• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 17
  • 7
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 108
  • 26
  • 25
  • 23
  • 22
  • 21
  • 19
  • 18
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Modellgetriebene Entwicklung adaptiver, komponentenbasierter Mashup-Anwendungen / Model-Driven Development of Adaptive Component-Based Mashup Applications

Pietschmann, Stefan 02 January 2013 (has links) (PDF)
Mit dem Wandel des Internets zu einer universellen Softwareplattform sind die Möglichkeiten und Fähigkeiten von Webanwendungen zwar rasant gestiegen. Gleichzeitig gestaltet sich ihre Entwicklung jedoch zunehmend aufwändig und komplex, was dem Wunsch nach immer kürzeren Entwicklungszyklen für möglichst situative, bedarfsgerechte Lösungen entgegensteht. Bestehende Ansätze aus Forschung und Technik, insbesondere im Umfeld der serviceorientierten Architekturen und Mashups, werden diesen Problemen bislang nicht ausreichend gerecht. Deshalb werden in dieser Dissertation neue Konzepte für die modellgetriebene Entwicklung und Bereitstellung von Webanwendungen vorgestellt. Die zugrunde liegende Idee besteht darin, das Paradigma der Serviceorientierung auf die Präsentationsebene zu erweitern. So sollen erstmals – neben Daten- und Geschäftslogik – auch Teile der Anwendungsoberfläche in Form wiederverwendbarer Komponenten über Dienste bereitgestellt werden. Anwendungen sollen somit über alle Anwendungsebenen hinweg nach einheitlichen Prinzipien „komponiert“ werden können. Den ersten Schwerpunkt der Arbeit bilden die entsprechenden universellen Modellierungskonzepte für Komponenten und Kompositionen. Sie erlauben u. a. die plattformunabhängige Beschreibung von Anwendungen als Komposition der o. g. Komponenten. Durch die Abstraktion und entsprechende Autorenwerkzeuge wird die Entwicklung so auch für Domänenexperten bzw. Nicht-Programmierer möglich. Der zweite Schwerpunkt liegt auf dem kontextadaptiven Integrationsprozess von Komponenten und der zugehörigen, serviceorientierten Referenzarchitektur. Sie ermöglichen die dynamische Suche, Bindung und Konfiguration von Komponenten, d. h. auf Basis der o. g. Abstraktionen können genau die Anwendungskomponenten geladen und ausgeführt werden, die für den vorliegenden Nutzer-, Nutzungs- und Endgerätekontext am geeignetsten sind. Der dritte Schwerpunkt adressiert die Kontextadaptivität der kompositen Anwendungen in Form von Konzepten zur aspektorientierten Definition von adaptivem Verhalten im Modell und dessen Umsetzung zur Laufzeit. In Abhängigkeit von Kontextänderungen können so Rekonfigurationen von Komponenten, ihr Austausch oder Veränderungen an der Komposition, z.B. am Layout oder dem Datenfluss, automatisch durchgesetzt werden. Alle vorgestellten Konzepte wurden durch prototypische Implementierungen praktisch untermauert. Anhand diverser Anwendungsbeispiele konnten ihre Validität und Praktikabilität – von der Modellierung im Autorenwerkzeug bis zur Ausführung und dynamischen Anpassung – nachgewiesen werden. Die vorliegende Dissertation liefert folglich eine Antwort auf die Frage, wie zukünftige Web- bzw. Mashup-Anwendungen zeit- und kostengünstig entwickelt sowie zuverlässig und performant ausgeführt werden können. Die geschaffenen Konzepte bilden gleichermaßen die Grundlage für eine Vielzahl an Folgearbeiten.
102

User Responsive User Experience Design: Building a Conceptual Framework / Design av användarresponsiva användarupplevelser: Ett konceptuellt ramverk

