• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 28
  • 20
  • 19
  • 14
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 298
  • 47
  • 43
  • 34
  • 23
  • 23
  • 22
  • 22
  • 22
  • 19
  • 18
  • 17
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Modeling and mathematical analysis of the dynamics of soil organic carbon / Modélisation et analyse mathématique de la dynamique du carbone organique dans le sol

Hammoudi, Alaaeddine 08 December 2015 (has links)
La compréhension du cycle de la matière organique du sol (MOS) est un outil majeur dans la lutte contre le réchauffement climatique, la préservation de la biodiversité ainsi que dans la consolidation de la sécurité alimentaire. Dans ce contexte, cette thèse porte sur la modélisation et l'analyse mathématique de modèles de la dynamique du carbone organique dans le sol.Dans le chapitre 2, nous avons étudié la robustesse et les propriétés mathématiques d'un modèle non linéaire (MOMOS). Nous avons montré que si les données sont périodiques nous obtenons l'existence d'une solution périodique attractive. Le chapitre3 est consacré à la validation mathématique d'un modèle spatialisé basé sur les équations de MOMOS, auxquels nous avons ajouté des opérateurs de diffusion et de transport. L'effet de l'hétérogénéité spatiale sur ce modèle est étudié dans le chapitre4 en utilisant des techniques d'homogénéisation. Suivant la méthodologie de Bosattaet Agren, nous dérivons un autre modèle à qualité continue, qui prend en compte l'effet de l'âge sur la décomposition de la MOS. Le chapitre 5 contient la validation mathématique et expérimentale du modèle. Enfin, nous considérons dans les chapitres6 et 7, un modèle incluant l'effet de la chemotaxie. Nous montrons l'existence, la positivité et l'unicité des solutions dans des domaines suffisamment réguliers de dimension inférieure ou égale à 3. / Understanding the soil organic matter (SOM) cycle is a major tool in the effort toreduce global warming, to preserve biodiversity and to improve food safety strategies.In this context, this thesis is about modelling and mathematical analysis of thedynamics of the organic carbon in soil.In chapter 2, we validate mathematically a nonlinear soil organic carbon model(MOMOS) and we prove that, if data is periodic, then there is a unique attractiveperiodic solution. In chapter 3, we focus on the mathematical validation of a spatialmodel derived from MOMOS and where we used diffusion and transport operators.We prove also the existence of a periodic solution. In addition, the effect of soilheterogeneities on the model is studied in chapter 4 using homogenization techniques.Moreover, following the Bosatta and Agren methodology, we derive a continuousquality model taking in consideration the effect of age on the quality of SOM. Wevalidate the model mathematically and experimentally in chapter 5. Finally, weconsider in chapters 6 and 7 another model that takes into account the chemotaxismovement of soil microorganisms. We prove mainly the existence and uniqueness of apositive solution in a regular spatial domain of dimension less or equal to 3.
272

Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model

Spiller, Sabrina, Wippold, Tom, Bellmann-Sickert, Kathrin, Franz, Sandra, Saalbach, Anja, Anderegg, Ulf, Beck-Sickinger, Annette G. 08 May 2023 (has links)
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells. CXCL12 variants with either non-releasable or protease-mediated-release properties were designed and compared. Whereas CXCL12 was stabilized at the N-terminus for protease resistance, a C-terminal linker was designed that allowed for specific cleavage-mediated release by matrix metalloproteinase 9 and 2, since both enzymes are frequently found in wound fluid. These surface adhesive CXCL12 derivatives were produced by expressed protein ligation. Functionality of the modified chemokines was assessed by inositol phosphate accumulation and cell migration assays. Increased migration of keratinocytes and primary mesenchymal stem cells was demonstrated. Immobilization and release were studied for bioresorbable PCL-co-LC scaffolds, and accelerated wound closure was demonstrated in an ex vivo wound healing assay on porcine skin grafts. After 24 h, a significantly improved CXCL12-specific growth stimulation of the epithelial tips was already observed. The presented data display a successful application of protein-coated biomaterials for skin regeneration.
273

Charakterisierung des Proteoms von Ralstonia eutropha H16 unter lithoautotrophen und anaeroben Bedingungen

