• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 13
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Formação da imagem conceitual da reta real: um estudo do desenvolvimento do conceito na perspectiva lógico - histórica. / Formation of concept image of number line: study of development in logical-historical perspective of concept.

Dias, Marisa da Silva 07 May 2007 (has links)
O trabalho constitui-se na formação da imagem conceitual do professor, na inter-relação indivíduo-coletividade, a fim de compreender a relação da imagem conceitual com o desenvolvimento da reta real na perspectiva lógico-histórica desse conceito. Os procedimentos metodológicos fundamentam-se nas contribuições teóricas da pesquisa-ação, cujo problema social se configura no campo do ensino e da aprendizagem da matemática. Os sujeitos são educadores matemáticos: pesquisadora e professores do Ensino Fundamental e Médio. O desenvolvimento da imagem conceitual e aspectos de seu ensino realizou-se por meio de um curso de formação contínua para professores organizado sob os pressupostos da atividade orientadora de ensino e da perspectiva lógico-histórica do conceito. O curso abordou a transição de um campo numérico a outro, com foco na reta real, partindo da formulação do sistema de numeração posicional e a transição para o número natural, seguindo a fração como número racional, o irracional resultante da incomensurabilidade e o contínuo numérico - a reta real - como a captação numérica do movimento. Os aportes teórico-metodológicos do materialismo dialético e da atividade contribuíram para a compreensão do movimento da imagem conceitual. A análise da imagem conceitual orientou-se pela reprodução dos principais nexos conceituais no desenvolvimento do pensamento numérico. A intertextualidade, como recurso que proporciona evidenciar o movimento da imagem conceitual dos sujeitos na exposição e análise dos dados, possibilitou perceber que a dialética do pensamento numérico transita entre discreto-denso-contínuo, comensurável-incomensurável, finito-infinito, cardinalidade-ordenação. Neste movimento do pensamento revelam-se dilemas, a negação de um conhecimento, negação da negação, lógica dialética e lógica formal e as categorias dialéticas: forma e conteúdo, aparência e essência, análise e síntese, empírico e teórico, lógico e histórico, intuição e dedução. Conclui-se que o desenvolvimento da imagem conceitual individual de conceito matemático, ocorre na relação indivíduo-coletividade e, pode ser coerente com o significado científico elaborado historicamente por meio da realização de uma atividade orientadora de ensino fundamentada em pressupostos lógico-históricos do conceito. / This work consists of a study of the formation teachers\' concept image by the individualcollective inter-relation, in order to understand the relation of concept image with the development of the number line in a logical-historical perspective of the concept. The methodological procedures are based on the action research theoretical contribution, whose social problem appears in the mathematics teaching and learning field. The subjects are mathematics educators: the researcher and secondary school teachers. The development of the concept image and its teaching aspects were achieved during a teacher continuous training course, which was organized according to the teaching oriented activity contributions and the logical-historical perspective of the concept. One approach of this training course was the transition from one numerical field to another; a special attention was focussed on the number line, beginning with the formulation of the positional number system and the transition to the natural number, regarding the fraction as a rational number, the irrational number as a result of the incommensurability. Other approach was the arithmetic continuity - as the numerical capitation of the movement. The theoretical and methodological basis of the dialectical materialism and the activity theory contribute to the understanding of the concept image movement. The concept image analysis was guided by the reproduction of the main internal connections of numerical thought development. The intertextuality, as a resource which highlights the subjects\' concept image in the exposition and in the data analysis, made possible to realize that the dialectic of the numerical thought oscillates between the discreet- dense-continuous, the incommensurable and the commensurable, the finite and the infinite, the cardinality and the ordinance. Dilemmas, negation of knowledge, negation of negation, dialectical and formal logic and dialectical categories: form and content, appearance and essence, analysis and synthesis, empirical and theoretical, logical and historical, intuition and deduction, are revealed in this movement. In conclusion, the individual concept image\'s development of the mathematical concept takes place in the individual-collective relations and it can be coherent with the historically elaborated scientific meaning by performing a teaching oriented activity based on the logical-historical concept assumptions.
12

