• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 8
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atmospheric singular vectors and teleconnections

Will, Andreas, Harlander, Uwe, Metz, Werner 31 January 2017 (has links) (PDF)
Bekanntlich sind atmosphärische Rossbywellezüge (RWTs) Lösungen der Singular Vector Analyse eines gedämpften, barotropen Modells mit Nordwinter Grundströmen. In den SV Basen der verwendeten 40 DJF Grundströme konnten nur wenige wachsende den Rossbywellenzügen ähnliche (RWT Moden) Singulären Vektoren (SVen) gefunden werden. Die RWT Moden kommen nur in wenigen Gebieten der Erde vor. Die instabilste Mode entwickelt sich in der Region des Nordpazifiks (NPACs) innerhalb von 4 Tagen in jedem der verwendeten beobachteten DJF Grundströme. Alle anderen RWT Moden kommen nur bei Verwendung einiger der Grundströme vor. Ihre Entwicklungspfade sind eindeutig für Entwicklungszeiten bis zu 96 h und streuen für längere Zeiten. Die NPAC Mode erklärt zum Optimierungszeitpunkt 96 h bis zu 60 % der atmosphärischen kinetischen Energie (KE) auf der 300 hPa Fläche in der NPAC Region. Es konnte auch gezeigt werden, daß die Zeitreihe des beobachteten Wachstums der NPAC Mode mit dem berechneten Wachstum (den Eigenwerten) konsistent ist. Interessanterweise zeigt die NPAC-KE zum Optimierungszeitpunkt 96 h auch eine schwach signifikante Korrelation mit dem PNA-Index, die für die Optimierungszeit 144 h nicht mehr existiert. Die Ergebnisse legen die Vermutung nahe, daß die verwendeten Grundströme die Entwicklung der RWT Moden bis zu einer Entwicklungszeit von 4 Tagen dominieren und daß die finite Instabilität maßgeblich zur Entwicklung der beobachteten NPAC Rossbywellenzüge in der Atmosphäre beiträgt. Die Ergebnisse geben Hinweise darauf, daß die NPAC mode auch einen Beitrag zur Entwicklung der PNA leistet.
2

Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip

Ehrhardt, Torsten 02 September 2004 (has links) (PDF)
In this habilitation thesis a factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip is established. These operators are considered with matrix-valued symbols and are thought of acting on the vector-valued analogues of the Hardy and Lebesgue spaces. A factorization theory for pure Toeplitz operators and singular integral operators without flip is known since decades and provides necessary and sufficient conditions for Fredholmness and formulas for the defect numbers. In particular, the invertibility of such operators is equivalent to the existence of a certain type of Wiener-Hopf factorization. In this thesis an analogous theory for the afore-mentioned more general classes of operators is developed. It turns out that a completely different kind of factorization is needed. This kind of factorization is studied extensively, and a corresponding Fredholm theory is established. A connection with the Hunt-Muckenhoupt-Wheeden condition is made, and several examples and applications are given as well. / In dieser Habilitationsschrift wird eine Faktorisierungstheorie für Toeplitz plus Hankel-Operatoren und singuläre Integraloperatoren mit Flip aufgestellt. Diese Operatoren werden mit matrixwertigem Symbol betrachtet und sind auf den vektorwertigen Analoga der Hardy- und Lebesgue-Räumen definiert. Eine Faktorisierungstheorie für reine Toeplitz bzw. singuläre Integraloperatoren ohne Flip ist seit Jahrzehnten bekannt. Sie liefert notwendige und hinreichende Bedingungen für die Fredholmeigenschaft und Formeln für die Defektzahlen. Insbesondere ist die Invertierbarkeit derartiger Operatoren äquivalent zur Existenz einer bestimmten Art der Wiener-Hopf-Faktorisierung. In dieser Habilitationsschrift wird eine entsprechende Theorie für die erwähnten, allgemeineren Klassen von Operatoren aufgestellt. Es stellt sich heraus, dass eine völlig andere Art der Faktorisierung benötigt wird. Diese Art der Faktorisierung wird eingehend studiert und eine entsprechende Fredholmtheorie wird entwickelt. Ein Zusammenhang mit der Hunt-Muckenhoupt-Wheeden Bedingung wird hergestellt. Mehrere Beispiele und Anwendungen werden ebenfalls angegeben.
3