Holm, Anders, Sundberg Kullström, Christoffer January 2015 (has links)
To a large extent, business-customer interactions are acted out on digital meeting places. When the possibilities for businesses to engage in face-to-face interactions decrease, relationship building and customer service becomes more of a challenge. Digital services are easily duplicated by competitors and with standardization of interfaces and products, customers tend to switch more frequently between providers. One area where the creation and maintenance of loyal customers appears to be highly relevant is the domain of e-banking. Studies have shown that by personalizing the experience for the user, customer loyalty can be enhanced. Existing methods of interface adaptation shifts the responsibility for the resulting user experience design from the designer to either the user or the system. However, research shows that handing over responsibility for the design to the user can damage the user experience. Furthermore, we argue that as long as computers cannot translate the meaning of what a human communicates, and understand the motivation that lies behind her actions, human designers and researchers need to own the responsibility for designing user experiences. Responsive web design differ from the concept of user responsiveness in the way that it is not truly responsive to the user but to the technical device that is used. Following a design science research methodology, this paper presents the development of a conceptual framework for user responsive user experience design (URUXD) that aims to strengthen the bond between user and provider by enabling a more relevant and personalized user experience. The conceptual framework introduces a way to design user responsive information systems that could be useful in domains where the user audience is large and diverse, as in the case of e-banking. A personalized user experience is enabled by transcending the current use of personas as design tools to also involve them in categorizing real-time users through the use of personas as mapping tools. Multiple persona sets are incorporated in the framework which gives the user experience designer the possibility of designing a holistic user experience for each persona set. The framework thus enables the incorporation of multiple GUI designs in an information system that is user responsive, without the risk of violating usability principles. / Interaktionen mellan företag och kund sker nuförtiden oftast på digitala mötesplatser. När möjligheten för företag att träffa kunden öga mot öga minskar blir det en utmaning att skapa nära affärsrelationer och förmedla bra kundservice. Med konkurrenter som enkelt kopierar digitala tjänster och med en standardisering av gränssnitt och tjänster tenderar kunder att oftare byta leverantör. Inom e-banking framstår därför skapande och upprätthållande av lojala kunder som högst relevant. Genom att personifiera användarupplevelsen kan kundlojaliteten förbättras. Befintliga metoder för gränssnittsadaption lämnar över ansvaret för den resulterande designen från designern till antingen användaren eller systemet. Men, om ansvaret för designen tilldelas användaren kan resultatet bli i en skadad användarupplevelse. Så länge datorer inte kan översätta meningen bakom vad en människa kommunicerar eller skapa en förståelse för en användares bakomliggande motivation till varför hen utför handlingar, måste mänskliga designers inneha ansvaret för designen av användarupplevelsen. Vidare skiljer sig responsiv webbdesign från konceptet användarresponsivitet i meningen att responsiv webbdesign inte är direkt responsiv mot användaren utan snarare mot den tekniska apparat som används. Genom att följa en design science forskningsmetodik utvecklades ett konceptuellt ramverk för design av användarresponsiva användarupplevelser (user responsive user experience design (URUXD)). Målet var att stärka bandet mellan användare och leverantör genom att möjliggöra en mer relevant och personifierad användarupplevelse. Det konceptuella ramverket introducerar ett sätt att designa användarresponsiva informationssystem vilket kan vara användbart i domäner där användargruppen är stor och heterogen, vilket är fallet för e-banking. En personifierad användarupplevelse möjliggörs genom att utöka det befintliga användningsområdet för designverktyget personas till att även inkludera dem som mappningssverktyg för att kategorisera användare i realtid. Multipla persona sets införlivas i ramverket vilket skapar möjlighet för designern att skapa en holistisk användarupplevelse för varje enskilt persona set. Det konceptuella ramverket möjliggör därigenom för multipla gränssnittdesigns för ett informationssystem som därmed blir användarresponsivt, utan att underminera principer för användbarhet.
103

Méthodes numériques avec des éléments finis adaptatifs pour la simulation de condensats de Bose-Einstein / Adaptive Finite-element Methods for the Numerical Simulation of Bose-Einstein Condensates