APRENDER E ENSINAR E APRENDER A ENSINAR MATEMÁTICA DISCUTINDO SUBTRAÇÃO PARA OS ANOS INICIAIS

Carmazio, Eduardo Daniel 03 June 2016 (has links)
Made available in DSpace on 2017-07-21T20:56:29Z (GMT). No. of bitstreams: 1 Eduardo Carmazio.pdf: 7001251 bytes, checksum: 4c310eb95a8e95aeed7a06a46e97a59e (MD5) Previous issue date: 2016-06-03 / This work is the result of a survey of teachers of Freshwater municipalities and Joaçaba, both of Santa Catarina Midwest, where they collected data on the learning difficulties of students in the first segment of elementary school from mathematics discipline. This research revealed that the operation of subtraction is one of the most difficult content to be taught. Hence, the problem: "As a continuing education course for the early years teachers can help in working with the concept of subtraction?". Thus, based on the conceptual understanding of theories by Liping Ma, it was constructed the course of conceptual learning, and the decomposition and the use of numerical straight main tools for this. The use of motivating factors for the topic discussed reach students and sensitize teachers to use the practical proposals for their classes. The course consists of 12 hours of discussion and 30 hours of practice with students; the application of the topics covered will not be restricted to that period. The emphasis of the course is to provide to students the opportunity of building, in the field of their minds, the necessary conditions to learn subtraction and connect this topic with other important topics of knowledge. The results were analyzed interpretively, of qualitative nature, with applied purpose. In this work we report and comment all the stages of this process. / O presente trabalho é resultado de uma pesquisa realizada com professoras dos municípios de Água Doce e Joaçaba, ambos do meio oeste catarinense, onde foram coletados dados relativos às dificuldades de aprendizagem dos alunos do primeiro segmento do ensino fundamental na disciplina de matemática. Tal pesquisa revelou a subtração como conteúdo de maior frequência dentre as dificuldades listadas e isso motivou a construção de um curso para professores dos anos iniciais discutindo subtração, aliada à adição. Daí, o problema: “Como um curso de formação continuada para professores dos anos iniciais poderá contribuir no trabalho com o conceito de subtração?”. Assim, com base nas teorias de entendimento conceitual de Liping Ma, construiu-se o curso evidenciando a aprendizagem conceitual, tendo a decomposição e o uso da reta numérica como ferramentas principais para tal. Foi explorado o uso de fatores motivadores para que o tema abordado atingisse os alunos e sensibilizasse as professoras a utilizarem as práticas propostas durante suas aulas. Trata-se de um curso composto por 12 horas de discussão e 30 horas de prática com alunos, cuja aplicação dos temas abordados não será restrita a esse período. A ênfase do curso está em proporcionar aos alunos a oportunidade de construir, no campo de suas mentes, as condições necessárias para o aprendizado da subtração e conectar os conhecimentos que possui a outros que virão. Os resultados foram analisados de forma interpretativa, de natureza qualitativa com finalidade aplicada. Estão aqui relatadas e comentadas todas as etapas desse processo.
13

Concurrent neurological and behavioral assessment of number line estimation performance in children and adults