Atmospheric singular vectors and teleconnections

Will, Andreas, Harlander, Uwe, Metz, Werner 31 January 2017 (has links)
Bekanntlich sind atmosphärische Rossbywellezüge (RWTs) Lösungen der Singular Vector Analyse eines gedämpften, barotropen Modells mit Nordwinter Grundströmen. In den SV Basen der verwendeten 40 DJF Grundströme konnten nur wenige wachsende den Rossbywellenzügen ähnliche (RWT Moden) Singulären Vektoren (SVen) gefunden werden. Die RWT Moden kommen nur in wenigen Gebieten der Erde vor. Die instabilste Mode entwickelt sich in der Region des Nordpazifiks (NPACs) innerhalb von 4 Tagen in jedem der verwendeten beobachteten DJF Grundströme. Alle anderen RWT Moden kommen nur bei Verwendung einiger der Grundströme vor. Ihre Entwicklungspfade sind eindeutig für Entwicklungszeiten bis zu 96 h und streuen für längere Zeiten. Die NPAC Mode erklärt zum Optimierungszeitpunkt 96 h bis zu 60 % der atmosphärischen kinetischen Energie (KE) auf der 300 hPa Fläche in der NPAC Region. Es konnte auch gezeigt werden, daß die Zeitreihe des beobachteten Wachstums der NPAC Mode mit dem berechneten Wachstum (den Eigenwerten) konsistent ist. Interessanterweise zeigt die NPAC-KE zum Optimierungszeitpunkt 96 h auch eine schwach signifikante Korrelation mit dem PNA-Index, die für die Optimierungszeit 144 h nicht mehr existiert. Die Ergebnisse legen die Vermutung nahe, daß die verwendeten Grundströme die Entwicklung der RWT Moden bis zu einer Entwicklungszeit von 4 Tagen dominieren und daß die finite Instabilität maßgeblich zur Entwicklung der beobachteten NPAC Rossbywellenzüge in der Atmosphäre beiträgt. Die Ergebnisse geben Hinweise darauf, daß die NPAC mode auch einen Beitrag zur Entwicklung der PNA leistet.
4

Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip

Ehrhardt, Torsten 05 July 2004 (has links)
In this habilitation thesis a factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip is established. These operators are considered with matrix-valued symbols and are thought of acting on the vector-valued analogues of the Hardy and Lebesgue spaces. A factorization theory for pure Toeplitz operators and singular integral operators without flip is known since decades and provides necessary and sufficient conditions for Fredholmness and formulas for the defect numbers. In particular, the invertibility of such operators is equivalent to the existence of a certain type of Wiener-Hopf factorization. In this thesis an analogous theory for the afore-mentioned more general classes of operators is developed. It turns out that a completely different kind of factorization is needed. This kind of factorization is studied extensively, and a corresponding Fredholm theory is established. A connection with the Hunt-Muckenhoupt-Wheeden condition is made, and several examples and applications are given as well. / In dieser Habilitationsschrift wird eine Faktorisierungstheorie für Toeplitz plus Hankel-Operatoren und singuläre Integraloperatoren mit Flip aufgestellt. Diese Operatoren werden mit matrixwertigem Symbol betrachtet und sind auf den vektorwertigen Analoga der Hardy- und Lebesgue-Räumen definiert. Eine Faktorisierungstheorie für reine Toeplitz bzw. singuläre Integraloperatoren ohne Flip ist seit Jahrzehnten bekannt. Sie liefert notwendige und hinreichende Bedingungen für die Fredholmeigenschaft und Formeln für die Defektzahlen. Insbesondere ist die Invertierbarkeit derartiger Operatoren äquivalent zur Existenz einer bestimmten Art der Wiener-Hopf-Faktorisierung. In dieser Habilitationsschrift wird eine entsprechende Theorie für die erwähnten, allgemeineren Klassen von Operatoren aufgestellt. Es stellt sich heraus, dass eine völlig andere Art der Faktorisierung benötigt wird. Diese Art der Faktorisierung wird eingehend studiert und eine entsprechende Fredholmtheorie wird entwickelt. Ein Zusammenhang mit der Hunt-Muckenhoupt-Wheeden Bedingung wird hergestellt. Mehrere Beispiele und Anwendungen werden ebenfalls angegeben.
5