Vergez, Guillaume 06 June 2017 (has links)
Le phénomène de condensation d’un gaz de bosons lorsqu’il est refroidi à zéro degrés Kelvin futdécrit par Einstein en 1925 en s’appuyant sur des travaux de Bose. Depuis lors, de nombreux physiciens,mathématiciens et numériciens se sont intéressés au condensat de Bose-Einstein et à son caractère superfluide. Nous proposons dans cette étude des méthodes numériques ainsi qu’un code informatique pour la simulation d’un condensat de Bose-Einstein en rotation. Le principal modèle mathématique décrivant ce phénomène physique est une équation de Schrödinger présentant une non-linéarité cubique,découverte en 1961 : l’équation de Gross-Pitaevskii (GP). En nous appuyant sur le logiciel FreeFem++,nous nous servons d’une discrétisation spatiale en éléments-finis pour résoudre numériquement cette équation. Une méthode d’adaptation du maillage à la solution et l’utilisation d’éléments-finis d’ordre deux nous permet de résoudre finement le problème et d’explorer des configurations complexes en deux ou trois dimensions d’espace. Pour sa version stationnaire, nous avons développé une méthode de gradient de Sobolev ou une méthode de point intérieur implémentée dans la librairie Ipopt. Pour sa version instationnaire, nous utilisons une méthode de Time-Splitting combinée à un schéma de Crank-Nicolson ou une méthode de relaxation. Afin d’étudier la stabilité dynamique et thermodynamique d’un état stationnaire, le modèle de Bogoliubov-de Gennes propose une linéarisation de l’équation de Gross-Pitaevskii autour de cet état. Nous avons élaboré une méthode permettant de résoudre ce système aux valeurs et vecteurs propres, basée sur un algorithme de Newton ainsi que sur la méthode d’Arnoldi implémentée dans la librairie Arpack. / The phenomenon of condensation of a boson gas when cooled to zero degrees Kelvin was described by Einstein in 1925 based on work by Bose. Since then, many physicists, mathematicians and digitizers have been interested in the Bose-Einstein condensate and its superfluidity. We propose in this study numerical methods as well as a computer code for the simulation of a rotating Bose-Einstein condensate.The main mathematical model describing this phenomenon is a Schrödinger equation with a cubic nonlinearity, discovered in 1961: the Gross-Pitaevskii (GP) equation. By using the software FreeFem++ and a finite elements spatial discretization we solve this equation numerically. The mesh adaptation to the solution and the use of finite elements of order two allow us to solve the problem finely and to explore complex configurations in two or three dimensions of space. For its stationary version, we have developed a Sobolev gradient method or an internal point method implemented in the Ipopt library. .For its unsteady version, we use a Time-Splitting method combined with a Crank-Nicolson scheme ora relaxation method. In order to study the dynamic and thermodynamic stability of a stationary state,the Bogoliubov-de Gennes model proposes a linearization of the Gross-Pitaevskii equation around this state. We have developed a method to solve this eigenvalues and eigenvector system, based on a Newton algorithm as well as the Arnoldi method implemented in the Arpack library.
104

Modélisation et simulation numérique de matériaux à changement de phase. / Numerical simulation and modelling of phase-change materials