Baker, Joseph Michael 01 May 2013 (has links)
Children who struggle to learn math are often identified by their poor performance on common math learning activities, such as number line estimations. While such behavioral assessments are useful in the classroom, naturalistic neuroimaging of children engaged in real-world math learning activities has the potential to identify concurrent behavioral and neurological correlates to poor math performance. Such correlates may help pinpoint effective teaching strategies for atypical learners, and may highlight instructional methods that elicit typical neurological response patterns to such activities. For example, multisensory stimulation that contains information about number enhances infants' and preschool children's behavioral performance on many numerical tasks and has been shown to elicit neural activation in areas related to number processing and decision-making. Thus, when applied to math teaching tools, multisensory stimulation may provide a platform through which both behavioral and neural math-related processes may be enhanced. Common approaches to neuroimaging of math processing lack ecological validity and are often not analogous to real-world learning activities. However, because of its liberal tolerance of movement, near-infrared spectroscopy (NIRS) provides an ideal platform for such studies. Here, NIRS is used to provide the first concurrent examination of neurological and behavioral data from number line estimation performance within children and adults. Moreover, in an effort to observe the behavioral and neurological benefits to number line estimations that may arise from multisensory stimulation, differential feedback (i.e., visual, auditory, or audiovisual) about estimation performance is provided throughout a portion of the task. Results suggest behavioral and neural performance is enhanced by feedback. Moreover, significant effects of age suggest young children show greater neurological response to feedback, and increase in task difficulty resulted in decreased behavioral performance and increased neurological activation associated with mathematical processing. Thus, typical math learners effectively recruit areas of the brain known to process number when math activities become increasingly difficult. Data inform understanding typical behavioral and neural responses to real-world math learning tasks, and may prove useful in triangulating signatures of atypical math learning. Moreover, results demonstrate the utility of NIRS as a platform to provide simultaneous neurological and behavioral data during naturalistic math learning activities.
14

Investigating Early Spatial and Numerical Skills in Junior Kindergarten Children Learning in an Inquiry-and Play-based Environment

Olver, Ashley 20 November 2013 (has links)
In the current study, three possible interpretations of children’s number line estimation (NLE) performance were examined for appropriateness and possible correlates of performance were tracked over time in a classroom exemplifying recommended mathematics pedagogy for young children. In December and May, 21 4-year-olds completed the NLE task (0-10 range) and measures of numerical knowledge, spatial skills, and visual-motor integration. With high-quality teaching, children made large gains in these skills (d = 0.96-1.28). Due to uniformly high achievement, few expected correlations were observed, however. A strategy account of NLE performance was supported over the traditional logarithmic-to-linear shift account and the newly proposed proportion-judgement account. Patterns of error in estimation provide a better indication of understanding of the linear number line than models of best fit. Indeed, interpreting linearity of NLE as indicative of an underlying representation of number could lead to inappropriate conceptualizations of math learning disabilities and misguided interventions.
15

Investigating Early Spatial and Numerical Skills in Junior Kindergarten Children Learning in an Inquiry-and Play-based Environment

Olver, Ashley 20 November 2013 (has links)
In the current study, three possible interpretations of children’s number line estimation (NLE) performance were examined for appropriateness and possible correlates of performance were tracked over time in a classroom exemplifying recommended mathematics pedagogy for young children. In December and May, 21 4-year-olds completed the NLE task (0-10 range) and measures of numerical knowledge, spatial skills, and visual-motor integration. With high-quality teaching, children made large gains in these skills (d = 0.96-1.28). Due to uniformly high achievement, few expected correlations were observed, however. A strategy account of NLE performance was supported over the traditional logarithmic-to-linear shift account and the newly proposed proportion-judgement account. Patterns of error in estimation provide a better indication of understanding of the linear number line than models of best fit. Indeed, interpreting linearity of NLE as indicative of an underlying representation of number could lead to inappropriate conceptualizations of math learning disabilities and misguided interventions.
16

Representações dos números racionais e a medição de segmentos: possibilidades com tecnologias informáticas