Kohlmann, Yvonne 18 June 2015 (has links)
Das Biopolymer-produzierende Knallgasbakterium Ralstonia eutropha H16 gilt mit seinem außergewöhnlichen Stoffwechsel als vielversprechender Produktionsstamm für die weiße Biotechnologie. Es wächst auf einer Vielzahl organischer Substrate sowie chemolithoautotroph mit H2 und CO2 als einzige Energie- bzw. Kohlenstoffquelle. Unter anaeroben Bedingungen ist es zudem zur Denitrifikation befähigt. In dieser Arbeit wurde das Proteinprofil von R. eutropha unter chemolithoautotrophen sowie anaeroben Bedingungen mittels GeLC-MS/MS untersucht. Beide Proteomstudien offenbarten, dass die Nutzung unterschiedlicher Elektronendonoren bzw. -akzeptoren mit zahlreichen Veränderungen im Proteinbestand der Zellen einherging. Hierbei waren neben Proteinen metabolischer und Transportprozesse auch jene der Zellbewegung betroffen. Die Ergebnisse stellen im Vergleich zu vorangegangenen Studien den bisher umfassendsten Überblick zum Proteinbestand beim H2-basierten sowie anaeroben Wachstum in R. eutropha dar. Von besonderer Bedeutung war dabei das Einbinden der Analyse der Membran als Ort wichtiger Energie- und Transportprozesse. Besonderes Interesse galt einem unter H2/CO2-Bedingungen abundanten Zweikomponentensystem. Sequenzvergleiche zeigten Ähnlichkeit zum Regulationssystem der Katabolitrepression des Biphenylabbaus in Acidovorax sp. KKS102. Die Deletion des Response-Regulator-Gens führte zu vielfältigen Wachstumseffekten auf Substraten wie Fructose, Glycerin sowie auf H2/CO2. Der pleiotrope Phänotyp sowie die Ergebnisse von Genexpressionsstudien und der Suche nach Regulator-Bindestellen lassen eine globale Rolle des Systems im Energie- und/oder Kohlenstoffmetabolismus von R. eutropha H16 annehmen. Histidin-Kinase und Response Regulator wurden in GloS bzw. GloR umbenannt. Die vorliegende Arbeit zeigt eindrucksvoll das Potential der Proteomik als Teil der funktionellen Genomik für den Anstoß neuer Forschungsansätze zur Evaluierung des biotechnologischen Potentials von Mikroorganismen. / Due to its remarkable metabolism the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16 is ranked as a promising production strain for white biotechnology. It grows on a wide range of organic substrates as well as lithoautotrophically on H2 and CO2 as sole energy and carbon source, respectively. Under anaerobic conditions it thrives by denitrification. This thesis focused on characterizing the protein profiles of lithoautotrophically and anaerobically grown R. eutropha cells. Proteome analyses revealed an extensive protein repertoire adapting the organism to alternative electron donors and acceptors, respectively. Changes concerned proteins involved in metabolic and transport processes as well as in cell movement. Compared to previous studies the results reported here offer the most comprehensive proteomic survey regarding the H2-based as well as anaerobic lifestyle of R. eutropha so far. In this context analyzing the cell membrane as a place for a number of energy, transport and signal transduction processes was of particular importance. Special interest aroused the identification of a two-component system upregulated on H2/CO2. Sequence analysis offered high similarity to the regulatory system for catabolite control of biphenyl degradation in Acidovorax sp. KKS102. Deletion of the response regulator gene led to versatile growth effects on substrates such as fructose and glycerol as well as H2/CO2. This pleiotrophic phenotype as well as the results of gene expression studies and the search for regulator binding sites suggests that the two-component system is a global player in energy and/or carbon metabolism in R. eutropha and possibly other bacteria. Thus, histidine kinase and response regulator have been renamed GloS/R. Since their characterization was initiated by proteomic data this study impressively elucidates the power of functional genomics in terms of revealing new research approaches to evaluate the biotechnological use of microbes.
274

Molecular and cellular Mechanisms controlling Primordial Germ Cell Migration in Zebrafish / Molekulare und zelluläre Mechanismen, welche die Primordiale Keimzell-Migration im Zebrafisch kontrollieren.