Singular BSDEs and PDEs Arising in Optimal Liquidation Problems

Xia, Xiaonyu 16 January 2020 (has links)
Diese Dissertation analysiert BSDEs und PDEs mit singulären Endbedingungen, welche in Problemen der optimalen Portfolioliquidierung auftreten. In den vergangenen Jahren haben Portfolioliquidierungsprobleme in der Literatur zur Finanzmathematik große Aufmerksamkeit erhalten. Ihre wichtigste Eigenschaft ist die singuläre Endbedingung der durch die Liquidierungsbedingung induzierten Wertfunktion, welche eine singuläre Endbedingung der zugehörigen BSDE oder PDE impliziert. Diese Arbeit besteht aus drei Kapiteln. Das erste Kapitel analysiert ein Portfolioliquidierungsproblem für mehrere Wertpapiere mit sofortigem und anhaltendem Preiseinfluss und stochastischer Resilienz. Wir zeigen, dass die Wertfunktion durch eine mehrdimensionale BSRDE mit singulärer Endbedingung beschrieben werden kann. Wir weisen die Existenz einer Lösung dieser BSRDE nach und zeigen, dass diese durch eine Folge von Lösungen von BSRDEs mit endlicher und wachsender Endbedingung approximiert werden kann. Eine neue a priori-Abschätzung für die approximierenden BSRDEs wird für den Nachweis hergeleitet. Das zweite Kapitel betrachtet ein Portfolioliquidierungsproblem mit unbeschränkten Kostenkoeffizienten. Wir weisen die Existenz einer eindeutigen nichtnegativen Viskositätslösung der HJB-Gleichung nach. Das Existenzresultat basiert auf einem neuartigen Vergleichsprinzip für semi-stetige Viskositätssub-/-superlösungen für singuläre PDEs. Stetigkeit der Viskositätslösung ist hinreichend für das Verifikationsargument. Im dritten Kapitel untersuchen wir ein optimales Liquidierungsproblem unter Mehrdeutigkeit der Parameter des Preiseinflusses. In diesem Fall kann die Wertfunktion durch die Lösung einer semilinearen PDE mit superlinearem Gradienten beschrieben werden. Zuerst zeigen wir die Existenz einer Viskositätslösung indem wir unser Vergleichsprinzip für singuläre PDEs erweitern. Sodann weisen wir die Regularität mit einer asymptotischen Entwicklung der Lösung am Endzeitpunkt nach. / This dissertation analyzes BSDEs and PDEs with singular terminal condition arising in models of optimal portfolio liquidation. Portfolio liquidation problems have received considerable attention in the financial mathematics literature in recent years. Their main characteristic is the singular terminal condition of the value function induced by the liquidation constraint, which translates into a singular terminal state constraint on the associated BSDE or PDE. The dissertation consists of three chapters. The first chapter analyzes a multi-asset portfolio liquidation problem with instantaneous and persistent price impact and stochastic resilience. We show that the value function can be described by a multi-dimensional BSRDE with a singular terminal condition. We prove the existence of a solution to this BSRDE and show that it can be approximated by a sequence of the solutions to BSRDEs with finite increasing terminal condition. A novel a priori estimate for the approximating BSRDEs is established for the verification argument. The second chapter considers a portfolio liquidation problem with unbounded cost coefficients. We establish the existence of a unique nonnegative continuous viscosity solution to the HJB equation. The existence result is based on a novel comparison principle for semi-continuous viscosity sub-/supersolutions for singular PDEs. Continuity of the viscosity solution is enough to carry out the verification argument. The third chapter studies an optimal liquidation problem under ambiguity with respect to price impact parameters. In this case the value function can be characterized by the solution to a semilinear PDE with superlinear gradient. We first prove the existence of a solution in the viscosity sense by extending our comparison principle for singular PDEs. Higher regularity is then established using an asymptotic expansion of the solution at the terminal time.
6

Maximum Principle for Reflected BSPDE and Mean Field Game Theory with Applications

Fu, Guanxing 29 June 2018 (has links)
Diese Arbeit behandelt zwei Gebiete: stochastische partielle Rückwerts-Differentialgleichungen (BSPDEs) und Mean-Field-Games (MFGs). Im ersten Teil wird über eine stochastische Variante der De Giorgischen Iteration ein Maximumprinzip für quasilineare reflektierte BSPDEs (RBSPDEs) auf allgemeinen Gebieten bewiesen. Als Folgerung erhalten wir ein Maximumprinzip für RBSPDEs auf beschränkten, sowie für BSPDEs auf allgemeinen Gebieten. Abschließend wird das lokale Verhalten schwacher Lösungen untersucht. Im zweiten Teil zeigen wir zunächst die Existenz von Gleichgewichten in MFGs mit singulärer Kontrolle. Wir beweisen, dass die Lösung eines MFG ohne Endkosten und ohne Kosten in der singulären Kontrolle durch die Lösungen eines MFGs mit strikt regulären Kontrollen approximiert werden kann. Die vorgelegten Existenz- und Approximationsresultat basieren entscheidend auf der Wahl der Storokhod M1 Topologie auf dem Raum der Càdlàg-Funktion. Anschließend betrachten wir ein MFG optimaler Portfolioliquidierung unter asymmetrischer Information. Die Lösung des MFG charakterisieren wir über eine stochastische Vorwärts-Rückwärts-Differentialgleichung (FBSDE) mit singulärer Endbedingung der Rückwärtsgleichung oder alternativ über eine FBSDE mit endlicher Endbedingung, jedoch singulärem Treiber. Wir geben ein Fixpunktargument, um die Existenz und Eindeutigkeit einer Kurzzeitlösung in einem gewichteten Funktionenraum zu zeigen. Dies ermöglicht es, das ursprüngliche MFG mit entsprechenden MFGs ohne Zustandsendbedinung zu approximieren. Der zweite Teil wird abgeschlossen mit einem Leader-Follower-MFG mit Zustandsendbedingung im Kontext optimaler Portfolioliquidierung bei hierarchischer Agentenstruktur. Wir zeigen, dass das Problem beider Spielertypen auf singuläre FBSDEs zurückgeführt werden kann, welche mit ähnlichen Methoden wie im vorangegangen Abschnitt behandelt werden können. / The thesis is concerned with two topics: backward stochastic partial differential equations and mean filed games. In the first part, we establish a maximum principle for quasi-linear reflected backward stochastic partial differential equations (RBSPDEs) on a general domain by using a stochastic version of De Giorgi’s iteration. The maximum principle for RBSPDEs on a bounded domain and the maximum principle for BSPDEs on a general domain are obtained as byproducts. Finally, the local behavior of the weak solutions is considered. In the second part, we first establish the existence of equilibria to mean field games (MFGs) with singular controls. We also prove that the solutions to MFGs with no terminal cost and no cost from singular controls can be approximated by the solutions, respectively control rules, for MFGs with purely regular controls. Our existence and approximation results strongly hinge on the use of the Skorokhod M1 topology on the space of càdlàg functions. Subsequently, we consider an MFG of optimal portfolio liquidation under asymmetric information. We prove that the solution to the MFG can be characterized in terms of a forward backward stochastic differential equation (FBSDE) with possibly singular terminal condition on the backward component or, equivalently, in terms of an FBSDE with finite terminal value, yet singular driver. We apply the fixed point argument to prove the existence and uniqueness on a short time horizon in a weighted space. Our existence and uniqueness result allows to prove that our MFG can be approximated by a sequence of MFGs without state constraint. The final result of the second part is a leader follower MFG with terminal constraint arising from optimal portfolio liquidation between hierarchical agents. We show the problems for both follower and leader reduce to the solvability of singular FBSDEs, which can be solved by a modified approach of the previous result.
7