Rakotondrandisa, Aina 27 September 2019 (has links)
Nous développons dans ce travail de thèse un outil de simulation numérique pour les matériaux à changement de phase (MCP), en tenant compte du phénomène de convection naturelle dans la phase liquide, pour des configurations en deux et trois dimensions. Les équations de Navier-Stokes incompressible avec le modèle de Boussinesq pour la prise en compte des forces de flottabilité liées aux effets thermiques, couplées avec une formulation de l’équation d’énergie suivant la méthode d’enthalpie, sont résolues par une méthode d’éléments finis adaptatifs. Une approche mono-domaine, consistant à résoudre les mêmes systèmes d’équations dans les phases solide et liquide, est utilisée. La vitesse est ramenée à zéro dans la phase solide, en introduisant un terme de pénalisation dans l’équation de quantité de mouvement, suivant le modèle de Carman-Kozeny, consistant à freiner la vitesse à travers un milieu poreux. Une discrétisation spatiale des équations utilisant des éléments finis de Taylor-Hood, éléments finis P2 pour la vitesse et éléments finis P1 pour la pression, est appliquée, avec un schéma d’intégration en temps implicite d’ordre deux (GEAR). Le système d’équations non-linéaires est résolu par un algorithme de Newton. Les méthodes numériques sont implémentées avec le logiciel libre FreeFem++ (www.freefem.org), disponible pour tout système d’exploitation. Les programmes sont distribués sous forme de logiciel libre, sous la forme d’une forme de toolbox simple d’utilisation, permettant à l’utilisateur de rajouter d’autres configurations numériques pour des problèmes avecchangement de phase. Nous présentons dans ce manuscrit des cas de validation du code de calcul, en simulant des cas tests bien connus, présentés par ordre de difficulté croissant : convection naturelle de l’air, fusion d’un MCP, le cycle complet fusion-solidification, chauffage par le bas d’un MCP, et enfin, la solidification de l’eau. / In this thesis we develop a numerical simulation tool for computing two and three-dimensional liquid-solid phase-change systems involving natural convection. It consists of solving the incompressible Navier-Stokes equations with Boussinesq approximation for thermal effects combined with an enthalpy-porosity method for the phase-change modeling, using a finite elements method with mesh adaptivity. A single-domain approach is applied by solving the same set of equations over the whole domain. A Carman-Kozeny-type penalty term is added to the momentum equation to bring to zero the velocity in the solid phase through an artificial mushy region. Model equations are discretized using Galerkin triangular finite elements. Piecewise quadratic (P2) finite-elements are used for the velocity and piecewise linear (P1) for the pressure. The coupled system of equations is integrated in time using a second-order Gear scheme. Non-linearities are treated implicitly and the resulting discrete equations are solved using a Newton algorithm. The numerical method is implemented with the finite elements software FreeFem++ (www.freefem.org), available for all existing operating systems. The programs are written and distributed as an easy-to-use open-source toolbox, allowing the user to code new numerical algorithms for similar problems with phase-change. We present several validations, by simulating classical benchmark cases of increasing difficulty: natural convection of air, melting of a phase-change material, a melting-solidification cycle, a basal melting of a phase-change material, and finally, a water freezing case.
105

A posteriorní odhady chyby pro řešení konvektivně-difusních úloh / A posteriori error estimates for numerical solution of convection-difusion problems

Šebestová, Ivana January 2014 (has links)
This thesis is concerned with several issues of a posteriori error estimates for linear problems. In its first part error estimates for the heat conduction equation discretized by the backward Euler method in time and discontinuous Galerkin method in space are derived. In the second part guaranteed and locally efficient error estimates involving algebraic error for Poisson equation discretized by the discontinuous Galerkin method are derived. The technique is based on the flux reconstruction where meshes with hanging nodes and variable polynomial degree are allowed. An adaptive strategy combining both adaptive mesh refinement and stopping criteria for iterative algebraic solvers is proposed. In the last part a numerical method for computing guaranteed lower and upper bounds of principal eigenvalues of symmetric linear elliptic differential operators is presented. 1
106