Blaser, Heiko 24 May 2006 (has links)
No description available.
275

Nonlinear dynamics and fluctuations in biological systems / Nichtlineare Dynamik und Fluktuationen in biologischen Systemen

Friedrich, Benjamin M. 26 March 2018 (has links) (PDF)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden). / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.
276

Nonlinear dynamics and fluctuations in biological systems

Friedrich, Benjamin M. 11 December 2017 (has links)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden).:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66 / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
277

Mathematical modelling and analysis of aspects of bacterial motility

Rosser, Gabriel A. January 2012 (has links)
The motile behaviour of bacteria underlies many important aspects of their actions, including pathogenicity, foraging efficiency, and ability to form biofilms. In this thesis, we apply mathematical modelling and analysis to various aspects of the planktonic motility of flagellated bacteria, guided by experimental observations. We use data obtained by tracking free-swimming Rhodobacter sphaeroides under a microscope, taking advantage of the availability of a large dataset acquired using a recently developed, high-throughput protocol. A novel analysis method using a hidden Markov model for the identification of reorientation phases in the tracks is described. This is assessed and compared with an established method using a computational simulation study, which shows that the new method has a reduced error rate and less systematic bias. We proceed to apply the novel analysis method to experimental tracks, demonstrating that we are able to successfully identify reorientations and record the angle changes of each reorientation phase. The analysis pipeline developed here is an important proof of concept, demonstrating a rapid and cost-effective protocol for the investigation of myriad aspects of the motility of microorganisms. In addition, we use mathematical modelling and computational simulations to investigate the effect that the microscope sampling rate has on the observed tracking data. This is an important, but often overlooked aspect of experimental design, which affects the observed data in a complex manner. Finally, we examine the role of rotational diffusion in bacterial motility, testing various models against the analysed data. This provides strong evidence that R. sphaeroides undergoes some form of active reorientation, in contrast to the mainstream belief that the process is passive.
278

Papel do receptor toll-like 9 na falência de migração dos neutrófilos na sepse / The role of toll-like receptor 9 on failure of neutrophil migration during sepsis.

Trevelin, Silvia Cellone 20 December 2010 (has links)
O recrutamento de neutrófilos para o sítio da infecção é um evento crucial para o combate aos microrganismos e sobrevivência na sepse. A migração destes polimorfonucleares é dirigida através de um gradiente quimiotático por meio do reconhecimento de quimiocinas por receptores acoplados a proteína G (GPCRs), os quais são regulados por quinases específicas (GRKs). Estudos prévios demonstraram que na sepse ocorre uma falência na migração de neutrófilos para o foco infeccioso em função da dessensibilização de receptores quimiotáticos via GRKs induzida pela ativação de receptores toll-like (TLRs), TLR2 e TLR4. Apesar de a ausência de TLR9 em células dendriticas ter sido relacionada a maior sobrevivência de camundongos sépticos, o papel do TLR9 atuando diretamente em neutrófilos não foi avaliado. Objetivando preencher esta lacuna, propôs-se avaliar o papel direto de TLR9 na falência de migração de neutrófilos na sepse. Os camundongos TLR9-/- apresentaram maior sobrevivência a sepse polimicrobiana avaliada por meio do modelo de ligadura e perfuração do ceco (CLP). A deficiência de TLR9 também acarretou em aumento na migração de neutrófilos para o foco da infecção, menor seqüestro de neutrófilos no pulmão, bem como, menor número de bactérias no lavado peritoneal e sangue. A ativação de TLR9 por oligodeoxinucleotídeo contendo o dinucleotídeo CpG não metilado (ODN CpG) nos neutrófilos reduziu a quimiotaxia destes em direção a quimiocina CXCL2 e expressão do receptor quimiotático CXCR2. Além disso, neutrófilos estimulados com ODN CpG apresentaram aumento na expressão da quinase tipo 2 relacionada a receptores acoplados a proteína G (GRK2). Dessa forma, a ativação de TLR9 em neutrófilos circulantes no sangue é prejudicial na sepse por reduzir a quimiotaxia destes para o foco da infecção ao induzir a dessensibilização de CXCR2 via GRK2. / The recruitment of neutrophils to the site of infection is a crucial event for combating the microorganisms and survival on sepsis. The neutrophil migration is directed by a chemotactic gradient through the recognition of chemokines by G protein-coupled receptors (GPCRs), which are regulated by specific kinases (GRKs). Previous studies have shown a failure of neutrophil migration into infectious focus on sepsis due to chemotactic receptor desensitization via GRKs induced by activation of toll- like receptors (TLRs), TLR2 and TLR4. Despite the absence of activation of TLR9 in dendritic cells have been related to increase survival of septic mice, the role of TLR9 acting directly on neutrophils was not evaluated. We proposed to verify the direct role of TLR9 in the failure of neutrophil migration on sepsis. The TLR9 knockout mice (TLR9-/-) showed high survival to polymicrobial sepsis using cecal ligation and puncture model (CLP). TLR9-/- mice had high neutrophil migration to the focus of infection, low neutrophil sequestration in the lung, as well as, few bacteria in the peritoneal exudates and blood. The activation of TLR9 by oligodeoxinucleotide containing unmethylated dinucleotide CpG (CpG ODN) in neutrophils also reduced chemotaxis toward CXCL2 and the expression of chemokine receptor CXCR2. In addition, neutrophils stimulated with CpG ODN showed increased expression of kinase-related G protein-coupled receptor type 2 (GRK2). Thus, the activation of TLR9 in blood circulating neutrophils is harmful on sepsis by reducing their chemotaxis into the site of the infection by inducing CXCR2 desensitization via GRK2.
279