Nearly Gaussian Curvature Perturbations in Ekpyrotic Cosmologies

Mallwitz, Enno 20 March 2019 (has links)
In dieser Arbeit studieren wir das ekpyrotische Szenario, welches ein kosmologisches Modell des frühen Universums ist. Dieses Modell erklärt mit Hilfe einer kontrahierenden ekpyrotischen Phase die "Anfangsbedingungen" des Universums. Das bedeutet, dass der konventionelle "Urknall" durch einem Rückprall ersetzt wird. In dieser Arbeit versuchen wir Unstimmigkeiten zwischen den Vorhersagen der ekpyrotischen Modelle und den Messungen der Kosmologischen Hintergrundstrahlung des Planck Satelliten zu lösen. Den Planck Messungen zufolge sind die ursprünglichen adiabatischen Fluktuationen fast skaleninvariant und gaußverteilt. Während der ekpyrotischen Phase werden typischer Weise Flutuationen mit nicht-Gaußschen Korrekturen erzeugt. Wir schlagen zwei Ansätze vor, um diese Unstimmigkeit zu beheben. In dem nicht-minimalen entropischen Mechanismus werden fast skaleninvariante entropische Fluktuationen mit Hilfe einer nicht-minimalen kinetischen Kopplung zwischen zwei Skalarfeldern erzeugt. Wir werden zeigen, dass die nicht-Gaußschen Korrekturen während der ekpyrotischen Phase genau Null sind. Dies führt zu insgesamt kleinen nicht-Gaußschen Korrekturen nach der Umwandlung von entropischen zu adiabatischen Fluktuationen. Im Folgendem werden wir eine kinetische Umwandlung untersuchen, die nach einem nicht-singulären Rückprall stattfindet. Das Wachstum der entropischen Fluktuationen während des Rückpralls hat zur Folge, dass die möglichen nicht-Gaußschen Korrekturen, die zur Zeit der ekpyrotischen Phase erzeugt wurden, während des Rückpralls unterdrückt werden. Im letzten Teil der Arbeit gehen wir ein gravierendes Problem des inflationären Paradigmas an, welches "slow-roll eternal inflation" genannt wird. Wir schlagen ein Modell vor, das Ideen von Inflation und Ekpyrosis verbindet. Während der Konflation expandiert das Universum beschleunigt. Die adiabatischen Fluktuationen verhalten sich jedoch wie bei ekpyrotischen Modellen und wird "slow-roll eternal inflation" verhindert. / In this thesis, we study the ekpyrotic scenario, which is a cosmological model of the early universe. In this model the ``initial conditions'' of the universe are determined by a contracting ekpyrotic phase, which means that the conventional ``Big Bang'' is replaced by a bounce. The following thesis addresses the tension between ekpyrotic predictions and the observations of the Cosmic Microwave Background radiation by the Planck team. According to the Planck data, the primordial curvature fluctuations are nearly scale-invariant and Gaussian. However, during ekpyrosis, the fluctuations have typically sizable non-Gaussian signatures. In this thesis, we propose two approaches in order to resolve the tension with observations. In the non-minimal entropic mechanism, nearly scale-invariant entropy perturbations are created due to a non-minimal kinetic coupling between two scalar fields. We will show that the non-Gaussian corrections during ekpyrosis are precisely zero leading to overall small non-Gaussian signatures after the conversion process from entropy perturbations to curvature perturbations. In the following, we will consider a kinetic conversion phase, which takes place after a non-singular bounce. Due to the growth of entropy perturbations during the bounce phase, the possibly large non-Gaussian corrections created during the ekpyrotic phase become suppressed during the bounce. The last part of this thesis addresses a major problem of the inflationary paradigm: Due to large adiabatic fluctuations, slow-roll eternal inflation creates infinitely many physically distinct pocket universes. We propose a model in the framework of scalar-tensor theories, which conflated ideas of both inflation and ekpyrosis. During conflation, the universe undergoes accelerated expansion, but there are no large adiabatic fluctuations like during ekpyrosis resulting in the absence of slow-roll eternal inflation.
8

Robust Identification of Topological Defects in Discrete Vector Fields with Applications to Biological Image Data

