• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 13
  • 3
  • Tagged with
  • 36
  • 34
  • 21
  • 13
  • 13
  • 13
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Essays on choices, beliefs and adaptive behavior

Kühne, Regina 02 February 2015 (has links)
Diese Dissertation umfasst drei Aufsätzen, die sich mit Erwartungen, Entscheidungen und deren Rückwirkung auf die Umgebung beschäftigen. Der erste Aufsatz untersucht die Binnenwanderung von Ost- nach Westdeutschland. Dabei wird der Zusammenhang von Variation in ökonomischen Disparitäten zwischen der Ursprungs- und der Zielregion und Bildungsniveau, Alter und Arbeitsmarktstatus der wandernden Bevölkerung untersucht. Mit Hilfe der SOEP Daten von 1993 bis 2011 gelangt die Untersuchung zu dem Ergebnis, dass regionale Disparitäten in Verbindung mit der Selbstselektion der Wandernden stehen. Während die Wandernden im Durchschnitt jünger und besser ausgebildet als die Bleibenden sind, verringert sich dieser Unterschied, wenn die Differentiale in den Arbeitslosenquoten zwischen den Regionen steigen. Im zweiten Aufsatz entwickle ich ein Modell zur Untersuchung von prosozialem Verhalten in Begegnungen mit Fremden. Durch das Abstrahieren von Möglichkeiten der Reputationsbildung oder des Bestraftwerdens, entfallen die wesentlichen strategischen Motive für prosoziales Verhalten. Die Entscheidung prosozial zu Handeln ist dann nicht mehr strategisch vorteilhaft sondern intrinsisch motiviert durch Altruismus und einer Neigung sich an das Verhalten anderer anzupassen. In einem zweiten Schritt untersuche ich, ob die Erkenntnisse des Modells mit dem empirisch beobachteten Verhalten übereinstimmen. Der dritte Aufsatz skizziert eine (mögliche) Verhaltensstruktur und notwendige Bedingungen auf Mikroebene, die zu den beobachteten Verhaltensunterschieden in prosozialem Verhalten zwischen dem ländlichen und städtischen Raum führen. Den Rahmen des hier entwickelten Modells bildet das bekannte Gefangenen Dilemma, das wiederholt mit zufällig zugeordneten Partnern einer großen Gesellschaft gespielt wird. Das Modell bezieht Merkmale ein, die sich häufig in realen Begegnungen wiederfinden: imperfekte Information, freiwillige Teilnahme und eine Neigung sich dem Verhalten anderer anzupassen. / This thesis consists of three essays that analyze choices and beliefs to explore how both lead to adaptive behavior. The first essay examines the positive net migration flow from the eastern to western parts of Germany. The migration decision is substantially based on expectations about future developments. With economic conditions changing substantially over the past 20 years in the eastern part of Germany, the incentives to migrate have also altered, so changing the composition of the east-to-west migrant body. This essay explores variations in economic disparities between the region of origin and region of destination, relating them to changes in the skill level, age and labor force status of the migrant population. Analyzing SOEP data from 1993-2011, the findings suggest that, with falling wage differentials, older migrants are less frequent job-to-job movers and are more likely to be non-working prior to migration. Furthermore, while migrants tend to be younger and better educated than stayers, the group of movers becomes partly less distinct from the group of stayers with respect to the skill and age composition when regional disparities in employment opportunities increase. The second and the third essay of this thesis model the decision making process in social interactions between strangers. In these situations, choices are often affected by beliefs about others behavior. In the second essay of this work, I develop a simple model of prosocial behavior for encounters between strangers. By abstracting from the possibility of reputation building and punishment between anonymous partners, I remove the main strategic motives for prosocial behavior so reducing it to a simple non-strategic decision. The principal motivation to behave prosocially is then intrinsic, based on altruism, with a taste for conforming to the behavior of others. In this way, individual decisions are conditional on the behavior of others. Emerging equilibria will then explain the occurrence of prosocial or cooperative behavior within a given society. In a second step, I analyze whether the model’s predictions are consistent with the empirical evidence on the link between beliefs and prosocial behavior using data on blood donations. The third essay outline a (possible) micro-structure and conditions which lead to the observed urban-rural differences in cooperative behavior using agent-based modeling. The model presented here adapts the familiar framework of a prisoners dilemma which is played repeatedly with randomly matched members of a large population. I introduce features that are often found in real world interactions: imperfect information, voluntary participation and a taste for conforming to majority behavior. In this analysis, peoples beliefs about the level of cooperation in the population and their resulting behavior are determined endogenously. Both are governed principally by the experience that they derive from interactions. I present results of an agentbased simulation in order to study the emerging dynamic relationships, to examine how cooperative behavior evolves over time under different circumstances, and to determine how urban-rural differences in behavior emerge. The factors that give rise to rural-urban differences are heterogeneity in individual loss aversion or risk taking, and limited migration possibilities between rural and urban areas.
32

