pt lessivé dans le produit brut de réaction (inférieures à 5 mg kg⁻¹). Ce type de synthèse a permis de développer des catalyseurs plus actifs (conversion et sélectivité supérieures à 90 %), stables et réutilisables, ouvrant la voie à des applications vertes et moins coûteuses, d’une importance primordiale pour la chimie fine et pour l’industrie pharmaceutique. Ce projet se démarque par son originalité dans le type unique des supports développés pour séquestrer les NPs de Pd/Pt. Le caractère hydrophobe des supports synthétisés exclusivement à partir du silane hybride protège les NPs métalliques de l'oxydation. Nous avons montré que le xérogel de silice modifiée organiquement (100 % MTES) de morphologie sphérique et fonctionnalisée avec des NPs de Pd ou de Pt, Pd⁰/MeSiO₁, ₅ et Pt⁰/MeSiO₁, ₅ , conduit à des catalyseurs robustes, stables à l’air et à l’humidité, hautement actifs et sélectifs. Des essais catalytiques réalisés sur une période de deux ans avec les deux catalyseurs, conservés dans des conditions innertes ou à l’air, à 4 °C et à 22 °C, ont montré une activité catalytique inchangée. Les analyses d’adsorption d’N₂ et les analyses de difusion de la lumière ont montré des caractéristiques physiques similaires, même après deux ans. Comparés à d’autres catalyseurs commerciaux utilisés dans l’industrie, les catalyseurs hydrophobes de morphologie sphérique Pd⁰/MeSiO₁, ₅ et Pt⁰/MeSiO₁, ₅, commercialisés par SiliCycle Inc comme SiliaCat Pd⁰ et SiliaCat Pt⁰, ont montré les meilleures performances catalytiques. Ils peuvent facilement être manipulés à l'air, ne montrant aucune tendance à s'enflammer. Les catalyseurs développés sont disponibles pour effectuer des réactions en présence ou en l’absence de solvant, dans des conditions douces, mais également à des températures et à des pressions élevées. Ceci permert d’offrir des méthodes économiques appropriées pour fabriquer des produits à moindre coût, en utilisant des procédés totalement écologiques. / The addition to 2 wt% of Al₂O₃ made it possible to increase the Pd content from 0.5 to 2.0 wt% and the Pt content from 2.0 to 5.0 wt% while keeping a very high metal dispersion (Pd/Pt NPs of size 2-4 nm). The addition of Al₂O₃ also made it possible to increase their catalytic activity under mild conditions as well as at high temperature and pressure, due to the presence of acidic sites. However, both catalysts, synthesized by an in-situ sol-gel method, failed in the reuse tests. This is explained by the low mechanical resistance of the support favoring the sintering of metal NPs. To increase the mechanical resistance of the support and to improve the catalytic activity of Pd/Pt heterogeneous catalysts, the in-situ sol-gel synthesis process was replaced by a precipitation process where the metal NPs were sequestered in the mesoporous cages of a 100% hydrophobic organosilica support of spherical morphology. The synthesis of the spherical particles was carried out by an oil-in-water emulsion process using only MTES as a source of silica. This type of synthesis allowed extensive condensation at 90 °C for 24 h, which greatly increased the robustness of the support. The catalytic activity of the Pd⁰/MeSiO₁, ₅ spherical morphology catalyst, with a Pd content of 2.5 wt% (Pd NPs of size 2-3 nm) was evaluated in the catalytic hydrogenation of vegetable squalene in the absence of solvent, in mild conditions but also under more severe conditions of temperature and pressure. The catalyst was found to be active at temperatures above 70 °C and at H₂ pressures of 3 to 20 atm, for molar percentage of Pd relative to squalene of 0.50 to 0.05 mol %. The catalyst was easily recovered and reused in eight consecutive reactions with very small amounts of leached Pd in the reaction crude product (less than 1 mg kg⁻¹) paving the way for environmentally friendly and less expensive vegetable squalene hydrogenation. The catalytic activity of the Pt⁰/MeSiO₁, ₅ spherical morphology catalyst with a Pt content of 5 wt% (Pt NPs of size 4-7 nm) was evaluated in the hydrosilylation of olefins in the absence of solvent and in the air. The catalyst was found to be active at molar percentage of Pt relative to the olefin of 0.100 to 0.005 mol%. The catalyst was easily recovered and