Lima, Claudio Woerle [UNESP] 01 April 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-04-01Bitstream added on 2014-06-13T20:13:19Z : No. of bitstreams: 1 lima_cw_me_rcla.pdf: 3093037 bytes, checksum: 82ceff562d5a32cc23b45ec23e51ab60 (MD5) / See-Sp / Essa pesquisa investiga as contribuições que a exploração dos números racionais como medidas de segmentos, em um programa de geometria dinâmica, podem trazer ao entendimento de frações, decimais e da reta numérica entre outras representações dos racionais. A pesquisa se fundamenta em evidências históricas e resultados de pesquisas que mostram a importância do significado de medida para o entendimento dos números. Através das tecnologias informáticas viu-se uma alternativa para a exploração da medida de segmentos. Essa pesquisa é baseada no processo de medição de segmentos, em teorias sobre visualização, experimentação e representações múltiplas. Também se inspira em preceitos construcionistas. Essa investigação qualitativa se baseou na metodologia de experimentos de ensino, em que foram formados dois grupos com alunos de 6ª série / 7º ano do ensino fundamental de uma escola pública estadual do interior de São Paulo. Esses grupos participaram de encontros em que foram desenvolvidas atividades que envolviam: divisão de segmentos; frações como medidas de segmentos; operações de adição e subtração de frações utilizando os segmentos; processo de medição para criação dos números decimais; relações entre decimais e frações; adição e subtração dos números decimais; adição e subtração de frações e decimais. As atividades realizadas se basearam nos recursos de visualização e experimentação proporcionadas pelo software de geometria dinâmica Régua e Compasso. O trabalho evidenciou a importância da aprendizagem das representações múltiplas dos números racionais e como as tecnologias informáticas (computadores, software de geometria e calculadoras) podem atuar nessa aprendizagem. A pesquisa também evidência que a utilização de recursos tecnológicos pode modificar a matemática da sala de aula, proporcionando aos estudantes... / This research investigates the contributions that the exploration of rational numbers as measure of segments, using geometry dynamic software, can introduce into the understanding of fractions, decimal numbers and the number line, amongst other rational number representations. The research is motivated by both historical evidence and evidence from the research literature showing the importance of the measure meaning to the understanding of rational numbers. Digital technologies offer an alternative method for the exploration of segments measure, as yet underexplored in the field of mathematics education. This research is based on an approach to numbers as measurements of segments, which draws from theories emphasizing the role of visualization, experimentation and multiple representations in mathematics learning. It is also inspired by a constructionist perspective. The qualitative investigation made use of the teaching experiment methodology, in that two groups were formed with students of 6th grade / 7th year within an elementary school of a public school in the state of São Paulo. These groups took part in research sessions where they developed activities that involve: division of segments; fractions as measure of segments; operations of addition and subtraction of fraction using segments; measurement for decimal numbers creation; relations between decimal numbers and fractions; addition and subtraction of decimal numbers; addition and subtraction of fractions and decimal numbers. The activities exploited the resources visualization and experimentation proportioned by the dynamic geometry software “Compass and Rule”. Analyses of the data collected pointed to the importance of the understanding of multiple representations for rational numbers and to the role that digital technologies (computers, geometry software and calculators) can play in this learning. This research, also, ... (Complete abstract click electronic access below)
17

Representações dos números racionais e a medição de segmentos : possibilidades com tecnologias informáticas /