A modeling perspective on Candida albicans' interactions with its human host

Tyc, Katarzyna Marta 25 February 2013 (has links)
Ansätze der mathematischen Modellierung ermöglichen die Analyse der dynamischen Eigenschaften biologischer Systeme und den Einfluß spezifischer Funktionen. Das Ziel dieser Arbeit ist es verschiedene Aspekte der Interaktionen zwischen Wirt und Krankheitserregern zu analysieren. In Kapitel 3 diskutiere ich ein Modell der zellulären Antwort auf Hitzeschockstress im Pilz Candida albicans. Das Modell in Form von gewöhnlichen Differentialgleichungen erörtert mehrere Aspekte des Systems, wie z.B. die erworbene Thermotoleranz und eine perfekte Anpassung an die Beanspruchung durch die Temperaturwechsel. Im Rahmen der Interaktionen zwischen Wirt und Krankheitserreger ist die Studie relevant, da die Entwicklung von Fieber eine primäre Antwort des Organismus auf eine Pilzinvasion ist. Die Dynamik von C. albicans Virulenzfaktoren, wie z.B. der Übergang vom Hefe- zum Hyphenstadium, und die Abwehrmechanismen des Wirts bestimmen den Zustand des Pilzes, d.h. ob er als Kommensale oder Krankheitserreger vorkommt. Mit Hilfe einer agenten-basierten Modellierungstechnik, in Kapitel 4, untersuche ich die Auswirkungen potenzieller medikamentöser Behandlungen von Pilzpopulationen und ihre Effektivität. In Kapitel 5 analysiere ich die Dynamik der C. albicans Hefe- und Hyphenpopulationen unter der Annahme, das zwischen den Individuen beider Populationen paarweise Wechselwirkungen bestehen, die zusätzlich von Fresszellen und Ernährungsbedingungen beeinflusst werden. Das erste Modell basiert auf den Prinzipien der Spieltheorie. Aus dieser Studie lässt sich die Hypothese aufstellen, dass sich im Verlauf der Infektion die evolutionäre Spieldynamik von der Snowdrift Spieldynamik in Richtung Gefangendilemma verschiebt. Im zweiten Modell untersuche ich die Umschaltraten zwischen Hefen und Hyphen. Das Modell zeigt, dass in Pilzpopulationen die Ausprägung verschiedener Phänotypen der Grund für die erhöhte Überlebensfähigkeit der Population sein könnte. / Mathematical modeling approaches facilitate the analysis of dynamic properties of mechanisms triggering specific functions of biological systems. Through this work I aim to shed light on various aspects of host-pathogen interactions. In Chapter 3, I discuss a model of heat shock stress response activated in the fungus Candida albicans. The model in form of ordinary differential equations reveals several features of the system, such as acquired thermotolerance and a perfect molecular adaptation to the thermal insult. The study is relevant in the context of host-pathogen interactions since development of fever is a primary host response to fungal invasion. The dynamics of C. albicans virulence factors, e.g., yeast to hypha transition, and defense mechanisms of the host determine the state of the fungi, i.e. whether to act as a commensal or as a foe. Through application of an agent-based modeling technique, in Chapter 4, I investigate effects of potential drug treatments on fungal populations and their effectivity in the fungal clearance. In Chapter 5, I analyze the dynamics of candida yeast and hyphal populations assuming pairwise interactions influenced by phagocytic cells and nutritional conditions. The first model is based on game theory principles. From the study it can be hypothesized that during the course of infection the evolutionary game dynamics shift from Snowdrift game dynamics toward Prisoners’ dilemma. In the second model, I examine switching rates between yeast and hypha. The model reveals that phenotypic variations may occur in order to increase the fitness of the population.
33