reused in three consecutive reactions with very small amounts of leached Pt in the silylated reaction crude product (less than 5 mg kg⁻¹). This type of synthesis has made it possible to develop catalysts that are more active (conversion and selectivity greater than 90%), stable and reusable, paving the way for green and less expensive applications, of paramount importance for fine chemistry and for pharmaceutical industry. / The originality of this project consists of the unique type of supports developed to encapsulate Pd/Pt NPs. The hydrophobicity of the supports synthesized exclusively from the organosilanes protects the metal NPs against oxidation. We have shown that the organically modified (100% MTES) spherical silica xerogel functionalized with NPs of Pd or Pt, Pd⁰/MeSiO₁, ₅ and Pt⁰/MeSiO₁, ₅, leads to highly active and selective, stables to air and moisture, robust catalysts. The catalytic test, carried out during a periode of two years with the two Pd/Pt catalysts stored under inert conditions or in air at 4 °C and 22 °C, showed unchanged catalytic activity. N₂- adsorption and light scattering analyzes showed similar physical characteristics even after two years. Compared with other commercial catalysts used in industry, the spherical hydrophobic catalysts Pd⁰/MeSiO₁, ₅ and Pt⁰/MeSiO₁, ₅, marketed by Silicycle Inc. as SiliaCat Pd⁰ and SiliaCat Pt⁰, showed the best catalytic performance. They can be easily handled in the air showing no tendency to ignite. The catalysts developed are available for carrying out reactions in the presence or absence of solvent, under mild conditions, but also at high temperature and pressure, thus offering economical methods suitable for making low-cost products, using a completely ecological process. / The heterogeneous palladium/platinum (Pd/Pt) catalysts studied are part of a new range of heterogeneous catalysts developed at SiliCycle Inc for fine chemicals and pharmaceutical chemistry. These catalysts are synthesized from Pd/Pt nanoparticles (NPs) sequestered in the mesoporous cages of hydrophobic organosilicon support MeSiO₁, ₅. The hydrophobic nature of the catalysts is generated by the presence of the methyl groups of the methyltriethoxysilane silane (MTES) used as a monomer in the synthesis of the support. These heterogeneous catalysts, stable in air and moisture, have been found to be very reactive in many chemical reactions, especially under mild conditions of temperature and pressure, for example in carboncarbon coupling reactions, in hydrogenation reactions or in hydrosilylation reactions. The problem is that these catalysts proved to be reactive only for low metal contents (0.5 wt% Pd and 2.0 wt% Pt) and that their catalytic activity decreases considerably in the reusability test at high temperature and high pressure. Under these conditions the catalysts are no longer reusable. The main objective of this thesis is to make improvements to this class of hydrophobic catalysts in order to further increase their catalytic activity and their selectivity. Thus, novel heterogeneous catalytic materials stable to air and moisture have been developed. These catalysts are characterized by better mechanical resistence and stability of Pd/Pt NPs to sintering with high reuse capability under mild conditions, but also at high temperatures and pressures. Their catalytic activity has been evaluated in green applications with high industrial impact. The catalytic activity of Pd catalysts was evaluated in the hydrogenation of squalene to squalane, a fully saturated hydrocarbon, easily adopted by cosmetic formulators for its remarkable properties such as its high stability to oxidation, rancidity and heat. The catalytic activity of the Pt catalysts was evaluated in the hydrosilylation reaction, one of the most important methods for the synthesis of organosilicon compounds and particularly for the industrial scale production of organosilanes by addition of Si-H bonds to double bonds. First, the organosilicon support was doped with Al₂O₃ units. The new catalyst with Pd/Pt NPs encapsulated in the mesoporous cages of an organosilicic support doped with Al₂O₃ units, Pd⁰/MeSiO₁, ₅-Al₂O₃ and Pt⁰/MeSiO₁, ₅-Al₂O₃, have shown a high stability in air and humidity.
