Spelling suggestions: "subject:"kriget""
81 |
Approche spectrale pour l'interpolation à noyaux et positivité conditionnelleGauthier, Bertrand 12 July 2011 (has links) (PDF)
Nous proposons une approche spectrale permettant d'aborder des problèmes d'interpolation à noyaux dont la résolution numérique n'est pas directement envisageable. Un tel cas de figure se produit en particulier lorsque le nombre de données est infini. Nous considérons dans un premier temps le cadre de l'interpolation optimale dans les sous-espaces hilbertiens. Pour un problème donné, un opérateur intégral est défini à partir du noyau sous-jacent et d'une paramétrisation de l'ensemble des données basée sur un espace mesuré. La décomposition spectrale de l'opérateur est utilisée afin d'obtenir une formule de représentation pour l'interpolateur optimal et son approximation est alors rendu possible par troncature du spectre. Le choix de la mesure induit une fonction d'importance sur l'ensemble des données qui se traduit, en cas d'approximation, par une plus ou moins grande précision dans le rendu des données. Nous montrons à titre d'exemple comment cette approche peut être utilisée afin de rendre compte de contraintes de type "conditions aux limites" dans les modèles d'interpolation à noyaux. Le problème du conditionnement des processus gaussiens est également étudié dans ce contexte. Nous abordons enfin dans la dernière partie de notre manuscrit la notion de noyaux conditionnellement positifs. Nous proposons la définition générale de noyaux symétriques conditionnellement positifs relatifs à une espace de référence donné et développons la théorie des sous-espaces semi-hilbertiens leur étant associés. Nous étudions finalement la théorie de l'interpolation optimale dans cette classe d'espaces.
|
82 |
Méta-modèles adaptatifs pour l'analyse de fiabilité et l'optimisation sous contrainte fiabilisteDubourg, Vincent 05 December 2011 (has links) (PDF)
Cette thèse est une contribution à la résolution du problème d'optimisation sous contrainte de fiabilité. Cette méthode de dimensionnement probabiliste vise à prendre en compte les incertitudes inhérentes au système à concevoir, en vue de proposer des solutions optimales et sûres. Le niveau de sûreté est quantifié par une probabilité de défaillance. Le problème d'optimisation consiste alors à s'assurer que cette probabilité reste inférieure à un seuil fixé par les donneurs d'ordres. La résolution de ce problème nécessite un grand nombre d'appels à la fonction d'état-limite caractérisant le problème de fiabilité sous-jacent. Ainsi,cette méthodologie devient complexe à appliquer dès lors que le dimensionnement s'appuie sur un modèle numérique coûteux à évaluer (e.g. un modèle aux éléments finis). Dans ce contexte, ce manuscrit propose une stratégie basée sur la substitution adaptative de la fonction d'état-limite par un méta-modèle par Krigeage. On s'est particulièrement employé à quantifier, réduire et finalement éliminer l'erreur commise par l'utilisation de ce méta-modèle en lieu et place du modèle original. La méthodologie proposée est appliquée au dimensionnement des coques géométriquement imparfaites soumises au flambement.