Modellgetriebene Entwicklung adaptiver, komponentenbasierter Mashup-Anwendungen

Pietschmann, Stefan 13 December 2012 (has links)
Mit dem Wandel des Internets zu einer universellen Softwareplattform sind die Möglichkeiten und Fähigkeiten von Webanwendungen zwar rasant gestiegen. Gleichzeitig gestaltet sich ihre Entwicklung jedoch zunehmend aufwändig und komplex, was dem Wunsch nach immer kürzeren Entwicklungszyklen für möglichst situative, bedarfsgerechte Lösungen entgegensteht. Bestehende Ansätze aus Forschung und Technik, insbesondere im Umfeld der serviceorientierten Architekturen und Mashups, werden diesen Problemen bislang nicht ausreichend gerecht. Deshalb werden in dieser Dissertation neue Konzepte für die modellgetriebene Entwicklung und Bereitstellung von Webanwendungen vorgestellt. Die zugrunde liegende Idee besteht darin, das Paradigma der Serviceorientierung auf die Präsentationsebene zu erweitern. So sollen erstmals – neben Daten- und Geschäftslogik – auch Teile der Anwendungsoberfläche in Form wiederverwendbarer Komponenten über Dienste bereitgestellt werden. Anwendungen sollen somit über alle Anwendungsebenen hinweg nach einheitlichen Prinzipien „komponiert“ werden können. Den ersten Schwerpunkt der Arbeit bilden die entsprechenden universellen Modellierungskonzepte für Komponenten und Kompositionen. Sie erlauben u. a. die plattformunabhängige Beschreibung von Anwendungen als Komposition der o. g. Komponenten. Durch die Abstraktion und entsprechende Autorenwerkzeuge wird die Entwicklung so auch für Domänenexperten bzw. Nicht-Programmierer möglich. Der zweite Schwerpunkt liegt auf dem kontextadaptiven Integrationsprozess von Komponenten und der zugehörigen, serviceorientierten Referenzarchitektur. Sie ermöglichen die dynamische Suche, Bindung und Konfiguration von Komponenten, d. h. auf Basis der o. g. Abstraktionen können genau die Anwendungskomponenten geladen und ausgeführt werden, die für den vorliegenden Nutzer-, Nutzungs- und Endgerätekontext am geeignetsten sind. Der dritte Schwerpunkt adressiert die Kontextadaptivität der kompositen Anwendungen in Form von Konzepten zur aspektorientierten Definition von adaptivem Verhalten im Modell und dessen Umsetzung zur Laufzeit. In Abhängigkeit von Kontextänderungen können so Rekonfigurationen von Komponenten, ihr Austausch oder Veränderungen an der Komposition, z.B. am Layout oder dem Datenfluss, automatisch durchgesetzt werden. Alle vorgestellten Konzepte wurden durch prototypische Implementierungen praktisch untermauert. Anhand diverser Anwendungsbeispiele konnten ihre Validität und Praktikabilität – von der Modellierung im Autorenwerkzeug bis zur Ausführung und dynamischen Anpassung – nachgewiesen werden. Die vorliegende Dissertation liefert folglich eine Antwort auf die Frage, wie zukünftige Web- bzw. Mashup-Anwendungen zeit- und kostengünstig entwickelt sowie zuverlässig und performant ausgeführt werden können. Die geschaffenen Konzepte bilden gleichermaßen die Grundlage für eine Vielzahl an Folgearbeiten.:Verzeichnisse vi Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Verzeichnis der Codebeispiele . . . . . . . . . . . . . . . . . . . . . . . . . . ix Abkürzungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Einleitung 1 1.1 Problemdefinition, Thesen und Forschungsziele . . . . . . . . . . . . . . 3 1.1.1 Probleme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Thesen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Forschungsziele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Abgrenzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Grundlagen, Szenarien und Herausforderungen 12 2.1 Grundlagen und Begriffsklärung . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Komposite und serviceorientierte Webanwendungen . . . . . . . 13 2.1.2 Mashups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 Modellgetriebene Software-Entwicklung . . . . . . . . . . . . . . 17 2.1.4 Kontext und kontextadaptive Webanwendungen . . . . . . . . . 18 2.2 Szenarien und Problemanalyse . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Dienstkomposition zur Reiseplanung . . . . . . . . . . . . . . . . . 20 2.2.2 Interaktive Aktienverwaltung . . . . . . . . . . . . . . . . . . . . . 22 2.2.3 Adaptive Touristeninformation . . . . . . . . . . . . . . . . . . . . 23 2.3 Anforderungen und Kriterien der Analyse . . . . . . . . . . . . . . . . . . 25 2.3.1 Anforderungen an Komponenten- und Kompositionsmodell . . . 25 2.3.2 Anforderungen an die Laufzeitumgebung . . . . . . . . . . . . . 27 3 Stand der Forschung und Technik 30 3.1 SOA und Dienstkomposition zur Interaktion mit Diensten . . . . . . . . . 31 3.1.1 Statische Dienstkomposition . . . . . . . . . . . . . . . . . . . . . . 32 3.1.2 Dynamische Dienstauswahl und -Komposition . . . . . . . . . . . 33 3.1.3 Adaptionskonzepte für Dienstkompositionen . . . . . . . . . . . . 45 3.1.4 Interaktions- und UI-Konzepte für Dienstkompositionen . . . . . . 48 3.2 Web Engineering - Entwicklung interaktiver adaptiver Webanwendungen 50 3.2.1 Entwicklung von Hypertext- und Hypermedia-Anwendungen . . 51 3.2.2 Entwicklung von Mashup-Anwendungen . . . . . . . . . . . . . . 54 3.3 Zusammenfassung und Diskussion der Defizite existierender Ansätze . . 67 3.3.1 Probleme und Defizite aus dem Bereich der Dienstkomposition . 67 3.3.2 Probleme und Defizite beim Web- und Mashup-Engineering . . . 69 4 Universelle Komposition adaptiver Webanwendungen 73 4.1 Grundkonzept und Rollenmodell . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Modellgetriebene Entwicklung kompositer Mashups . . . . . . . . . . . 75 4.2.1 Universelles Komponentenmodell . . . . . . . . . . . . . . . . . . 76 4.2.2 Belangorientiertes Kompositionsmodell . . . . . . . . . . . . . . . 76 4.3 Dynamische Integration und Laufzeitumgebung . . . . . . . . . . . . . 78 4.3.1 Kontextsensitiver Integrationsprozess für Mashup-Komponenten . 79 4.3.2 Referenzarchitektur zur Komposition und Ausführung . . . . . . . 80 4.3.3 Unterstützung von adaptivem Laufzeitverhalten in Mashups . . . 81 5 Belangorientierte Modellierung adaptiver, kompositer Webanwendungen 83 5.1 Ein universelles Komponentenmodell für Mashup-Anwendungen . . . . 84 5.1.1 Grundlegende Eigenschaften und Prinzipien . . . . . . . . . . . . 84 5.1.2 Komponententypen . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.3 Beschreibung von Komponenten . . . . . . . . . . . . . . . . . . 87 5.1.4 Nutzung der Konzepte zur Komponentenentwicklung . . . . . . . 99 5.2 Ein belangorientiertes Metamodell für interaktive Mashup-Anwendungen 100 5.2.1 Conceptual Model – Modellierung der Anwendungskonzepte . . 102 5.2.2 Communication Model – Spezifikation von Daten- und Kontrollfluss 107 5.2.3 Layout Model – Visuelle Anordnung von UI-Komponenten . . . . 114 5.2.4 Screenflow Model – Definition von Navigation und Sichten . . . . 115 5.3 Modellierung von adaptivem Verhalten . . . . . . . . . . . . . . . . . . 117 5.3.1 Adaptionstechniken für komposite Webanwendungen . . . . . . 