106

Effet de la cristallinité sur la perméabilité aux gaz de films à base d'acide polylactique

Ghassemi, Amir 24 April 2018 (has links)
Le but principal de ce travail est de déterminer l’effet de la cristallinité sur la perméation aux gaz pour des films polymères. En particulier, on utilise l’acide polylactique (PLA) comme matrice et différents gaz (azote, dioxyde de carbone, hydrogène, méthane et oxygène) pour les propriétés de transfert. À cet effet, le travail a été divisé en trois parties. Dans la première partie, on utilise le talc comme agent de nucléation afin de modifier la cristallinité du PLA. Dans ce cas, on remarque que la perméabilité au gaz et le coefficient de diffusion sont réduits en augmentant la teneur en talc (0-3% poids). On constate aussi que l’augmentation de la cristallinité due à la nucléation hétérogène ne modifie pas significativement les propriétés mécaniques, sauf pour la déformation à la rupture. Néanmoins, les propriétés de transfert sont diminuées. Dans la deuxième partie, l’effet du temps de recuit pour modifier la cristallinité du PLA seul et avec 3% de talc a été étudié. Dans ce cas, on constate que la perméabilité aux gaz et le coefficient de diffusion sont réduits en augmentant le temps de recuit (jusqu'à 40 minutes). On constate également que l'augmentation de la cristallinité ne modifie pas les propriétés mécaniques, à l'exception du module de Young. Enfin, la température de recuit pour améliorer la cristallinité du PLA seul ou avec 3% de talc a été étudiée. Bien que la perméabilité aux gaz et le coefficient de diffusion aient diminué en augmentant la température de traitement (de 60 à 120°C), l'augmentation de la cristallinité finale n’a pas changé de manière significative les propriétés mécaniques, à l'exception du module de Young et la déformation à la rupture pour le composite ayant 3% de talc. / The main purpose of this work is to determine the effect of crystallinity on the gas permeation of polymer films. In particular, polylactic acid (PLA) was used as the matrix and various gases were selected (nitrogen, carbon dioxide, hydrogen, methane and oxygen) for the gas transport properties. To this end, the work was divided into three parts. In the first part, talc was used as a nucleating agent to modify the crystallinity of PLA. In this case, it was noted that the gas permeability and the diffusion coefficient were reduced with increasing talc content (0-3% by weight). It was also observed that increased crystallinity was related to heterogeneous nucleation, but had limited effect on mechanical properties, with the exception of strain at break. However, the transport properties were decreased. In the second part, annealing time was used to modify PLA crystallinity with 0% and 3% talc. In this case, it was found that gas permeability and diffusion coefficient were lowered with higher annealing time (up to 40 min). It was also observed that higher crystallinity did not change the mechanical properties except for the Young’s modulus. Finally, annealing temperature was modified to improve the crystallinity of neat PLA and 3% talc composite. While gas permeability and diffusion coefficient both decreased with increasing annealing temperature (from 60 to 120°C), crystallinity changes did not significantly modify the mechanical properties, except for the Young’s modulus and strain at break of the 3% talc composite.
