• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 1
  • Tagged with
  • 17
  • 17
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Metrical Problems in Minkowski Geometry

Fankhänel, Andreas 07 June 2012 (has links)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes. In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors. In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms. Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.:1 Introduction 2 On angular measures 3 Types of convex quadrilaterals 4 On conic sections
12

A Framework for Modeling Irreversible Processes Based on the Casimir Companion: Time-Optimal Equilibration of a Collection of Harmonic Oscillators: A Geometrical Approach Illustrating the Framework

Boldt, Frank 11 June 2014 (has links)
Thermodynamic processes in finite time are in general irreversible. But there are chances to avoid irreversibility. For instance, there are canonical ensembles of special quantum systems with a given probability distribution describing the likelihood to find the system at time t=0 in a particular state with energy E_i(0), which can be controlled in a specific way, such that the initial probability distribution is recovered at the end of the process (t=T), but the state energies did change, hence E_i(0) is not equal to E_i(T). This allows to change thermodynamic quantities (expectation values) adiabatically, reversibly and in finite time. Such special processes are called Shortcuts to Adiabaticity. The presented thesis analyzes the origin of these shortcuts utilizing special Hamiltonian systems with dynamical algebra. Their main feature is to provide canonical invariance, which means a canonical ensemble stays canonical under Hamiltonian dynamics. This invariance carried by the dynamical algebra will be discussed using Lie group theory. In addition, the persistence of the dynamical algebra with respect to calculating expectation values will be deduced. This allows to benefit from all intrinsic symmetries within the discussion of ensemble trajectories. In consequence, these trajectories will evolve under Hamiltonian dynamics on a specific manifold given by the so-called Casimir companion. In addition, the deformation of this manifold due to non-Hamiltonian (dissipative) dynamics will be discussed, which allows to present a framework for modeling irreversible processes based on Hamiltonian systems with dynamical algebra. An application of this framework based on the parametric harmonic oscillator will be presented by determining time-optimal controls for transitions between two equilibrium as well as between non-equilibrium and equilibrium states. The latter one will lead to time-optimal equilibration strategies for a statistical ensemble of parametric harmonic oscillators. / Thermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird.
13

A Framework for Modeling Irreversible Processes Based on the Casimir Companion

Boldt, Frank 23 June 2014 (has links) (PDF)
Thermodynamic processes in finite time are in general irreversible. But there are chances to avoid irreversibility. For instance, there are canonical ensembles of special quantum systems with a given probability distribution describing the likelihood to find the system at time t=0 in a particular state with energy E_i(0), which can be controlled in a specific way, such that the initial probability distribution is recovered at the end of the process (t=T), but the state energies did change, hence E_i(0) is not equal to E_i(T). This allows to change thermodynamic quantities (expectation values) adiabatically, reversibly and in finite time. Such special processes are called Shortcuts to Adiabaticity. The presented thesis analyzes the origin of these shortcuts utilizing special Hamiltonian systems with dynamical algebra. Their main feature is to provide canonical invariance, which means a canonical ensemble stays canonical under Hamiltonian dynamics. This invariance carried by the dynamical algebra will be discussed using Lie group theory. In addition, the persistence of the dynamical algebra with respect to calculating expectation values will be deduced. This allows to benefit from all intrinsic symmetries within the discussion of ensemble trajectories. In consequence, these trajectories will evolve under Hamiltonian dynamics on a specific manifold given by the so-called Casimir companion. In addition, the deformation of this manifold due to non-Hamiltonian (dissipative) dynamics will be discussed, which allows to present a framework for modeling irreversible processes based on Hamiltonian systems with dynamical algebra. An application of this framework based on the parametric harmonic oscillator will be presented by determining time-optimal controls for transitions between two equilibrium as well as between non-equilibrium and equilibrium states. The latter one will lead to time-optimal equilibration strategies for a statistical ensemble of parametric harmonic oscillators. / Thermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird.
14