|
83 |
Méthodes probabilistes pour l'évaluation de risques en production industrielle / Probabilistic methodes for risks evaluation in industrial productionOger, Julie 16 April 2014 (has links)
Dans un contexte industriel compétitif, une prévision fiable du rendement est une information primordiale pour déterminer avec précision les coûts de production et donc assurer la rentabilité d'un projet. La quantification des risques en amont du démarrage d'un processus de fabrication permet des prises de décision efficaces. Durant la phase de conception d'un produit, les efforts de développement peuvent être alors identifiés et ordonnés par priorité. Afin de mesurer l'impact des fluctuations des procédés industriels sur les performances d'un produit donné, la construction de la probabilité du risque défaillance est développée dans cette thèse. La relation complexe entre le processus de fabrication et le produit conçu (non linéaire, caractéristiques multi-modales...) est assurée par une méthode de régression bayésienne. Un champ aléatoire représente ainsi, pour chaque configuration du produit, l'information disponible concernant la probabilité de défaillance. Après une présentation du modèle gaussien, nous décrivons un raisonnement bayésien évitant le choix a priori des paramètres de position et d'échelle. Dans notre modèle, le mélange gaussien a priori, conditionné par des données mesurées (ou calculées), conduit à un posterior caractérisé par une distribution de Student multivariée. La nature probabiliste du modèle est alors exploitée pour construire une probabilité de risque de défaillance, définie comme une variable aléatoire. Pour ce faire, notre approche consiste à considérer comme aléatoire toutes les données inconnues, inaccessibles ou fluctuantes. Afin de propager les incertitudes, une approche basée sur les ensembles flous fournit un cadre approprié pour la mise en œuvre d'un modèle bayésien imitant le raisonnement d'expert. L'idée sous-jacente est d'ajouter un minimum d'information a priori dans le modèle du risque de défaillance. Notre méthodologie a été mise en œuvre dans un logiciel nommé GoNoGo. La pertinence de cette approche est illustrée par des exemples théoriques ainsi que sur un exemple réel provenant de la société STMicroelectronics. / In competitive industries, a reliable yield forecasting is a prime factor to accurately determine the production costs and therefore ensure profitability. Indeed, quantifying the risks long before the effective manufacturing process enables fact-based decision-making. From the development stage, improvement efforts can be early identified and prioritized. In order to measure the impact of industrial process fluctuations on the product performances, the construction of a failure risk probability estimator is developed in this thesis. The complex relationship between the process technology and the product design (non linearities, multi-modal features...) is handled via random process regression. A random field encodes, for each product configuration, the available information regarding the risk of non-compliance. After a presentation of the Gaussian model approach, we describe a Bayesian reasoning avoiding a priori choices of location and scale parameters. The Gaussian mixture prior, conditioned by measured (or calculated) data, yields a posterior characterized by a multivariate Student distribution. The probabilistic nature of the model is then operated to derive a failure risk probability, defined as a random variable. To do this, our approach is to consider as random all unknown, inaccessible or fluctuating data. In order to propagate uncertainties, a fuzzy set approach provides an appropriate framework for the implementation of a Bayesian model mimicking expert elicitation. The underlying leitmotiv is to insert minimal a priori information in the failure risk model. Our reasoning has been implemented in a software called GoNoGo. The relevancy of this concept is illustrated with theoretical examples and on real-data example coming from the company STMicroelectronics.
|
84 |
Optimisation multi-objectif sous incertitudes de phénomènes de thermique transitoire / Multi-objective optimization under uncertainty of transient thermal phenomenaGuerra, Jonathan 20 October 2016 (has links)
L'objectif de cette thèse est la résolution d’un problème d’optimisation multi-objectif sous incertitudes en présence de simulations numériques coûteuses. Une validation est menée sur un cas test de thermique transitoire. Dans un premier temps, nous développons un algorithme d'optimisation multi-objectif basé sur le krigeage nécessitant peu d’appels aux fonctions objectif. L'approche est adaptée au calcul distribué et favorise la restitution d'une approximation régulière du front de Pareto complet. Le problème d’optimisation sous incertitudes est ensuite étudié en considérant des mesures de robustesse pires cas et probabilistes. Le superquantile intègre tous les évènements pour lesquels la valeur de la sortie se trouve entre le quantile et le pire cas mais cette mesure de risque nécessite un grand nombre d’appels à la fonction objectif incertaine pour atteindre une précision suffisante. Peu de méthodes permettent de calculer le superquantile de la distribution de la sortie de fonctions coûteuses. Nous développons donc un estimateur du superquantile basé sur une méthode d'échantillonnage préférentiel et le krigeage. Il permet d’approcher les superquantiles avec une faible erreur et une taille d’échantillon limitée. De plus, un couplage avec l’algorithme multi-objectif permet la réutilisation des évaluations. Dans une dernière partie, nous construisons des modèles de substitution spatio-temporels capables de prédire des phénomènes dynamiques non linéaires sur des temps longs et avec peu de trajectoires d’apprentissage. Les réseaux de neurones récurrents sont utilisés et une méthodologie de construction facilitant l’apprentissage est mise en place. / This work aims at solving multi-objective optimization problems in the presence of uncertainties and costly numerical simulations. A validation is carried out on a transient thermal test case. First of all, we develop a multi-objective optimization algorithm based on kriging and requiring few calls to the objective functions. This approach is adapted to the distribution of the computations and favors the restitution of a regular approximation of the complete Pareto front. The optimization problem under uncertainties is then studied by considering the worst-case and probabilistic robustness measures. The superquantile integrates every event on which the output value is between the quantile and the worst case. However, it requires an important number of calls to the uncertain objective function to be accurately evaluated. Few methods give the possibility to approach the superquantile of the output distribution of costly functions. To this end, we have developed an estimator based on importance sampling and kriging. It enables to approach superquantiles with little error and using a limited number of samples. Moreover, the setting up of a coupling with the multi-objective algorithm allows to reuse some of those evaluations. In the last part, we build spatio-temporal surrogate models capable of predicting non-linear, dynamic and long-term in time phenomena by using few learning trajectories. The construction is based on recurrent neural networks and a construction facilitating the learning is proposed.