Lima, Claudio Woerle. January 2010 (has links)
Orientador: Marcus Vinicius Maltempi / Banca: Marcelo de Carvalho Borba / Banca: Siobhan Victoria Healy / Resumo: Essa pesquisa investiga as contribuições que a exploração dos números racionais como medidas de segmentos, em um programa de geometria dinâmica, podem trazer ao entendimento de frações, decimais e da reta numérica entre outras representações dos racionais. A pesquisa se fundamenta em evidências históricas e resultados de pesquisas que mostram a importância do significado de medida para o entendimento dos números. Através das tecnologias informáticas viu-se uma alternativa para a exploração da medida de segmentos. Essa pesquisa é baseada no processo de medição de segmentos, em teorias sobre visualização, experimentação e representações múltiplas. Também se inspira em preceitos construcionistas. Essa investigação qualitativa se baseou na metodologia de experimentos de ensino, em que foram formados dois grupos com alunos de 6ª série / 7º ano do ensino fundamental de uma escola pública estadual do interior de São Paulo. Esses grupos participaram de encontros em que foram desenvolvidas atividades que envolviam: divisão de segmentos; frações como medidas de segmentos; operações de adição e subtração de frações utilizando os segmentos; processo de medição para criação dos números decimais; relações entre decimais e frações; adição e subtração dos números decimais; adição e subtração de frações e decimais. As atividades realizadas se basearam nos recursos de visualização e experimentação proporcionadas pelo software de geometria dinâmica "Régua e Compasso". O trabalho evidenciou a importância da aprendizagem das representações múltiplas dos números racionais e como as tecnologias informáticas (computadores, software de geometria e calculadoras) podem atuar nessa aprendizagem. A pesquisa também evidência que a utilização de recursos tecnológicos pode modificar a matemática da sala de aula, proporcionando aos estudantes ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This research investigates the contributions that the exploration of rational numbers as measure of segments, using geometry dynamic software, can introduce into the understanding of fractions, decimal numbers and the number line, amongst other rational number representations. The research is motivated by both historical evidence and evidence from the research literature showing the importance of the measure meaning to the understanding of rational numbers. Digital technologies offer an alternative method for the exploration of segments measure, as yet underexplored in the field of mathematics education. This research is based on an approach to numbers as measurements of segments, which draws from theories emphasizing the role of visualization, experimentation and multiple representations in mathematics learning. It is also inspired by a constructionist perspective. The qualitative investigation made use of the teaching experiment methodology, in that two groups were formed with students of 6th grade / 7th year within an elementary school of a public school in the state of São Paulo. These groups took part in research sessions where they developed activities that involve: division of segments; fractions as measure of segments; operations of addition and subtraction of fraction using segments; measurement for decimal numbers creation; relations between decimal numbers and fractions; addition and subtraction of decimal numbers; addition and subtraction of fractions and decimal numbers. The activities exploited the resources visualization and experimentation proportioned by the dynamic geometry software "Compass and Rule". Analyses of the data collected pointed to the importance of the understanding of multiple representations for rational numbers and to the role that digital technologies (computers, geometry software and calculators) can play in this learning. This research, also, ... (Complete abstract click electronic access below) / Mestre
18

Formação da imagem conceitual da reta real: um estudo do desenvolvimento do conceito na perspectiva lógico - histórica. / Formation of concept image of number line: study of development in logical-historical perspective of concept.