Expressão de receptores toll-like 2 e função quimiotáxica de neutrófilos na doença de Behçet / Expression of toll-like receptor 2 and neutrophil chemotaxis in Behçet´s disease

Neves, Fabrício de Souza 11 May 2009 (has links)
A doença de Behçet tem sua fisiopatologia caracterizada por hiperatividade neutrofílica, particularmente em relação à quimiotaxia, e períodos de atividade da doença podem ser desencadeados por exposição a estreptococos. Uma vez que células do sistema imune inato são ativadas pelo ácido lipoteicoico (LTA) de bactérias gram-positivas via receptor toll-like (TLR) 2 e CD14, cujas expressões são reguladas pelos fatores estimulantes de colônias de granulócitos (G-CSF) e granulócitos-macrófagos (GM-CSF), o objetivo principal deste estudo foi determinar se há hiperexpressão de TLR2 em neutrófilos de DB ativa e se a quimiotaxia de polimorfonucleares (PMN) neutrófilos na DB poderia ser hiperestimulada pelo LTA. Além do TLR2, foram medidas as expressões de TLR4, CD14, CD114 (receptor de G-CSF) e CD116 (receptor de GM-CSF) nos neutrófilos e nos monócitos de pacientes com doença de Behçet (DB), as concentrações séricas de CD14 solúvel (CD14s) e as respostas quimiotáxicas dos PMNs de DB sob diferentes estímulos. A expressão dos receptores foi medida pela citometria de fluxo, as concentrações séricas por ELISA e as respostas quimiotáxicas foram avaliadas em câmara de Boyden. Nos PMNs, os receptores foram igualmente expressos nos dois grupos e, estimulados com LTA, suas respostas quimiotáxicas também foram similares. Somente à incubação com plasma os PMNs de DB desenvolveram hiperquimiotaxia em relação aos PMNs controles. A expressão do TLR2 foi maior em monócitos de DB em relação aos controles, e a concentração de CD14s sérica, de origem monocitária, foi maior nos pacientes com DB ativa. Em conjunto, os resultados demonstram que PMNs de DB, isoladamente, não reagem exacerbadamente ao LTA, e suas respostas migratórias são estritamente dependentes de fatores estimulantes solúveis. / Expressions of toll-like receptor (TLR) 2, TLR4, CD14, CD114 and CD116 were assessed on polymorphonuclear (PMN) neutrophils and monocytes of patients with Behçets disease (BD). PMN chemotactic responses under different stimulations were also measured. The objective was to determine if BD PMN chemotaxis may be overstimulated by lipoteichoic acid (LTA) from gram-positive bacteria. Receptor expressions were measured by flow cytometry and PMN chemotaxis was assessed in a Boyden chamber. Only TLR2 expression was higher on monocytes of the BD group than in control group. On PMNs, however, TLR2 expression was similar in both groups and, when stimulated with LTA, BD PMN cells showed chemotactic responses similar to the controls. These cells only exhibited increased chemotaxis when incubated with plasma. In conclusion, isolated BD PMN did not overreact to LTA, and its hyperchemotaxis is strictly dependent on soluble stimulating factors
280

Fonctionnalisation de substrats pour l'étude des phénotypes de migration cellulaire

Roy, Joannie 12 1900 (has links)
No description available.

Page generated in 0.0531 seconds