|
85 |
Machine learning spatial appliquée aux images multivariées et multimodales / Spatial machine learning applied to multivariate and multimodal imagesFranchi, Gianni 21 September 2016 (has links)
Cette thèse porte sur la statistique spatiale multivariée et l’apprentissage appliqués aux images hyperspectrales et multimodales. Les thèmes suivants sont abordés :Fusion d'images :Le microscope électronique à balayage (MEB) permet d'acquérir des images à partir d'un échantillon donné en utilisant différentes modalités. Le but de ces études est d'analyser l’intérêt de la fusion de l'information pour améliorer les images acquises par MEB. Nous avons mis en œuvre différentes techniques de fusion de l'information des images, basées en particulier sur la théorie de la régression spatiale. Ces solutions ont été testées sur quelques jeux de données réelles et simulées.Classification spatiale des pixels d’images multivariées :Nous avons proposé une nouvelle approche pour la classification de pixels d’images multi/hyper-spectrales. Le but de cette technique est de représenter et de décrire de façon efficace les caractéristiques spatiales / spectrales de ces images. Ces descripteurs multi-échelle profond visent à représenter le contenu de l'image tout en tenant compte des invariances liées à la texture et à ses transformations géométriques.Réduction spatiale de dimensionnalité :Nous proposons une technique pour extraire l'espace des fonctions en utilisant l'analyse en composante morphologiques. Ainsi, pour ajouter de l'information spatiale et structurelle, nous avons utilisé les opérateurs de morphologie mathématique. / This thesis focuses on multivariate spatial statistics and machine learning applied to hyperspectral and multimodal and images in remote sensing and scanning electron microscopy (SEM). In this thesis the following topics are considered:Fusion of images:SEM allows us to acquire images from a given sample using different modalities. The purpose of these studies is to analyze the interest of fusion of information to improve the multimodal SEM images acquisition. We have modeled and implemented various techniques of image fusion of information, based in particular on spatial regression theory. They have been assessed on various datasets.Spatial classification of multivariate image pixels:We have proposed a novel approach for pixel classification in multi/hyper-spectral images. The aim of this technique is to represent and efficiently describe the spatial/spectral features of multivariate images. These multi-scale deep descriptors aim at representing the content of the image while considering invariances related to the texture and to its geometric transformations.Spatial dimensionality reduction:We have developed a technique to extract a feature space using morphological principal component analysis. Indeed, in order to take into account the spatial and structural information we used mathematical morphology operators
|
86 |
Développement et évaluation d’approches géostatistiques à l’échelle urbaine pour l’estimation de l’exposition aux particules fines et à l’ozone troposphériqueRamos, Yuddy 08 1900 (has links)
La pollution atmosphérique constitue un risque environnemental majeur dont les effets néfastes sur la santé et sur l’environnement sont déjà clairement démontrés. Toutefois, la mesure d’exposition des populations aux polluants tels que les particules fines et l’ozone troposphérique demeure approximative en raison de la faible densité des stations d’échantillonnage de ces polluants. Peu d’études ont considéré la variation spatiale intra-urbaine dans la modélisation spatiale des concentrations de polluants. Certaines études ont cependant combiné interpolation spatiale et corrélation avec des facteurs locaux. De plus, l’effet du régime météorologique (par exemple l’occurrence d’une inversion de température) sur l’amplitude de ces corrélations n’est pas pris en compte. Cette thèse a donc pour objectif d’évaluer de nouvelles manières de caractériser la distribution spatiale et temporelle des particules fines (PM2.5) et de l’ozone troposphérique (O3) à l’échelle intra-urbaine. Plus particulièrement, nous avons développé un modèle de géostatistique multivariable appelée krigeage avec dérive externe (KED, kriging with external drift) basé sur l’intégration de variables auxiliaires dans le processus d’estimation journalière des PM2.5 et de l’O3. Le krigeage constitue une forme d’interpolation spatiale des données de stations de mesures éparses, alors que la dérive externe mise sur des corrélations entre des conditions locales (axes de transport routier, espaces verts, etc.) et la concentration des polluants atmosphériques. Afin de prendre en compte les variations temporelles, notamment celles reliées aux conditions météorologiques, ces modèles ont été développés par groupes basés sur des conditions synoptiques et six classes d’états établies selon la température, le vent, l’humidité relative et les précipitations, d’après des données météorologiques journalières.