Spectral invariants for polygons and orbisurfaces

Uçar, Eren 17 October 2017 (has links)
In dieser Arbeit beschäftigen wir uns mit Spektralinvarianten von Polygonen und geschlossenen Orbiflächen konstanter Gaußkrümmung. Unsere Methode ist es jeweils den Wärmeleitungskern und die asymptotische Entwicklung der Wärmespur zu untersuchen. Als erstes untersuchen wir hyperbolische Polygone, d.h. relativ kompakte Gebiete in der hyperbolischen Ebene mit stückweise geodätischem Rand. Wir berechnen die asymptotische Entwicklung der Wärmespur bezüglich des Dirichlet-Laplace Operators eines beliebigen hyperbolischen Polygons, und wir erhalten explizite Formeln für alle Wärmeinvarianten. Analoge Resultate für euklidische und sphärische Polygone waren vorher bekannt. Wir vereinheitlichen diese Resultate und leiten die Wärmeinvarianten für beliebige Polygone her, d.h. für relativ kompakte Gebiete mit stückweise geodätischem Rand in einer vollständigen Riemann'schen Mannigfaltigkeit konstanter Gaußkrümmung. Es stellt sich heraus, dass die Wärmeinvarianten viele Informationen über ein Polygon liefern, falls die Krümmung nicht verschwindet. Zum Beispiel sind dann die Multimenge aller echten Winkel (d.h. derjenigen Winkel die ungleich Pi sind) und die Euler-Charakteristik eines Polygons Spektralinvarianten. Außerdem berechnen wir die asymptotische Entwicklung der Wärmespur von geschlossenen Riemann'schen Orbiflächen konstanter Krümmung und erhalten explizite Formeln für alle Wärmeinvarianten. Falls die Krümmung nicht verschwindet, so kann man interessante Informationen aus den Wärmeinvarianten über die Topologie und die singuläre Menge einer Orbifläche ermitteln. / In this thesis we deal with spectral invariants for polygons and closed orbisurfaces of constant Gaussian curvature. In each case our method is to study the heat kernel and the asymptotic expansion of the heat trace. First, we investigate hyperbolic polygons, i.e. relatively compact domains in the hyperbolic plane with piecewise geodesic boundary. We compute the asymptotic expansion of the heat trace associated to the Dirichlet Laplacian of any hyperbolic polygon, and we obtain explicit formulas for all heat invariants. Analogous results for Euclidean and spherical polygons were known before. We unify these results and deduce the heat invariants for arbitrary polygons, i.e. for relatively compact domains with piecewise geodesic boundary contained in a complete Riemannian manifold of constant Gaussian curvature. It turns out that the heat invariants provide much information about a polygon, if the curvature does not vanish. For example, then the multiset of all real angles (i.e. those which are not equal to pi) and the Euler characteristic of a polygon are spectral invariants. Furthermore, we compute the asymptotic expansion of the heat trace for any closed Riemannian orbisurface of constant curvature, and obtain explicit formulas for all heat invariants. If the curvature does not vanish, then it is possible to detect interesting information about the topology and the singular set of an orbisurface from the heat invariants.
15

Variational and Ergodic Methods for Stochastic Differential Equations Driven by Lévy Processes

Gairing, Jan Martin 03 April 2018 (has links)
Diese Dissertation untersucht Aspekte des Zusammenspiels von ergodischem Langzeitver- halten und der Glättungseigenschaft dynamischer Systeme, die von stochastischen Differen- tialgleichungen (SDEs) mit Sprüngen erzeugt sind. Im Speziellen werden SDEs getrieben von Lévy-Prozessen und der Marcusschen kanonischen Gleichung untersucht. Ein vari- ationeller Ansatz für den Malliavin-Kalkül liefert eine partielle Integration, sodass eine Variation im Raum in eine Variation im Wahrscheinlichkeitsmaß überführt werden kann. Damit lässt sich die starke Feller-Eigenschaft und die Existenz glatter Dichten der zuge- hörigen Markov-Halbgruppe aus einer nichtstandard Elliptizitätsbedingung an eine Kom- bination aus Gaußscher und Sprung-Kovarianz ableiten. Resultate für Sprungdiffusionen auf Untermannigfaltigkeiten werden aus dem umgebenden Euklidischen Raum hergeleitet. Diese Resultate werden dann auf zufällige dynamische Systeme angewandt, die von lin- earen stochastischen Differentialgleichungen erzeugt sind. Ruelles Integrierbarkeitsbedin- gung entspricht einer Integrierbarkeitsbedingung an das Lévy-Maß und gewährleistet die Gültigkeit von Oseledets multiplikativem Ergodentheorem. Damit folgt die Existenz eines Lyapunov-Spektrums. Schließlich wird der top Lyapunov-Exponent über eine Formel der Art von Furstenberg–Khasminsikii als ein ergodisches Mittel der infinitesimalen Wachs- tumsrate über die Einheitssphäre dargestellt. / The present thesis investigates certain aspects of the interplay between the ergodic long time behavior and the smoothing property of dynamical systems generated by stochastic differential equations (SDEs) with jumps, in particular SDEs driven by Lévy processes and the Marcus’ canonical equation. A variational approach to the Malliavin calculus generates an integration-by-parts formula that allows to transfer spatial variation to variation in the probability measure. The strong Feller property of the associated Markov semigroup and the existence of smooth transition densities are deduced from a non-standard ellipticity condition on a combination of the Gaussian and a jump covariance. Similar results on submanifolds are inferred from the ambient Euclidean space. These results are then applied to random dynamical systems generated by linear stochas- tic differential equations. Ruelle’s integrability condition translates into an integrability condition for the Lévy measure and ensures the validity of the multiplicative ergodic theo- rem (MET) of Oseledets. Hence the exponential growth rate is governed by the Lyapunov spectrum. Finally the top Lyapunov exponent is represented by a formula of Furstenberg– Khasminskii–type as an ergodic average of the infinitesimal growth rate over the unit sphere.
16