Hoffmann, Karl B. 02 June 2023 (has links)
Topological defects are distinguished objects in vector fields that occur in a wide range of applications, ranging from material sciences to cosmology to bio-medical imaging and fingerprint recognition. This thesis considers topological point defects, also known as singular points, of two-dimensional vector fields. Besides Euclidean vectors as representation of modulus and direction, this also includes nematic vectors that equally have a modulus but direction is replaced with a head-to-tail symmetric orientation. In both case, a singular point or topological defect is an isolated discontinuity in an otherwise continuous vector field. It is characterized by its index or topological charge, which attains integer values for polar and half-integer values for nematic vector fields. There are different yet equivalent approaches to define the index. They either base on homology groups and the Brouwer degree, or on the first fundamental group and the mapping degree, or relatedly on lifting of a loop path enclosing the singular point. The definition by lift used here translates changes in the vector field along a path into a summed change in orientation angle. This translates to topological defects in discretized vector fields, where topological charge is calculated as sum of finite angle differences along a loop path between discretization points. On closer inspection, this calculation is an estimation, and is guaranteed to yield the correct estimate only with additional assumptions, for example when the underlying continuous-domain vector field is smooth and sampled at sufficiently high spatial resolution. Otherwise, arbitrary locations and charges of topological defects are possible, which yield exactly the same discretized vectors by the periodicity of representative orientation angles. Besides, the estimated topological charge depends discontinuously on each of the discrete input vectors and exhibits discrete jumps. As application data typically is subject to noise and uncertainty, this raises the question how reliable are topological defects identified in it. The present thesis quantifies, how large perturbations of a vector field are admissible without alteration of topological defects and charges. To that end, it introduces a robustness measure for each edge in a discretization grid that are combined along loop paths. Replacing critical edges of minimal robustness within a loop path by other path segments around a minimally larger area allows targeted increase of robustness. This data-dependent method called expansion over the critical edge is iterated until a user-set robustness is satisfied. The final areas of this algorithm are shown to have minimal size and therefore maximal spatial resolution, which also adapts to the local quality of data. The areas are also given as the faces in the graph of sufficiently robust edges after deleting all vertices of degree 1 (leaves) and all their connected edges. The minimal robust areas turn out to be nested by inclusion according to their robustness threshold. This allows to tradeoff detection robustness of topological charges versus their localization accuracy, both within a selection of pre-defined loop path shapes, and for free data-dependent expansion over the critical edge. Differently from defect identification by pattern matching, there is no restriction on the charge detectable. Besides, the robustness is shown to detect the size of unordered cores of defects. Robust defect areas indicate possible defect dynamics comprising motion, defect pair generation and annihilation already from single time point data. The robustness is also applicable to irregular discretization grids thanks to its graph theoretic characterization, and an extension to curved surfaces is foreseeable. The robust data-dependent defect identification is exemplified on microscopy images of the fruit fly Drosophila melanogaster. During Dorsal Closure, a developmental process, a cell sheet called amnioserosa contracts in highly regulated manner, whereby forces are actively generated and propagated along filamentous proteins like actin. Thereby, activity level and visco-elastic properties of the tissue are linked to the topological defects in the actin orientation field. Robust detection of these reveals that the sum over robust charges is clearly positive in the hundreds, whereas the overall sum of charge without robustness consideration fluctuates around zero. Numerous charges are observed, but $\pm 1/2$ dominate and confirm the amnioserosa as nematic material despite polar molecular constituents like actin. The sizes of robust defects span three orders of magnitude, and the largest defects follow the shapes of biological cells. The size distribution decays by a power law with the power for positive defects being more negative. Time courses show slightly higher speed of motion for +1/2 defects than for -1/2 defects, an order of magnitude above material flow velocity. Experiments with a genetic modification in the protein Crumbs had shown excess contraction of the amnioserosa cell layer during development. Comparing defect velocity of these embryos to wildtype suggests that viscosity and rotational viscosity increase stronger than activity level. This hypothesis remains to be tested in a combination of experiments and simulations, yet it would not have been generated in the first place without consideration of robust defects. More generally, the presented robustness measure and optimal data-dependent identification of topological defects could benefit the analysis of defects in discretized vector fields in a variety of disciplines. The optimal data-dependent identification allows for example to calculate error distributions for charge and localization of defects. The size, shape, and nested inclusion of robust defects constitute new observables, that generate numerous follow-up questions already for the fruit fly and enable novel analyses.