Les résultats montrent que l’intégration des variables auxiliaires telles que la densité de la végétation et les zones des activités industrielles locales dans le KED expliquent en partie les variations intra-urbaines des PM2.5 de l’île de Montréal, mais que cet apport est variable selon la classe météorologique. Ainsi, lorsque les corrélations sont très faibles, une interpolation spatiale simple, comme la méthode IDW (inverse distance weighting) est plus exacte que l’interpolation multivariable, alors que pour d’autres conditions synoptiques le KED produit les prédictions les plus certaines. Nous avons pour cette raison proposé un modèle d’interpolation hybride (KED-IDW) s’adaptant aux conditions météorologiques. Nous avons également montré, particulièrement dans le cas de l’O3, que le krigeage avec dérive externe améliore les résultats obtenus par krigeage ordinaire (sans variables auxiliaires).
Cette thèse a aussi permis d’évaluer l’apport d’un modèle spatio-temporel (BME, bayesian maximum entropy) dans l’estimation de l’effet à court terme de l’exposition à l’O3 sur les décès à Montréal. Les résultats suggèrent que ce modèle spatio-temporel dans les conditions développées (par ex. basé sur les données de 12 stations de mesures, pour un territoire de 1 310 km2) n’apporte pas de gains significatifs dans l’estimation de l’effet de l’exposition.
Dans l’ensemble, cette thèse contribue au progrès de modélisation spatiale empirique des polluants atmosphériques en se fondant notamment sur l’adaptation aux conditions météorologiques et par l’ajout de certains facteurs météorologiques comme prédicteurs. Dans ce contexte, cette thèse ouvre une voie prometteuse pour l’amélioration des estimations de polluants atmosphériques à l’échelle intra-urbaine et de la capacité à évaluer les risques à la santé de la population par une meilleure caractérisation de l’exposition.
Mots-clés : pollution de l’air, particules fines, ozone troposphérique, santé, géostatistique, krigeage avec dérive externe, environnement urbain. / Air pollution is a major environmental hazard with clearly demonstrable adverse effects on health and the environment. However, the measurement of populations’ exposure to pollutants such as particulate matter and ground-level ozone remains approximate due to the low density of sampling stations for these pollutants. Moreover, intra-urban spatial variation in the spatial modeling of pollutant concentrations has received little research attention. If anything, some studies have combined spatial interpolation and correlation with local factors; however, they do so without examining the effect of the weather regime (e.g., a temperature inversion) on the magnitude of these correlations. In order to overcome these shortcomings, this dissertation aims to evaluate new ways of characterizing the spatial and temporal distribution of fine particles (PM2.5) and ground-level ozone (O3) at the intra-urban scale. In particular, we developed a multivariable geostatistical model called “kriging with external drift” (KED) based on the integration of auxiliary variables into the process of estimating daily PM2.5 and O3 concentrations. Kriging is a form of spatial interpolation of data from measurement stations that are dispersed, while external drift is based on correlations between local conditions (road transport arteries, green spaces, etc.) and the concentration of atmospheric pollutants. In order to take account of temporal variations, especially those related to weather conditions, we designed these models around six synoptic weather classes based on daily meteorological data (such as temperature, wind, relative humidity and precipitation).
v
The results show that the integration of auxiliary variables (such as vegetation density and local industrial activity areas) in KED partly explains the intra-urban variations of PM2.5 on the island of Montreal, but that this contribution is variable depending on the weather conditions. Thus, when the correlations are very low, a simple spatial interpolation (such as the inverse distance weighting (IDW) method) is more accurate than multivariable interpolation, whereas for other synoptic conditions KED produces the most certain predictions. For this reason, we proposed a hybrid interpolation model (KED-IDW) that can adapt to different weather conditions. We have also shown, particularly in the case of O3, that KED improves the results obtained from ordinary kriging (without auxiliary variables).