Heuristic Decision Making in World Earth Models

Kolb, Jakob J. 09 December 2020 (has links)
Die Dynamik des Erdsystems im Anthropozän wird durch eine zunehmende Verschränkung von Prozessen auf physikalischer und ökologischer sowie auf sozioökonomischer Ebene bestimmt. Wenn Modelle als Entscheidungshilfen in diesem Umfeld nützlich sein sollen, müssen sie diese komplexen Rückkopplungen ebenso berücksichtigen wie die inhärent emergenten und heterogenen Qualitäten gesellschaftlicher Dynamik. Diese Arbeit schlägt vor, den Menschen als begrenzten rationalen Entscheidungsträger zu modellieren, die (soziales) Lernen nutzen, um Entscheidungsheuristiken zu erwerben, die in einer gegebenen Umgebung gut funktionieren. Dies wird in einem Wirtschaftsmodell mit zwei Sektoren veranschaulicht, in dem ein Sektor eine fossile Ressource für die wirtschaftliche Produktion verwendet und die Haushalte ihre Investitionsentscheidungen in der zuvor beschriebenen Weise treffen. In der Modellökonomie können individuelle Entscheidungsfindung und soziale Dynamik die CO 2 Emissionen nicht auf ein Niveau begrenzen, das eine globale Erwärmung über 1,5◦C verhindert. Eine Kombination aus kollektivem Handeln und koordinierter öffentlicher Politik allerdings kann. Eine Folgestudie analysiert das soziale Lernen der individuellen Sparquoten in einer Ein-Sektor-Wirtschaft. Hier nähert sich die aggregierte Sparquote der eines intertemporär optimierenden allwissenden Sozialen Planers an, wenn die soziale Interaktionsrate ausreichend niedrig ist. Gleichzeitig führt eine abnehmende Interaktionsrate einem plötzlichen Übergangs von einer unimodalen zu einer stark bimodalen Verteilung des Vermögens unter den Haushalten. Schließlich schlägt diese Arbeit eine Kombination verschiedener Methoden vor, die zur Ableitung analytischer Näherungen für solche vernetzten heterogenen Agentenmodelle verwendet werden können, bei denen Interaktionen zwischen Agenten sowohl auf individueller als auch auf aggregierter Ebene auftreten. / The trajectory of the Earth system in the Anthropocene is governed by an increasing entanglement of processes on a physical and ecological as well as on a socio-economic level. If models are to be useful as decision support tools in this environment, they ought acknowledge these complex feedback loops as well as the inherently emergent and heterogeneous qualities of societal dynamics. This thesis improves the capability of social-ecological and socio-economic models to picture emergent social phenomena and uses and extends techniques from dynamical systems theory and statistical physics for their analysis. It proposes to model humans as bounded rational decision makers that use (social) learning to acquire decision heuristics that function well in a given environment. This is illustrated in a two sector economic model in which one sector uses a fossil resource for economic production and households make their investment decisions in the previously described way. In the model economy individual decision making and social dynamics can not limit CO 2 emissions to a level that prevents global warming above 1.5 ◦ C. However, a combination of collective action and coordinated public policy actually can. A follow up study analyzes social learning of individual savings rates in a one sector investment economy. Here, the aggregate savings rate in the economy approaches that of an intertemporarily optimizing omniscient social planner if the social interaction rate is sufficiently low. Sumultaneously, a decreasing interaction rate leads to emergent inequality in the model in the form of a sudden transition from a unimodal to a strongly bimodal distribution of wealth among households. Finally, this thesis proposes a combination of different moment closure techniques that can be used to derive analytic approximations for such networked heterogeneous agent models where interactions between agents occur on an individual as well as on an aggregated level.
34

Modelling closed-loop receptive fields: On the formation and utility of receptive fields in closed-loop behavioural systems / Entwicklung rezeptiver Felder in autonom handelnden, rückgekoppelten Systemen

Kulvicius, Tomas 20 April 2010 (has links)
No description available.
35

Nonlinear dynamics and fluctuations in biological systems / Nichtlineare Dynamik und Fluktuationen in biologischen Systemen

Friedrich, Benjamin M. 26 March 2018 (has links) (PDF)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden). / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.
36

Nonlinear dynamics and fluctuations in biological systems

Friedrich, Benjamin M. 11 December 2017 (has links)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden).:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66 / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66

Page generated in 0.0784 seconds