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Application fields of topological defects . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenges of noisy, discretized vector fields . . . . . . . . . . . . . . . . . . 2 1.3 Thesis contribution and outline . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Polar and nematic vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Isomorphism between polar and nematic vectors in two dimensions . 9 2.2 Homotopy, and (universal) covering . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Homotopies and the degree of mappings in the sense of homotopies . 19 2.2.2 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Defect identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Index and topological charge in continuous domains . . . . . . . . . . . . . 32 3.1.1 Definition of topological charge by lift . . . . . . . . . . . . . . . . . 39 3.1.2 Differential expressions for topological charge . . . . . . . . . . . . . 46 3.2 Topological charge in discrete domains . . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Correct discretization by sufficiently fine discretization . . . . . . . . 53 3.3 Topological charge estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Comparison: defect identification by loop paths . . . . . . . . . . . . . . . . 61 3.4.1 ... equals fixed-size stencils . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.2 ... equals convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.3 ... resembles “diffusive topological charge” . . . . . . . . . . . . . . . 65 3.4.4 ... does not improve by larger stencil size . . . . . . . . . . . . . . . 66 3.4.5 ... is linked to local maxima of azimuthal change . . . . . . . . . . . 68 3.4.6 ... differs from nematic order parameter thresholds . . . . . . . . . . 68 3.4.7 ... differs from matching with template patterns . . . . . . . . . . . 70 3.4.8 ... extends to irregular and unstructured data . . . . . . . . . . . . . 71 3.5 Discontinuous dependence of defects on discretized vector fields . . . . . . . 72 4 Robustness of defect identification and topological charge estimation in discrete domains . . . 75 4.1 Robustness between two discretization points . . . . . . . . . . . . . . . . . 76 4.2 Robustness of a discrete loop path . . . . . . . . . . . . . . . . . . . . . . . 84 4.3 Magnitude-aware robustness for non-normalized vector fields . . . . . . . . 102 4.4 Robustness for fixed path shapes . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.1 Robustness of fixed-shape identification for noise-free defects . . . . 117 4.4.2 Robustness of fixed-shape identification for noisy defects . . . . . . . 120 4.5 Data-dependent path shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.5.1 Expansion over the critical edge . . . . . . . . . . . . . . . . . . . . 126 4.5.2 Graph-theoretic characterization . . . . . . . . . . . . . . . . . . . . 128 4.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.5.4 Detection of defect core size . . . . . . . . . . . . . . . . . . . . . . . 135 4.5.5 Estimation of defect motion from still images . . . . . . . . . . . . . 143 4.5.6 Estimation of defect pair annihilation and generation, respectively, from still images . . . 145 4.5.7 Application to irregular grids . . . . . . . . . . . . . . . . . . . . . . 146 4.6 Comparison of defect identification methods from a robustness point of view 148 4.7 Extensions of the robustness measure . . . . . . . . . . . . . . . . . . . . . . 154 4.7.1 ... to two-dimensional manifolds . . . . . . . . . . . . . . . . . . . . 155 4.7.2 ... to higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 160 5 Application to Dorsal Closure in Drosophila embryos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.1 Dorsal Closure in the fruit fly Drosophila melanogaster . . . . . . . . . . . . 164 5.1.1 Cytoskeleton, motor proteins, and cell junctions . . . . . . . . . . . 164 5.1.2 Active gel models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.1.3 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.1.4 Orientation estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.2 Topological charge analysis by robustness . . . . . . . . . . . . . . . . . . . 173 5.2.1 Robustness threshold of edges . . . . . . . . . . . . . . . . . . . . . . 173 5.2.2 Sizes of robust areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 5.2.3 Total topological charge in the field of view . . . . . . . . . . . . . . 181 5.2.4 Sum of robust charges . . . . . . . . . . . . . . . . . . . . . . . . . . 186 5.3 Further observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.4 Comparison of robust defects . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.4.1 ... to microscopic defects . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.4.2 ... to image preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 201 5.5 Towards parameter estimation from defect dynamics . . . . . . . . . . . . . 202 5.5.1 The amnioserosa as an active nematic material . . . . . . . . . . . . 202 5.5.2 Defect tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.5.