Metrical Problems in Minkowski Geometry

Fankhänel, Andreas 19 October 2012 (has links) (PDF)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes. In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors. In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms. Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.
17

Renormalization of Gauge Theories and Gravity

Prinz, David Nicolas 22 November 2022 (has links)
Wir studieren die perturbative Quantisierung von Eichtheorien und Gravitation. Unsere Untersuchungen beginnen mit der Geometrie von Raumzeiten und Teilchenfeldern. Danach diskutieren wir die verschiedenen Lagrangedichten in der Kopplung der (effektiven) Quanten-Allgemeinen-Relativitätstheorie zum Standardmodell. Desweiteren studieren wir den zugehörigen BRST-Doppelkomplex von Diffeomorphismen und Eichtransformationen. Danach wenden wir Connes--Kreimer-Renormierungstheorie auf die perturbative Feynmangraph-Entwicklung an: In dieser Formulierung werden Subdivergenzen mittels des Koprodukts einer Hopfalgebra strukturiert und die Renormierungsoperation mittels einer algebraischen Birkhoff-Zerlegung beschrieben. Dafür verallgemeinern und verbessern wir bekannte Koprodukt-Identitäten und ein Theorem von van Suijlekom (2007), das (verallgemeinerte) Eichsymmetrien mit Hopfidealen verbindet. Insbesondere lässt sich unsere Verallgemeinerung auf Gravitation anwenden, wie von Kreimer (2008) vorgeschlagen. Darüberhinaus sind unsere Resultate anwendbar auf Theorien mit mehreren Vertexresuiden, Kopplungskonstanten und ebensolchen mit einer transversalen Struktur. Zusätzlich zeigen wir Kriterien für die Kompatibilität dieser Hopfideale mit Feynmanregeln und dem gewählten Renormierungsschema. Als nächsten Schritt berechnen wir die entsprechenden Gravitations-Materie Feynmanregeln für alle Vertexvalenzen und mit einem allgemeinen Eichparameter. Danach listen wir alle Propagator- und dreivalenten Vertex-Feynmanregeln auf und berechnen die entsprechenden Kürzungsidentitäten. Abschließend stellen wir geplante Folgeprojekte vor: Diese schließen eine Verallgemeinerung von Wigners Klassifikation von Elementarteilchen für linearisierte Gravitation ein, ebenso wie die Darstellung von Kürzungsidentitäten mittels Feynmangraph-Kohomologie und eine Untersuchung der Äquivalenz verschiedener Definitionen des Gravitonfeldes. Insbesondere argumentieren wir, dass das richtige Setup um perturbative BRST-Kohomologie zu studieren eine differentialgraduierte Hopfalgebra ist. / We study the perturbative quantization of gauge theories and gravity. Our investigations start with the geometry of spacetimes and particle fields. Then we discuss the various Lagrange densities of (effective) Quantum General Relativity coupled to the Standard Model. In addition, we study the corresponding BRST double complex of diffeomorphisms and gauge transformations. Next we apply Connes--Kreimer renormalization theory to the perturbative Feynman graph expansion: In this framework subdivergences are organized via the coproduct of a Hopf algebra and the renormalization operation is described as an algebraic Birkhoff decomposition. To this end, we generalize and improve known coproduct identities and a theorem of van Suijlekom (2007) that relates (generalized) gauge symmetries to Hopf ideals. In particular, our generalization applies to gravity, as was suggested by Kreimer (2008). In addition, our results are applicable to theories with multiple vertex residues, coupling constants and such with a transversal structure. Additionally, we also provide criteria for the compatibility of these Hopf ideals with Feynman rules and the chosen renormalization scheme. We proceed by calculating the corresponding gravity-matter Feynman rules for any valence and with a general gauge parameter. Then we display all propagator and three-valent vertex Feynman rules and calculate the respective cancellation identities. Finally, we propose planned follow-up projects: This includes a generalization of Wigner's classification of elementary particles to linearized gravity, the representation of cancellation identities via Feynman graph cohomology and an investigation on the equivalence of different definitions for the graviton field. In particular, we argue that the appropriate setup to study perturbative BRST cohomology is a differential-graded Hopf algebra.

Page generated in 0.0192 seconds