This dissertation also allowed to evaluate the contribution of a spatial-temporal model—BME (bayesian maximum entropy)—in the estimation of the short-term effect of exposure to O3 on deaths in Montreal. The results suggest that this spatio-temporal model under the determined conditions (e.g., based on data from 12 measurement stations, for a territory of 1 310 km2) does not offer significant improvements to the estimation of the effect of exposure.
Overall, this dissertation contributes to the advancement of the empirical spatial modeling of air pollutants, namely by taking into account the adaptation to weather conditions as well as certain predictive meteorological factors. In this context, the dissertation opens up a promising path for improving the estimation of air pollution at the intra-urban scale and the capacity to assess population health risks through better characterization of exposure.
|
87 |
Optimisation de forme numérique de problèmes multiphysiques et multiéchelles : application aux échangeurs de chaleur / Shape optimization of multi-scales and multi-physics problems : application to heat exchangersMastrippolito, Franck 14 December 2018 (has links)
Les échangeurs de chaleur sont utilisés dans de nombreux secteurs industriels. L'optimisation de leurs performances est donc de première importance pour réduire la consommation énergétique. Le comportement d'un échangeur est intrinsèquement multiéchelle : l'échelle locale de l'intensification des phénomènes de transfert thermique côtoie une échelle plus globale où interviennent des phénomènes de distribution de débit. Un échangeur de chaleur est également le siège de différents phénomènes physiques, tels que la mécanique des fluides, la thermique et l'encrassement. Les présents travaux proposent une méthode d'optimisation multiobjectif de la forme des échangeurs, robuste, pouvant traiter les aspects multiéchelles et multiphysiques et applicable dans un contexte industriel. Les performances de l'échangeur sont évaluées par des simulations de mécanique des fluides numérique (CFD) et par des méthodes globales (є-NUT). Suite à une étude bibliographique, une méthode de métamodélisation par krigeage associée à un algorithme génétique ont été retenus. Des méthodes de visualisation adaptées (clustering et Self-Organizing Maps) sont utilisées pour analyser les résultats. Le métamodèle permet d'approcher la réponse d'un simulateur (CFD) et d'en fournir une prédiction dont l'interrogation est peu onéreuse. Le krigeage permet de prendre en compte une discontinuité et des perturbations de la réponse du simulateur par l'ajout d'un effet de pépite. Il permet également l'utilisation de stratégies d'enrichissement construisant des approximations précises à moindre coût. Cette méthode est appliquée à différentes configurations représentatives du comportement de l'échangeur, permettant de s'assurer de sa robustesse lorsque le simulateur change, lorsque l'aspect multiéchelle est pris en compte ou lorsque une physique d'encrassement est considérée. Il a été établi que l'étape de métamodélisation assure la robustesse de la méthode et l'intégration de l'aspect multiéchelle. Elle permet aussi de construire des corrélations à l'échelle locale qui sont ensuite utilisées pour déterminer les performances globales de l'échangeur. Dans un contexte industriel, les méthodes d'analyse permettent de mettre en évidence un nombre fini de formes réalisant un compromis des fonctions objectif antagonistes. / Heat exchangers are used in many industrial applications. Optimizing their performances is a key point to improve energy efficiency. Heat exchanger behaviour is a multi-scale issue where local scale enhancement mechanisms coexist with global scale distribution ones. It is also multi-physics such as fluid mecanics, heat transfer and fouling phenomenons appear. The present work deals with multi-objective shape optimization of heat echanger. The proposed method is sufficiently robust to address multi-scale and multi-physics issues and allows industrial applications. Heat exchanger performances are evaluated using computational fluid dynamics (CFD) simulations and global methods (є-NUT). The optimization tools are a genetic algorithm coupled with kriging-based metamodelling. Clustering and Self-Organizing Maps (SOM) are used to analyse the optimization results. A metamodel builts an approximation of a simulator response (CFD) whose evaluation cost is reduced to be used with the genetic algorithm. Kriging can address discontinuities or perturbations of the response by introducing a nugget effect. Adaptive sampling is used to built cheap and precise approximation. The present optimization method is applied to different configurations which are representative of the heat exchanger behaviour for both multi-scale and multi-physics (fouling) aspects. Results show that metamodelling is a key point of the method, ensuring the robustness and the versatility of the optimisation process. Also, it allows to built correlations of the local scale used to determine the global performances of the heat exchanger. Clustering and SOM highlight a finite number of shapes, which represent a compromise between antagonist objective functions, directly usable in an industrial context.
