11 |
Signal Processing for Spectroscopic ApplicationsGudmundson, Erik January 2010 (has links)
Spectroscopic techniques allow for studies of materials and organisms on the atomic and molecular level. Examples of such techniques are nuclear magnetic resonance (NMR) spectroscopy—one of the principal techniques to obtain physical, chemical, electronic and structural information about molecules—and magnetic resonance imaging (MRI)—an important medical imaging technique for, e.g., visualization of the internal structure of the human body. The less well-known spectroscopic technique of nuclear quadrupole resonance (NQR) is related to NMR and MRI but with the difference that no external magnetic field is needed. NQR has found applications in, e.g., detection of explosives and narcotics. The first part of this thesis is focused on detection and identification of solid and liquid explosives using both NQR and NMR data. Methods allowing for uncertainties in the assumed signal amplitudes are proposed, as well as methods for estimation of model parameters that allow for non-uniform sampling of the data. The second part treats two medical applications. Firstly, new, fast methods for parameter estimation in MRI data are presented. MRI can be used for, e.g., the diagnosis of anomalies in the skin or in the brain. The presented methods allow for a significant decrease in computational complexity without loss in performance. Secondly, the estimation of blood flow velo-city using medical ultrasound scanners is addressed. Information about anomalies in the blood flow dynamics is an important tool for the diagnosis of, for example, stenosis and atherosclerosis. The presented methods make no assumption on the sampling schemes, allowing for duplex mode transmissions where B-mode images are interleaved with the Doppler emissions.
|
12 |
Mobile Velocity Estimation Using a Time-Frequency ApproachAzemi, Ghasem January 2003 (has links)
This thesis deals with the problem of estimating the velocity of a mobile station (MS)in a mobile communication system using the instantaneous frequency (IF) of the received signal at the MS antenna. This estimate is essential for satisfactory handover performance, effective dynamic channel assignment, and optimisation of adaptive multiple access wireless receivers. Conventional methods for estimating the MS velocity are based either on the statistics of the envelope or quadrature components of the received signal. In chapter 4 of the thesis, we show that their performance deteriorates in the presence of shadowing. Other velocity estimators have also been proposed which require prior estimation of the channel or the average received power. These are generally difficult to obtain due to the non-stationary nature of the received signal. An appropriate window which depends on the unknown MS velocity must first be applied in order to accurately estimate the required quantities. Using the statistics of the IF of the received signal at the MS antenna given in chapter 3, new velocity estimators are proposed in chapter 4 of this thesis. The proposed estimators are based on the moments, zero-crossing rate, and covariance of the received IF. Since the IF of the received signal is not affected by any amplitude distortion, the proposed IF-based estimators are robust to shadowing and propagation path-loss. The estimators for the MS velocity in a macro- and micro-cellular system are presented separately. A macro-cell system can be considered as a special case of a micro-cell in which there is no line-of-sight component at the receiver antenna. It follows that those estimators which are derived for micro-cells can be used in a macro-cell as well. In chapter 4, we analyse the performance of the proposed velocity estimators in the presence of additive noise, non-isotropic scattering, and shadowing. We also prove analytically that the proposed velocity estimators outperform the existing methods in the presence of shadowing and additive noise. The proposed IF-based estimators need prior estimation of both the IF of the received signal and Ricean K-factor. The IF estimation in a typical wireless environment, can be considered as a special case of a general problem of IF estimation in the presence of multiplicative and additive noise. In chapter 5, we show that current time-frequency approaches to this problem which are based on the peak of a time-frequency distribution (TFD) of the signal, fail because of the special shape of the power spectral density of the multiplicative noise in a wireless environment. To overcome this drawback, the use of the first-order moment of a TFD is studied in chapter 5. Theoretical analysis and simulations show that the IF estimator based on the first-order moment of a TFD exhibits negligible bias when the signal-to-additive noise ratio is more than 10 dB. The Ricean K-factor is not only necessary for velocity estimation in micro-cells, but also is a measure of the severity of fading and a good indicator of the channel quality. Two new methods for estimating the Ricean K-factor based on the first two moments of the envelope of the received signal, are proposed in chapter 6. Performance analysis presented in chapter 6, prove that the proposed K estimators are robust to non-isotropic scattering. Theoretical analysis and simulations which are presented in chapters 4 and 7 of this thesis, prove that the proposed velocity and K estimators outperform existing estimators in the presence of shadowing and additive noise.
|
13 |
Stochastic Geometry Based Analysis of Capacity, Mobility and Energy Efficiency for Dense Heterogeneous NetworksMerwaday, Arvind 29 March 2016 (has links)
In recent years, the increase in the population of mobile users and the advances in computational capabilities of mobile devices have led to an exponentially increasing traffic load on the wireless networks. This trend is foreseen to continue in the future due to the emerging applications such as cellular Internet of things (IoT) and machine type communications (MTC). Since the spectrum resources are limited, the only promising way to keep pace with the future demand is through aggressive spatial reuse of the available spectrum which can be realized in the networks through dense deployment of small cells. There are many challenges associated with such densely deployed heterogeneous networks (HetNets). The main challenges which are considered in this research work are capacity enhancement, velocity estimation of mobile users, and energy efficiency enhancement.
We consider different approaches for capacity enhancement of the network. In the first approach, using stochastic geometry we theoretically analyze time domain inter-cell interference coordination techniques in a two-tier HetNet and optimize the parameters to maximize the capacity of the network. In the second approach, we consider optimization of the locations of aerial bases stations carried by the unmanned aerial vehicles (UAVs) to enhance the capacity of the network for public safety and emergency communications, in case of damaged network infrastructure. In the third approach, we introduce a subsidization scheme for the service providers through which the network capacity can be improved by using regulatory power of the government. Finally, we consider the approach of device-to-device communications and multi-hop transmissions for enhancing the capacity of a network.
Velocity estimation of high speed mobile users is important for effective mobility management in densely deployed small cell networks. In this research, we introduce two novel methods for the velocity estimation of mobile users: handover-count based velocity estimation, and sojourn time based velocity estimation. Using the tools from stochastic geometry and estimation theory, we theoretically analyze the accuracy of the two velocity estimation methods through Cramer-Rao lower bounds (CRLBs).
With the dense deployment of small cells, energy efficiency becomes crucial for the sustained operation of wireless networks. In this research, we jointly study the energy efficiency and the spectral efficiency in a two-tier HetNet. We optimize the parameters of inter-cell interference coordination technique and study the trade-offs between the energy efficiency and spectral efficiency of the HetNet.
|
14 |
Evaluation of Target Tracking Using Multiple Sensors and Non-Causal AlgorithmsVestin, Albin, Strandberg, Gustav January 2019 (has links)
Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development. An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering. Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth. Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.
|
Page generated in 0.0901 seconds