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 / Topologische Defekte sind abgegrenzte Objekte in Vektorfeldern, die in einer großen Bandbreite von Anwendungsfeldern auftreten. Diese reichen von den Materialwissenschaften über Kosmologie und bio-medizinische Bildgebung bis zur Erkennung von Fingerabdrücken. Die vorliegende Dissertation beschäftigt sich mit topologischen Punkt-Defekten, auch bekannt als singuläre Punkte, in zwei-dimensionalen Vektorfeldern. Neben Euklidischen Vektoren als Darstellung von Betrag und Richtung umfasst das auch nematische Vektoren, die genauso einen Betrag haben, aber deren Richtungsinformation symmetrisch zwischen “vorn” und “hinten” ist. In beiden Fällen ist ein singulärer Punkt oder topologischer Defekt als isolierte Unstetigkeit in einem ansonsten stetigen Vektorfeld definiert. Er wird durch seinen Index oder die topologische Ladung charakterisiert, die ganzzahlige Werte für polare Felder annimmt, und halb-zahlige in nematischen Feldern. Es gibt verschiedene, jedoch äquivalente Weisen, den Index zu definieren. Sie basieren entweder auf Homologiegruppen und dem Brouwer'schen Abbildungsgrad, oder auf der Fundamentalgruppe und deren Abbildungsgrad, oder damit verbunden auf der Hochhebung eines geschlossenen Pfades um den singulären Punkt. Hier wird die Definition mittels Hochhebung verwendet, welche die Änderung des Vektorfeldes entlang eines Pfades in eine summierte Änderung des Orientierungswinkels übersetzt. Dies überträgt sich zu diskretisierten Vektorfeldern, wo die topologische Ladung als Summe über endliche Winkeldifferenzen entlang eines Pfades zwischen Diskretisierungspunkten berechnet wird. Diese Berechungsweise ist bei genauer Betrachtung eine Schätzung, und ihre Korrektheit nur unter zusätzlichen Bedingungen garantiert, zum Beispiel wenn ein zugrundeliegendes Vektorfeld mit kontinuierlichem Definitionsbereich glatt ist und mit hinreichender räumlicher Auflösung abgetastet wurde. Aufgrund der periodischen Darstellung jedes Vektors durch Orientierungswinkel sind andernfalls beliebige Positionen und Ladungen von topologischen Defekten möglich, die zu exakt den gleichen diskretisierten Vektoren führen. Außerdem hängt der Schätzwert der topologischen Ladung nicht kontinuierlich von jedem einzelnen der diskreten Vektoren ab, sondern weist diskrete Sprünge auf. Da Anwendungsdaten meist mit Messunsicherheiten behaftet oder verrauscht sind, steht die Frage, wie verlässlich die darin identifizierten Defekte sind. Die vorliegende Dissertation quantifiziert, wie groß die Störungen eines Vektorfeldes sein dürfen, ohne dass sich topologische Defekte und Ladungen ändern. Dafür wird ein Robustheitsmaß eingeführt, zunächst für jede Kante in einem Diskretisierungsgitter, und darauf basierend für Pfade. Das ermöglicht, die Robustheit der Defekt-Identifizierung gezielt zu erhöhen: Kritische Kanten mit der kleinsten Robustheit innerhalb eines Pfades werden durch andere Pfadstücke ersetzt, die eine minimal größere Fläche begrenzen. Diese datenabhängige “Erweiterung über die kritische Kante” (expansion over the critical edge) wird wiederholt, bis eine benutzerdefinierte Robustheit erreicht ist. Es wird gezeigt, dass die finalen Flächen dieses iterativen Algorithmus minimale Größe und damit höchste räumliche Auflösung haben, die sich zudem lokal an die Qualität der Daten anpasst. Die Flächen ergeben sich auch aus dem Graphen aller hinreichend robusten Kanten durch Löschen aller Knoten vom Grad 1 (Blätter) und der damit verbundenen Kanten. Es stellt sich damit heraus, dass die minimalen robusten Flächen je nach Robustheitsgrenze per Inklusion verkettet sind. Das erlaubt, die Robustheit für die Identifizierung topologischer Ladungen gegen die räumliche Genauigkeit abzuwägen, sowohl innerhalb von vorgegebenen Pfadformen, als auch für die freie, datenabhängige Erweiterung über die kritische Kante. Dabei gibt es — anders als bei Methoden der Defekt-Identifizierung mittels Muster-Erkennung — keine Beschränkung für die detektierbare Ladung. Außerdem wird gezeigt, dass man mit dem Robustheitsmaß die Größe von ungeordneten Kernen der Defekte bestimmen kann. Sogar die mögliche Dynamik von Defekten mit Bewegung, Paarbildung und -auslöschung wird aus den robusten Flächen eines einzelnen Zeitpunktes erkennbar. Die graphentheoretische Darstellung erlaubt dabei auch die Anwendung auf unstrukturierten Diskretisierungsgitter, und eine Erweiterung auf gekrümmte Flächen ist absehbar. Die robuste, datenabhängige Identifizierung von Defekten wird exemplarisch auf Mikroskopie-Bilder der Fruchtfliege Drosophila melanogaster angewendet. Während der Dorsal Closure, einem Entwicklungsprozess, zieht sich eine Zellschicht namens Amnioserosa auf genau regulierte Weise zusammen, wobei die wirkenden Kräfte entlang von Filamenten wie Aktin aktiv erzeugt und übertragen werden. Dabei sind der Aktivitätsgrad und viskoelastische Eigenschaften des Gewebes mit den topologischen Defekten im Orientierungsfeld des Aktins verknüpft. Deren robuste Identifizierung zeigt, dass die Summe der robusten Ladungen eindeutig positiv ist mit dreistelligen Werten, während die Gesamtladung ohne Beachtung der Robustheit um Null schwankt. Es werden zahlreiche Ladungen beobachtet; aber $\pm 1/2$ dominieren und bestätigen die Amnioserosa als nematisches Material, obwohl die molekularen Bestandteile wie Aktin polar sind. Die Größen von robusten Defekten umfassen drei Zehnerpotenzen, und die größten Defekte folgen der Form biologischer Zellen. Die Größenverteilung fällt nach einem Potenzgesetz ab, mit stärkerer negativer Potenz für positive Defekte. Zeitreihen zeigen geringfügig höhere Geschwindigkeit von +1/2 Defekten als von -1/2 Defekten, und deutlich über der Geschwindigkeit des Materialflusses. In Experimenten mit Modifikation im Gen des Proteins Crumbs wurde beobachtet, dass sich die Zellschicht der Amnioserosa in der Entwicklung übermäßig zusammenzieht. Ein Vergleich der Defektgeschwindigkeiten zwischen diesen Embryonen und Wildtyp führt zu der Hypothese, dass die Mutation die Viskosität und die Rotationsviskosität stärker steigen lässt als den Aktivitätsgrad. Diese Hypothese muss jedoch noch durch eine Kombination von Experimenten und Simulationen überprüft werden. Sie wäre aber ohne die Betrachtung von robusten Defekten gar nicht erst möglich gewesen. Das vorgestellte Robustheitsmaß könnte allgemein für vielfältige Disziplinen bei der Analyse topologischer Defekte in diskretisierten Vektorfeldern nützen. Auf Basis der optimalen datenabhängige Identifizierung kann zum Beispiele eine Fehlerrechnung für die Ladung und Lage von Defekten durchgeführt werden. Die Größen, Formen und Inklusionsketten von robusten Defekten bilden interessante neue Beobachtungsgrößen, die allein im Fall der Fruchtfliege zahlreiche weiterführende Fragen aufwerfen und bisher unbekannte Untersuchungen ermöglichen.