107

Metal oxide, Mixed oxide, and hybrid metal@oxide nanocrystals : size-and shape-controlled synthesis and catalytic applications

Nguyen, Thanh-Dinh 18 April 2018 (has links)
Le contrôle de la taille et de la morphologie de nanocristaux d’oxydes métalliques simples, d’oxydes mixtes et d’oxydes métalliques hybrides est un sujet de grand intérêt. La dépendance de leur propriétés physio-chimiques avec leurs taille et morphologies, génèrent une variété de leur applications dans plusieurs domaines. Cependant, le dévellopement des nanocristaux en controllant la taille, la forme, l’assemblage et l’homogénéité de la composition chimique pour l’optimisation de propriété spécifiques demandent la combinaison de nombreux parametres de synthèse. Les trois différentes approches ont été développées dans le cadre de la thèse pour la synthèse d’une variété de nouveaux nanomatériaux d’oxydes simples, d’oxydes mixtes et d’oxydes métalliques hybrides dont la taille et la forme ont été bien controllées. Ces méthodes ont été nommées comme des méthodes solvo-hydrothermiques assistées par des molécules structurantes à l’état monophasique (eau ou eau/éthanol) et à l’état biphasique (eau-toluène). Nos approches de synthèse ont permi de préparer des nanocristaux des oxydes de métaux de transition (V, Cr, Mn, Co, Ni, In), et des terres rares (Sm, Ce, La, Gd, Er, Ti, Y, Zr), ainsi que des oxydes métalliques mixtes (tungstate, orthovanadate, molybdate). Ces nanomatériaux sont sous forme colloïdale mono-dispersée qui présente une cristallinité élevée. La taille et la forme de tels nanocristaux peuvent facilement être contrôlées par une simple variation des paramètres de synthèse telle que la concentration de précurseurs, la nature de la molécule structurante, la température et le temps de réaction. A large variété de techniques a été utilisée pour la caracterisation de ces nanomatériaux telles que TEM/HRTEM, SEM, SAED, EDS, XRD, XPS, FTIR, TGA-DTA, UV-vis, photoluminescence, BET. Les propriétés catalytiques de ces matériaux ont aussi été étudiées. Dans ce travail, le contrôle de la cinétique de croissance des nucléides ainsi que le mécanisme gouvernant la forme qui conduit à la taille et la morphologie finale du nanocrystal ont été proposé. L’effet de la taille et de la forme des nanoparticules d’oxyde métallique hybrides sur les propriétés catalytiques pour la réaction d’oxydation du CO et la photo-dégradation du bleue de méthylène a été aussi étudié. Car les catalyseurs existant actuellement à base de métaux nobles sont très couteux et en plus très sensibles à l’empoisonnement par le gas H2S ou les émissions polluantes de SOx. L’activité catalytique des nanocristaux d’oxydes métallique hybrides Cu@CeO2 de formes cubiques dans l’oxydation de CO et de Ag@TiO2 de formes de ceinture dans la photo dégradation du bleue de méthylène ont montré la dépendance de la taille et la forme des nanocristaux avec leur propriétés catalytiques. / The ability to finely control the size and shape of metal oxide, mixed metal oxide, hybrid metal/oxide nanocrystals has become an area of great interest, as many of their physical and chemical properties are highly dependent on morphology, and the more technological applications will be possible for their use. Large-scale synthesis of such high-quality nanocrystals is the first and key step to this area of science. A tremendous effort has recently been spent in attempt to control these novel properties through manipulation of size, shape, structure, and composition. Flexibly nanocrystal size/shape control for both monodisperse single and multiple-oxide nanomaterial systems, however, remains largely empirical and still presents a great challenge. In this dissertation, new synthetic approaches have been developed and described for the synthetic design of a series of colloidal monodisperse metal oxide, mixed metal oxide, hybrid metal-oxide nanocrystals with controlled size and shape. These materials were generally characterized using TEM/HRTEM, SEM, SAED, EDS, XRD, XPS, FTIR, TGA-DTA, UV-vis, photoluminescence, BET