Marisa da Silva Dias 07 May 2007 (has links)
O trabalho constitui-se na formação da imagem conceitual do professor, na inter-relação indivíduo-coletividade, a fim de compreender a relação da imagem conceitual com o desenvolvimento da reta real na perspectiva lógico-histórica desse conceito. Os procedimentos metodológicos fundamentam-se nas contribuições teóricas da pesquisa-ação, cujo problema social se configura no campo do ensino e da aprendizagem da matemática. Os sujeitos são educadores matemáticos: pesquisadora e professores do Ensino Fundamental e Médio. O desenvolvimento da imagem conceitual e aspectos de seu ensino realizou-se por meio de um curso de formação contínua para professores organizado sob os pressupostos da atividade orientadora de ensino e da perspectiva lógico-histórica do conceito. O curso abordou a transição de um campo numérico a outro, com foco na reta real, partindo da formulação do sistema de numeração posicional e a transição para o número natural, seguindo a fração como número racional, o irracional resultante da incomensurabilidade e o contínuo numérico - a reta real - como a captação numérica do movimento. Os aportes teórico-metodológicos do materialismo dialético e da atividade contribuíram para a compreensão do movimento da imagem conceitual. A análise da imagem conceitual orientou-se pela reprodução dos principais nexos conceituais no desenvolvimento do pensamento numérico. A intertextualidade, como recurso que proporciona evidenciar o movimento da imagem conceitual dos sujeitos na exposição e análise dos dados, possibilitou perceber que a dialética do pensamento numérico transita entre discreto-denso-contínuo, comensurável-incomensurável, finito-infinito, cardinalidade-ordenação. Neste movimento do pensamento revelam-se dilemas, a negação de um conhecimento, negação da negação, lógica dialética e lógica formal e as categorias dialéticas: forma e conteúdo, aparência e essência, análise e síntese, empírico e teórico, lógico e histórico, intuição e dedução. Conclui-se que o desenvolvimento da imagem conceitual individual de conceito matemático, ocorre na relação indivíduo-coletividade e, pode ser coerente com o significado científico elaborado historicamente por meio da realização de uma atividade orientadora de ensino fundamentada em pressupostos lógico-históricos do conceito. / This work consists of a study of the formation teachers\' concept image by the individualcollective inter-relation, in order to understand the relation of concept image with the development of the number line in a logical-historical perspective of the concept. The methodological procedures are based on the action research theoretical contribution, whose social problem appears in the mathematics teaching and learning field. The subjects are mathematics educators: the researcher and secondary school teachers. The development of the concept image and its teaching aspects were achieved during a teacher continuous training course, which was organized according to the teaching oriented activity contributions and the logical-historical perspective of the concept. One approach of this training course was the transition from one numerical field to another; a special attention was focussed on the number line, beginning with the formulation of the positional number system and the transition to the natural number, regarding the fraction as a rational number, the irrational number as a result of the incommensurability. Other approach was the arithmetic continuity - as the numerical capitation of the movement. The theoretical and methodological basis of the dialectical materialism and the activity theory contribute to the understanding of the concept image movement. The concept image analysis was guided by the reproduction of the main internal connections of numerical thought development. The intertextuality, as a resource which highlights the subjects\' concept image in the exposition and in the data analysis, made possible to realize that the dialectic of the numerical thought oscillates between the discreet- dense-continuous, the incommensurable and the commensurable, the finite and the infinite, the cardinality and the ordinance. Dilemmas, negation of knowledge, negation of negation, dialectical and formal logic and dialectical categories: form and content, appearance and essence, analysis and synthesis, empirical and theoretical, logical and historical, intuition and deduction, are revealed in this movement. In conclusion, the individual concept image\'s development of the mathematical concept takes place in the individual-collective relations and it can be coherent with the historically elaborated scientific meaning by performing a teaching oriented activity based on the logical-historical concept assumptions.
19

Tallinjen - ett hjälpmedel eller hinder? : En studie om elevers andvändning av tallinjen i problemlösningsuppgifter i årskurs 2. / The number line - An Auxiliary Means or an Obstacle? : A study on students' use of the number line in problem-solving tasks in grade 2.

Jonsson, Nathalie, Stendahl, Denise January 2024 (has links)
Tallinjen är en visuell representation av talordningen som kan användas i undervisningen, där eleverna utmanas att förklara sina tankar. Denna studie utgår ifrån tidigare forskning, närmare bestämt en undersökning genomförd av Skoumpourdi (2010) i Grekland. Syftet med denna studie är att bidra med kunskap om hur användningen av tallinjen påverkar elevers förmåga att lösa problemlösningsuppgifter. Frågeställningarna som har besvarats är: Hur skiljer sig elevers förmåga att lösa problemlösningsuppgifter med och utan tallinje? På vilka olika sätt använder elever tallinjen i sina lösningar? Vilka kritiska aspekter identifieras i elevers lösningar av uppgifter med en tallinje? 124 elever i årskurs 2 fick svara på sex problemlösningsuppgifter där hälften av eleverna fick uppgifter när tallinjen fanns med och hälften fick utan tallinje. De skulle även visa hur de löste uppgifterna. Utifrån det insamlade materialet gjordes en kvantitativ analys där svaren sammanställdes i ett Excel dokument över rätt, fel och icke svar. Resultatet visar att elever löser problemlösningsuppgifter mer framgångsrikt när det finns en tallinje med. Denna studies resultat skiljer sig från Skoumpourdis (2010) studie som visade att eleverna lyckades bättre med problemlösningsuppgifterna när tallinjen inte fanns med. Studiens teoretiska utgångspunkt var variationsteorin. Det gjordes även en kvalitativ analys av hur elever som använde tallinjen löste två av uppgifterna. Utifrån denna analys identifierades kritiska aspekter. / The number line is a visual representation of the numerical order, which can be used for educational purposes, as it challenges students to explain their thought processes. This study is based on previous research/studies, particularly the study from Greece by Skoumpourdi (2010). The purpose of this study is to contribute to a further understanding of how to use the number line that effectively helps students solve problem-solving questions. The formulated questions that have been answered in this study are: What are the differences in students’ ability to solve problem-solving questions with and without the number line? In which ways do students incorporate the number line in their solutions? What critical aspects can be identified in the students’ solutions with the number line? 124 students in grade 2 answered six problem-solving questions in which half of the students were given the number line beside the questions and the other half without it. They would also provide an explanation for how they solved the questions. From the collected data, a quantitative method was used to compile the answers by the students in an Excel document, which was divided into the correct, wrong and no answer. The result showed that students solved problem-solving questions more successfully using the number line. This study’s result differs from the survey by Skoumpourdis (2010), which showed that students solved problem-solving questions more successfully without incorporating the number line. The study’s theoretical starting point was variation theory. A qualitative approach was also used to analyze how the students used the number line to solve two of the problems. Thereafter, an analysis was conducted of this to identify the critical aspects.
20