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Application fields of topological defects . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenges of noisy, discretized vector fields . . . . . . . . . . . . . . . . . . 2 1.3 Thesis contribution and outline . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Polar and nematic vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Isomorphism between polar and nematic vectors in two dimensions . 9 2.2 Homotopy, and (universal) covering . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Homotopies and the degree of mappings in the sense of homotopies . 19 2.2.2 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Defect identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Index and topological charge in continuous domains . . . . . . . . . . . . . 32 3.1.1 Definition of topological charge by lift . . . . . . . . . . . . . . . . . 39 3.1.2 Differential expressions for topological charge . . . . . . . . . . . . . 46 3.2 Topological charge in discrete domains . . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Correct discretization by sufficiently fine discretization . . . . . . . . 53 3.3 Topological charge estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Comparison: defect identification by loop paths . . . . . . . . . . . . . . . . 61 3.4.1 ... equals fixed-size stencils . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.2 ... equals convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.3 ... resembles “diffusive topological charge” . . . . . . . . . . . . . . . 65 3.4.4 ... does not improve by larger stencil size . . . . . . . . . . . . . . . 66 3.4.5 ... is linked to local maxima of azimuthal change . . . . . . . . . . . 68 3.4.6 ... differs from nematic order parameter thresholds . . . . . . . . . . 68 3.4.7 ... differs from matching with template patterns . . . . . . . . . . . 70 3.4.8 ... extends to irregular and unstructured data . . . . . . . . . . . . . 71 3.5 Discontinuous dependence of defects on discretized vector fields . . . . . . . 72 4 Robustness of defect identification and topological charge estimation in discrete domains . . . 75 4.1 Robustness between two discretization points . . . . . . . . . . . . . . . . . 76 4.2 Robustness of a discrete loop path . . . . . . . . . . . . . . . . . . . . . . . 84 4.3 Magnitude-aware robustness for non-normalized vector fields . . . . . . . . 102 4.4 Robustness for fixed path shapes . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.1 Robustness of fixed-shape identification for noise-free defects . . . . 117 4.4.2 Robustness of fixed-shape identification for noisy defects . . . . . . . 120 4.5 Data-dependent path shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.5.1 Expansion over the critical edge . . . . . . . . . . . . . . . . . . . . 126 4.5.2 Graph-theoretic characterization . . . . . . . . . . . . . . . . . . . . 128 4.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.5.4 Detection of defect core size . . . . . . . . . . . . . . . . . . . . . . . 135 4.5.5 Estimation of defect motion from still images . . . . . . . . . . . . . 143 4.5.6 Estimation of defect pair annihilation and generation, respectively, from still images . . . 145 4.5.7 Application to irregular grids . . . . . . . . . . . . . . . . . . . . . . 146 4.6 Comparison of defect identification methods from a robustness point of view 148 4.7 Extensions of the robustness measure . . . . . . . . . . . . . . . . . . . . . . 154 4.7.1 ... to two-dimensional manifolds . . . . . . . . . . . . . . . . . . . . 155 4.7.2 ... to higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 160 5 Application to Dorsal Closure in Drosophila embryos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.1 Dorsal Closure in the fruit fly Drosophila melanogaster . . . . . . . . . . . . 164 5.1.1 Cytoskeleton, motor proteins, and cell junctions . . . . . . . . . . . 164 5.1.2 Active gel models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.1.3 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.1.4 Orientation estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.2 Topological charge analysis by robustness . . . . . . . . . . . . . . . . . . . 173 5.2.1 Robustness threshold of edges . . . . . . . . . . . . . . . . . . . . . . 173 5.2.2 Sizes of robust areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 5.2.3 Total topological charge in the field of view . . . . . . . . . . . . . . 181 5.2.4 Sum of robust charges . . . . . . . . . . . . . . . . . . . . . . . . . . 186 5.3 Further observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.4 Comparison of robust defects . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.4.1 ... to microscopic defects . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.4.2 ... to image preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 201 5.5 Towards parameter estimation from defect dynamics . . . . . . . . . . . . . 202 5.5.1 The amnioserosa as an active nematic material . . . . . . . . . . . . 202 5.5.2 Defect tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.5.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9

Point Source Approximation Methods in Inverse Obstacle Reconstruction Problems / Point Source Approximation Methods in Inverse Obstacle Reconstruction Problems

Erhard, Klaus 07 November 2005 (has links)
No description available.

Page generated in 0.0513 seconds