techniques. Effect of the size and shape of these obtained hybrid metal-oxide nanocrystals on the catalytic properties is illustrated. We have developed three different new surfactant-assistant pathways for the large-scale synthesis of three types of nanomaterials including metal oxide, mixed metal oxide, hybrid noble-metal-oxide colloidal monodisperse nanocrystals. Namely, the solvo-hydrothermal surfactant-assisted methods in one-phase (water or water/ethanol) and two-phase (water-toluene) systems were used for the synthesis of metal oxide (transition metal-V, Cr, Mn, Co, Ni, In and rare earth-Sm, Ce, La, Gd, Er, Ti, Y, Zr) and mixed metal oxide (tungstate, orthovanadate, molybdate). The seed-media growth with the assistant of bifunctional surfactant was used for the synthesis of hybrid noble metal@oxide (Ag@TiO2, (Cu or Ag)@CeO2, Au/tungstate, Ag/molybdate, etc.) nanocrystals. A significant feature of our synthetic approaches was pointed out that most resulting nanocrystal products are monodisperse, high crystallinity, uniform shape, and narrow distribution. The size and shape of such nanocrystals can be controlled easily by simple tuning the reaction parameters such as the concentration of precursors and surfactants, the nature of surfactant, the temperature and time of synthetic reaction. The prepared nanocrystals with the functional surface were used as the building blocks for the self-assembly into hierarchical mesocrystal microspheres. The effective ways how to control the growth kinetics of the nuclei and the shape-guiding mechanisms leading to the manipulation of morphology of final products were proposed. Our current approaches have several conveniences including used nontoxic and inexpensive reagents (most using inorganic metal salts as starting precursors instead of expensive and toxic metallic alkoxides or organometallics), relatively mild conditions, high-yield, and large-scale production; in some causes, water or ethanol was used as environmentally benign reaction solvent. Catalytic activity and selectivity are governed by the nature of the catalyst surface, making shaped nanocrystals ideal substrates for understanding the influence of surface structure on heterogeneous catalysis at the nanoscale. Finally, this work was concentrated on demonstration of heterogeneous catalytic activity of hybrid metal-oxide nanomaterials (Cu@CeO2, Ag@TiO2) as a typical example. We synthesized the high-crystalline titanium oxide and cerium oxide nanocrystals with control over their shape and surface chemistry in high yield via the aqueous surfactant-assist method. The novel hybrid metal-oxide nanocrystals were produced by the depositing noble metal ion (Cu, Ag, Au) precursors on the pre-synthesized oxide seeds via seed-mediated growth. The catalytic activity of these metal-oxide nanohybrids of Cu@CeO2 nanocubes for CO oxidation conversion and Ag@TiO2 nanobelts for Methylene Blue photodegradation with size/shape-dependent properties were verified.
108

Optimisation des propriétés mécaniques de composites à base de fibres naturelles : application à un composite de fibre de lin avec un mélange de polyéthylène/polypropylène d'origine post-consommation

Toupe, Jean Luc 23 April 2018 (has links)
Dans ce projet de thèse, on tente d'optimiser les propriétés mécaniques (modules de flexion et traction, résistance à l'impact et contrainte maximale en traction) d'un composite de fibres de lin/plastique d'origine post-consommation en combinant deux voies d'optimisation (compatibilisation des phases et optimisation du procédé de fabrication) tout en tenant compte du coût de production du matériau. Dans la première partie, le composite a été optimisé par compatibilisation des phases. Pour ce faire, le meilleur additif était d'abord déterminé en analysant l'effet de plusieurs additifs appartenant à différentes catégories (agent de couplage classique, additif élastomère, et mélange d'additif élastomère/agent de couplage) sur les propriétés mécaniques, morphologiques et physiques (densité). Puis, la composition du matériau a été optimisée dans le but d'améliorer les propriétés mécaniques. Une fonction objective (ratio qualité/coût) a été définie afin de prendre en compte simultanément toutes les propriétés mécaniques et le coût de production. Dans la seconde partie, l'efficacité de la combinaison des deux voies d'optimisation, a été analysée. Pour ce faire, les paramètres du procédé de fabrication (extrusion suivie de l'injection) ont été optimisés en utilisant la composition optimale obtenue dans la première partie (combinaison des deux voies d'optimisation). Le ratio qualité/coût était également utilisé comme fonction objective. Par la suite, l'impact de l'optimisation combinée sur la microstructure (dimensions des fibres, cristallinité et propriétés moléculaires de la matrice) et les propriétés mécaniques du composite a été investigué. Les résultats ont montré que le meilleur additif était le EO-g-MAH/MAPP appartenant à la catégorie des mélanges d'additif élastomère/agent de couplage. En outre, la composition et les conditions de fabrication du composite étaient optimales lorsque sa performance mécanique globale était améliorée en donnant la priorité à la rigidité, et concomitamment à la rigidité et la résilience, respectivement. D'autre part, la combinaison des deux voies d'optimisation, au-delà d'une bonne adhésion interfaciale fibre-matrice, a favorisé un équilibre optimal entre la dégradation des composants et l'homogénéité du composite (bonne dispersion des fibres et des additifs dans la matrice), conduisant à de meilleures propriétés mécaniques. Cette procédure d'optimisation a permis d'améliorer toutes les propriétés mécaniques du composite, tout en étant efficace en termes de performance et de coûts. / In this thesis, we tried to optimize the mechanical properties (flexural and tensile moduli, impact strength, and tensile stress at yield) of a flax fiber/postconsumer plastic composite by combining two optimization paths (phase compatibilization and manufacturing process optimization) while taking into account the material production costs. In the first part, the composite was optimized by phase compatibilization. To do this, the best additive was first determined by analyzing the effect of several additives of different types (conventional coupling agent, elastomeric additive, and mixture of elastomeric additive/coupling agent), on the mechanical, morphological and physical (density) properties. Then, material composition was optimized to improve the mechanical properties. An objective function (quality/cost ratio) was defined to simultaneously account for all the mechanical properties and production costs. In the second part, the effectiveness of combining two optimization paths was analyzed. First, the manufacturing process parameters (extrusion followed by injection) were optimized using the optimum composite composition obtained in the first part (combination of both optimization paths). The quality/cost ratio was also used as objective function. Thereafter, the effect of the combined optimizations on the microstructure (fiber dimensions, matrix crystallinity and matrix molecular properties) and mechanical properties of the composite was investigated. The results showed that the best additive was EO-g-MAH/MAPP of the category “mixture of elastomeric additive/coupling agent”. In addition, the composition and the manufacturing conditions of the composites were optimum when the overall mechanical performance was improved by giving priority to stiffness, and simultaneously to stiffness and resilience, respectively. On the other hand, the combination of both optimization paths, besides good fiber-matrix interfacial adhesion, promoted an optimum balance between components degradation and composite homogeneity (good fiber and additives dispersion in the matrix), leading to better mechanical properties. This optimization procedure was able to improve all the mechanical properties of the composite, as well as being effective in terms of performance and costs.