117 5.3.2 Adaptivity Model – Modellierung von Laufzeitadaptivität . . . . . 119 5.4 Ablauf und Unterstützung bei der Modellierung . . . . . . . . . . . . . . 126 5.5 Zusammenfassung und Diskussion . . . . . . . . . . . . . . . . . . . . . . 128 6 Kontextsensitiver Integrationsprozess und Kompositionsinfrastruktur 132 6.1 Ein kontextsensitiver Integrationsprozess zur dynamischen Bindung von Mashup-Komponenten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 Modellinterpretation oder -transformation . . . . . . . . . . . . . . 134 6.1.2 Suche und Matching . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.3 Rangfolgebildung . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.1.4 Auswahl und Integration . . . . . . . . . . . . . . . . . . . . . . . . 145 6.2 Kompositionsinfrastruktur und Laufzeitumgebung . . . . . . . . . . . . . 146 6.2.1 Verwaltung von Komponenten und Domänenwissen . . . . . . . 146 6.2.2 Aufbau der Laufzeitumgebung (MRE) . . . . . . . . . . . . . . . . 148 6.2.3 Dynamische Integration und Verwaltung von Komponenten . . . 151 6.2.4 Kommunikationsinfrastruktur und Mediation . . . . . . . . . . . . . 155 6.3 Unterstützung von Adaption zur Laufzeit . . . . . . . . . . . . . . . . . . 162 6.3.1 Kontexterfassung, -modellierung und -verwaltung . . . . . . . . . 163 6.3.2 Ablauf der dynamischen Adaption . . . . . . . . . . . . . . . . . 168 6.3.3 Dynamischer Austausch von Komponenten . . . . . . . . . . . . 170 6.4 Zusammenfassung und Diskussion . . . . . . . . . . . . . . . . . . . . . . 174 7 Umsetzung und Validierung der Konzepte 178 7.1 Realisierung der Modellierungsmittel . . . . . . . . . . . . . . . . . . . . 179 7.1.1 Komponentenbeschreibung in XML und OWL . . . . . . . . . . . 179 7.1.2 EMF-basiertes Kompositionsmodell . . . . . . . . . . . . . . . . . . 180 7.1.3 Modelltransformationen . . . . . . . . . . . . . . . . . . . . . . . . 182 7.1.4 Modellierungswerkzeug . . . . . . . . . . . . . . . . . . . . . . . . 183 7.2 Realisierung der Kompositions- und Laufzeitumgebung . . . . . . . . . . 185 7.2.1 Semantische Verwaltung und Discovery . . . . . . . . . . . . . . 185 7.2.2 Kompositions- bzw. Laufzeitumgebungen . . . . . . . . . . . . . . 192 7.2.3 Kontextverwaltung und Adaptionsmechanismen . . . . . . . . . 201 7.3 Validierung und Diskussion anhand der Beispielszenarien . . . . . . . . . 210 7.3.1 Reiseplanung mit TravelMash . . . . . . . . . . . . . . . . . . . . . 211 7.3.2 Aktienverwaltung mit StockMash . . . . . . . . . . . . . . . . . . . 214 7.3.3 Adaptive Touristeninformation mit TravelGuide . . . . . . . . . . . 216 7.3.4 Weitere Prototypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 7.4 Zusammenfassung und Diskussion . . . . . . . . . . . . . . . . . . . . . . 219 8 Zusammenfassung, Diskussion und Ausblick 226 8.1 Zusammenfassung der Kapitel und ihrer Beiträge . . . . . . . . . . . . . 227 8.2 Diskussion und Bewertung . . . . . . . . . . . . . . . . . . . . . . . . . . 231 8.2.1 Wissenschaftliche Beiträge . . . . . . . . . . . . . . . . . . . . . . 231 8.2.2 Einschränkungen und Grenzen . . . . . . . . . . . . . . . . . . . . 236 8.3 Laufende und zukünftige Arbeiten . . . . . . . . . . . . . . . . . . . . . 238 Anhänge 242 A.1 Komponentenbeschreibung in SMCDL . . . . . . . . . . . . . . . . . . . 242 A.2 Komponentenmodell in Form der MCDO . . . . . . . . . . . . . . . . . . 243 A.3 Kompositionsmodell in EMF . . . . . . . . . . . . . . . . . . . . . . . . . . 244 Verzeichnis eigener Publikationen 246 Webreferenzen 249 Literaturverzeichnis 253
107