|
88 |
Contamination atmosphérique en éléments traces au sein de tourbières ombrotrophes situées à proximité d’une fonderie de cuivreKessler-Nadeau, Max Émile 08 1900 (has links)
La région de Rouyn-Noranda est fortement touchée par la contamination en éléments traces (ET), tels que l’arsenic (As), le cadmium (Cd), le cuivre (Cu) et le plomb (Pb), provenant des dépositions atmosphériques générées par les émissions de la fonderie Horne. Bien que des études aient démontré l’influence biogéochimique de la fonderie sur l’environnement, aucune recherche ne s’est penchée spécifiquement sur la distribution spatiale des ET dans les écosystèmes terrestres situés en périphérie de la fonderie. Ce mémoire vise donc à cartographier l’étendue spatiale des ET dans la région de Rouyn-Noranda et d’évaluer leurs distributions, spatialement au sein du territoire, mais également entre les composantes écosystémiques de tourbières exposées à des niveaux contrastants de déposition. À partir des concentrations analysées au sein du bryophyte Sphagnum fuscum, échantillonné dans 54 bogs jusqu’à 50 km à l’est de la fonderie, la modélisation de la distribution spatiale des ET a été réalisée par l’entremise d’interpolation spatiale par krigeage. La contamination en ET est plus importante près de la fonderie et diminue significativement dès que la distance augmente de cette dernière. De même, les niveaux d’ET dans la tourbe, l’eau interstitielle et les composantes (racine, tige et feuille) de quatre espèces végétales caractéristiques des tourbières, sont systématiquement plus importants dans les sites situés à 10 km de la fonderie que dans ceux à 25 km. Au sein des végétaux, la remobilisation verticale des ET est limitée et ces éléments s’accumulent en majorité dans les racines, qui sont exposées aux concentrations élevées d’ET dans la tourbe et l’eau interstitielle. Mes travaux ont démontré que l’étendue de la contamination environnementale en ET à Rouyn-Noranda est fonction de la distance à la fonderie Horne et que la mobilité des ET dans les tourbières se concentre à l’interface sol-eau-racine. / The Rouyn-Noranda region is strongly affected by trace element (TE) contamination, such as arsenic (As), cadmium (Cd), copper (Cu) and lead (Pb), from atmospheric deposition of the Horne copper smelter emissions. Although studies have demonstrated the biogeochemical influence of the Horne smelter on the environment, no research has particularly investigated the spatial distribution of TEs in the vicinity of the smelter. This thesis aims to map the spatial extent of TEs in the Rouyn-Noranda region and to evaluate their distribution between the ecosystem components of peat bogs exposed to contrasting levels of TE depositions. Based on the TE concentrations analyzed in the bryophyte Sphagnum fuscum, sampled in 54 bogs up to 50 km east from the smelter, we modelled the spatial extent of TE through spatial kriging interpolation. Trace element contamination is higher near the smelter and decreases with increasing distance from the latter. Consequently, TE levels in the peat, pore water, and components (roots, shoots, and leaves) of four plant species within bogs are consistently higher at sites 10 km from the smelter than at sites 25 km away. Within plants, the vertical translocation of TE is limited, and these elements accumulate specifically in the roots, which are exposed to considerable concentrations of TE in the peat and in the pore water. My work has shown that the extent of the environmental contamination of TEs in Rouyn-Noranda is a function of the distance from the Horne smelter and their mobility in peatlands is localized at the root-soil-water interface.