109

Effet des modifications de surface de fibres lignocellulosiques sur les propriétés morphologiques, mécaniques et physiques de composites à base de polyéthylène linéaire de basse densité par rotomoulage

Hanana, Fatima Ezzahra 23 May 2018 (has links)
Cette thèse se décline en six parties. Le premier volet porte sur la compréhension du procédé de rotomoulage et une description des matériaux composites à base de fibres lignocellulosiques. Le second volet comporte une revue de la littérature sur les composites produits par rotomoulage, tandis que le troisième volet se consacre à la compréhension de la modification des fibres d’érables par le polyéthylène maléisé (MAPE) en solution et son influence et de la teneur en fibre sur les propriétés morphologiques et mécaniques des composites. Le quatrième volet étudie les effets de la taille des particules et la modification en solution, ainsi que la teneur en fibre sur les propriétés morphologiques, thermiques, physiques et mécaniques des composites. Le cinquième volet se penche sur l’effet de la modification, la teneur et la taille des fibres d’érable sur la morphologie et les propriétés physiques et mécaniques des auto-hybrides. Finalement, le dernier volet étudie l’influence de la modification en solution avec du MAPE, la teneur et la taille des fibres sur la morphologie et les propriétés mécaniques des composites hybrides à base de fibres d’érable et de chanvre. Les résultats montrent que les fibres (érable et chanvre) ont été modifiées avec succès par le MAPE en solution, ce qui a amélioré la qualité de l’interface fibre-matrice des composites, conduisant à de meilleures propriétés mécaniques. En outre, les résultats ont prouvé que l’effet de la taille de particule était significatif. En effet, le module de traction augmente jusqu’à 73% lors de l’utilisation de fibres d’érable de 355-500 μm à 30% en poids. Une augmentation de 52% de la résistance au choc a été réalisée avec l’utilisation de 30% en poids de fibre d’érable (355-500 μm) comparé à ceux produits avec 125-250 μm. D’autre part la production de composites auto-hybrides a été en mesure d'améliorer les propriétés mécaniques comparées aux composites simples. Enfin, une augmentation du module de traction (63%), de la contrainte maximale (17%) et de la densité (17%) a été réalisée lors de l’utilisation d’un ratio de 75/25 de fibre d’érable/chanvre à 20% en poids total de fibre par rapport à la matrice seule. / This thesis is divided into six parts. The first part is related to the understanding of the rotomolding process and a description of composite materials based on lignocellulosic fibers. In the second part, a literature review on composites produced by rotomolding is presented. The objective of the third part is to understand the modification of maple fibers in solution by maleated polyethylene (MAPE) and its effect combined with fiber content on the morphological and mechanical properties of the composites. The fourth part studies the effects of fiber size, modification in solution as well as fiber content on the morphological, thermal, physical and mechanical properties of the composites. The fifth part investigates the effect of MAPE modification in solution, fiber content and particle size of maple fibers on the morphological and mechanical properties of selfhybrid composites. Finally, the effect of the surface treatment in solution, the content and the fiber size (maple and hemp) on hybrid composites is presented. The results showed that the fibers (maple and hemp) were successfully modified by MAPE in solution, which improved the interface quality between the matrix and fibers, leading to better mechanical properties. Moreover, the results showed that the effect of fiber size was significant as the tensile modulus increased by up to 73% with the use of 355-500 μm at 30% wt. of maple fiber compared to those produced with 125-250 μm. The production of self-hybrid composites was able to improve the mechanical properties compared to simple composites. An increase in the tensile modulus (63%), tensile strength (17%) and density (17%) was obtained by using a 75/25 ratio of maple/hemp fibers at a total fiber content of 20% wt. compared to the neat matrix.
110

Caractérisation et étude de la performance du chrysotile dans la capture du dioxyde de carbone dans les procédés gaz-solide

Daldoul, Insaf 17 April 2018 (has links)
La signature du Protocole de Kyoto par le Canada en décembre 2002 et les nouvelles normes environnementales qui en découleront nous forcent déjà à trouver des solutions pour réduire de façon significative les émissions de gaz à effet de serre, et en particulier le CO₂. Une des façons de réduire de telles émissions consiste à séquestrer le CO2 par la carbonatation minérale en utilisant des silicates de magnésium. Ces minéraux sont abondants dans les rejets des mines d'amiante du sud du Québec. La présente étude propose donc une revue des procédés de capture de CO2 et une étude approfondie sur la carbonatation gaz-solide à basse pression dans des environnements secs et humides. La structure évolutive du chrysotile et sa réactivité en fonction de la température, l'humidité, la variation du pourcentage de CO₂ dans le mélange gazeux, le pré-conditionnement thermique et le dopage alcalin ont été analysés et caractérisés par.un système couplé TG-DTA-MS, par XPS et par la DRX. Le résultat le plus important de cette étude est que le chrysotile dopé 10% Cs, dans un environnement gazeux humide, permet d'augmenter le taux de carbonatation par un facteur 2.5 par rapport au chrysotile vierge.

Page generated in 0.0354 seconds