Direct guaranteed lower eigenvalue bounds with quasi-optimal adaptive mesh-refinement

Puttkammer, Sophie Louise 19 January 2024 (has links)
Garantierte untere Eigenwertschranken (GLB) für elliptische Eigenwertprobleme partieller Differentialgleichungen sind in der Theorie sowie in praktischen Anwendungen relevant. Auf Grund des Rayleigh-Ritz- (oder) min-max-Prinzips berechnen alle konformen Finite-Elemente-Methoden (FEM) garantierte obere Schranken. Ein Postprocessing nichtkonformer Methoden von Carstensen und Gedicke (Math. Comp., 83.290, 2014) sowie Carstensen und Gallistl (Numer. Math., 126.1, 2014) berechnet GLB. In diesen Schranken ist die maximale Netzweite ein globaler Parameter, das kann bei adaptiver Netzverfeinerung zu deutlichen Unterschätzungen führen. In einigen numerischen Beispielen versagt dieses Postprocessing für lokal verfeinerte Netze komplett. Diese Dissertation präsentiert, inspiriert von einer neuen skeletal-Methode von Carstensen, Zhai und Zhang (SIAM J. Numer. Anal., 58.1, 2020), einerseits eine modifizierte hybrid-high-order Methode (m=1) und andererseits ein allgemeines Framework für extra-stabilisierte nichtkonforme Crouzeix-Raviart (m=1) bzw. Morley (m=2) FEM. Diese neuen Methoden berechnen direkte GLB für den m-Laplace-Operator, bei denen eine leicht überprüfbare Bedingung an die maximale Netzweite garantiert, dass der k-te diskrete Eigenwert eine untere Schranke für den k-ten Dirichlet-Eigenwert ist. Diese GLB-Eigenschaft und a priori Konvergenzraten werden für jede Raumdimension etabliert. Der neu entwickelte Ansatz erlaubt adaptive Netzverfeinerung, die für optimale Konvergenzraten auch bei nichtglatten Eigenfunktionen erforderlich ist. Die Überlegenheit der neuen adaptiven FEM wird durch eine Vielzahl repräsentativer numerischer Beispiele illustriert. Für die extra-stabilisierte GLB wird bewiesen, dass sie mit optimalen Raten gegen einen einfachen Eigenwert konvergiert, indem die Axiome der Adaptivität von Carstensen, Feischl, Page und Praetorius (Comput. Math. Appl., 67.6, 2014) sowie Carstensen und Rabus (SIAM J. Numer. Anal., 55.6, 2017) verallgemeinert werden. / Guaranteed lower eigenvalue bounds (GLB) for elliptic eigenvalue problems of partial differential equation are of high relevance in theory and praxis. Due to the Rayleigh-Ritz (or) min-max principle all conforming finite element methods (FEM) provide guaranteed upper eigenvalue bounds. A post-processing for nonconforming FEM of Carstensen and Gedicke (Math. Comp., 83.290, 2014) as well as Carstensen and Gallistl (Numer. Math., 126.1,2014) computes GLB. However, the maximal mesh-size enters as a global parameter in the eigenvalue bound and may cause significant underestimation for adaptive mesh-refinement. There are numerical examples, where this post-processing on locally refined meshes fails completely. Inspired by a recent skeletal method from Carstensen, Zhai, and Zhang (SIAM J. Numer. Anal., 58.1, 2020) this thesis presents on the one hand a modified hybrid high-order method (m=1) and on the other hand a general framework for an extra-stabilized nonconforming Crouzeix-Raviart (m=1) or Morley (m=2) FEM. These novel methods compute direct GLB for the m-Laplace operator in that a specific smallness assumption on the maximal mesh-size guarantees that the computed k-th discrete eigenvalue is a lower bound for the k-th Dirichlet eigenvalue. This GLB property as well as a priori convergence rates are established in any space dimension. The novel ansatz allows for adaptive mesh-refinement necessary to recover optimal convergence rates for non-smooth eigenfunctions. Striking numerical evidence indicates the superiority of the new adaptive eigensolvers. For the extra-stabilized nonconforming methods (a generalization of) known abstract arguments entitled as the axioms of adaptivity from Carstensen, Feischl, Page, and Praetorius (Comput. Math. Appl., 67.6, 2014) as well as Carstensen and Rabus (SIAM J. Numer. Anal., 55.6, 2017) allow to prove the convergence of the GLB towards a simple eigenvalue with optimal rates.
108

Adaptive least-squares finite element method with optimal convergence rates

Bringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert. Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.

Page generated in 0.1656 seconds