Kan intensivträning med digitala verktyg påverka elevers taluppfattning och motivation? : En interventionsstudie på högstadiet / Can intensive practice with digital tools affect students number sense and motivation? : An intervention study in Secondary School

Reimendal, Kristina, Svennberg, Solweig January 2015 (has links)
Kan intensivträning med digitala verktyg påverka elevers taluppfattning och motivation? - En interventionsstudie på högstadiet. Can intensive practice with digital tools affect students number sense and motivation? – An intervention study in Secondary School.   Utgångspunkten för denna studie är de negativa konsekvenser matematiksvårigheter kan få för den enskilda eleven, som lämnar grundskolan utan godkänt betyg i matematik. Viktiga faktorer för att lyckas är god taluppfattning och motivation för att jobba med matematik.   Syftet med studien är att undersöka intensivträningens effekter på taluppfattning och motivation för att arbeta med matematik, genom att använda det webbaserade träningsprogrammet Mattelek Flex. Studien är gjord som fallstudie, där intervention, intervjuer och observationer ingått. Fem SUM-elever, som vid studiens början gick i åk 8, deltog. För att undersöka interventionens effekter på taluppfattningen gjordes en diagnos före, direkt efter samt efter sommarlovet. Diagnosen som användes var test 6 i Förstå och använda tal (McIntosh, 2008). Interventionens effekter på motivationen synliggjordes genom intervjuer och observationer, som analyserats utifrån några påverkansfaktorer som Jenner(2004) lyfter fram.   Resultatet visar att arbetet med Mattelek Flex stärker elevernas taluppfattning samtidigt som datorns effekter gör att motivationen ökar. / Can intensive practice with digital tools affect students number sense and motivation?  – an intervention study in Secondary School.   The starting point in this study is the negative consequences difficulties in mathematics may have on the individual student, who leaves primary school without passing there math grades. Important factors to succeed are good number sense and motivation to work with mathematics.   The purpose of this examine is to notice what effect intensive training has on number sense and the motivation to work with mathematics, by using the web based training program Mattelek Flex. The study was made as a case study, concluded interventions, interviews and observations. Five SEM-students, as in the beginning of the study were in the eighth grade, participated. To examine the interventions effects on the number sense, a test was made before, directly after and after a summer breake. The used test was test 6 in “Förstå och använda tal (McIntosh, 2008). The interventions effects on the motivation were made visible through interviews and observations. They were analysed based on some influencing factors by Jenner(2004).   The result shows that, working with Mattelek Flex strengthens the students number sense and the effects of the computer increases the motivation.

Page generated in 0.0656 seconds