|
89 |
Inverse problems occurring in uncertainty analysis / Inversion probabiliste bayésienne en analyse d'incertitudeFu, Shuai 14 December 2012 (has links)
Ce travail de recherche propose une solution aux problèmes inverses probabilistes avec des outils de la statistique bayésienne. Le problème inverse considéré est d'estimer la distribution d'une variable aléatoire non observée X à partir d'observations bruitées Y suivant un modèle physique coûteux H. En général, de tels problèmes inverses sont rencontrés dans le traitement des incertitudes. Le cadre bayésien nous permet de prendre en compte les connaissances préalables d'experts en particulier lorsque peu de données sont disponibles. Un algorithme de Metropolis-Hastings-within-Gibbs est proposé pour approcher la distribution a posteriori des paramètres de X avec un processus d'augmentation des données. A cause d'un nombre élevé d'appels, la fonction coûteuse H est remplacée par un émulateur de krigeage (métamodèle). Cette approche implique plusieurs erreurs de natures différentes et, dans ce travail,nous nous attachons à estimer et réduire l'impact de ces erreurs. Le critère DAC a été proposé pour évaluer la pertinence du plan d'expérience (design) et le choix de la loi apriori, en tenant compte des observations. Une autre contribution est la construction du design adaptatif adapté à notre objectif particulier dans le cadre bayésien. La méthodologie principale présentée dans ce travail a été appliquée à un cas d'étude en ingénierie hydraulique. / This thesis provides a probabilistic solution to inverse problems through Bayesian techniques.The inverse problem considered here is to estimate the distribution of a non-observed random variable X from some noisy observed data Y explained by a time-consuming physical model H. In general, such inverse problems are encountered when treating uncertainty in industrial applications. Bayesian inference is favored as it accounts for prior expert knowledge on Xin a small sample size setting. A Metropolis-Hastings-within-Gibbs algorithm is proposed to compute the posterior distribution of the parameters of X through a data augmentation process. Since it requires a high number of calls to the expensive function H, the modelis replaced by a kriging meta-model. This approach involves several errors of different natures and we focus on measuring and reducing the possible impact of those errors. A DAC criterion has been proposed to assess the relevance of the numerical design of experiments and the prior assumption, taking into account the observed data. Another contribution is the construction of adaptive designs of experiments adapted to our particular purpose in the Bayesian framework. The main methodology presented in this thesis has been applied to areal hydraulic engineering case-study.
|
90 |
Contributions à la modélisation multi-échelles de la réponse immunitaire T-CD8 : construction, analyse, simulation et calibration de modèles / Contribution of the understanding of Friction Stir Welding of dissimilar aluminum alloys by an experimental and numerical approach : design, analysis, simulation and calibration of mathematical modelsBarbarroux, Loïc 03 July 2017 (has links)
Lors de l’infection par un pathogène intracellulaire, l’organisme déclenche une réponse immunitaire spécifique dont les acteurs principaux sont les lymphocytes T-CD8. Ces cellules sont responsables de l’éradication de ce type d’infections et de la constitution du répertoire immunitaire de l’individu. Les processus qui composent la réponse immunitaire se répartissent sur plusieurs échelles physiques inter-connectées (échelle intracellulaire, échelle d’une cellule, échelle de la population de cellules). La réponse immunitaire est donc un processus complexe, pour lequel il est difficile d’observer ou de mesurer les liens entre les différents phénomènes mis en jeu. Nous proposons trois modèles mathématiques multi-échelles de la réponse immunitaire, construits avec des formalismes différents mais liés par une même idée : faire dépendre le comportement des cellules TCD8 de leur contenu intracellulaire. Pour chaque modèle, nous présentons, si possible, sa construction à partir des hypothèses biologiques sélectionnées, son étude mathématique et la capacité du modèle à reproduire la réponse immunitaire au travers de simulations numériques. Les modèles que nous proposons reproduisent qualitativement et quantitativement la réponse immunitaire T-CD8 et constituent ainsi de bons outils préliminaires pour la compréhension de ce phénomène biologique. / Upon infection by an intracellular pathogen, the organism triggers a specific immune response,mainly driven by the CD8 T cells. These cells are responsible for the eradication of this type of infections and the constitution of the immune repertoire of the individual. The immune response is constituted by many processes which act over several interconnected physical scales (intracellular scale, single cell scale, cell population scale). This biological phenomenon is therefore a complex process, for which it is difficult to observe or measure the links between the different processes involved. We propose three multiscale mathematical models of the CD8 immune response, built with different formalisms but related by the same idea : to make the behavior of the CD8 T cells depend on their intracellular content. For each model, we present, if possible, its construction process based on selected biological hypothesis, its mathematical study and its ability to reproduce the immune response using numerical simulations. The models we propose succesfully reproduce qualitatively and quantitatively the CD8 immune response and thus constitute useful tools to further investigate this biological phenomenon.
|
Page generated in 0.0466 seconds