• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 16
  • 14
  • 7
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 80
  • 80
  • 27
  • 21
  • 20
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Multiplicidade de soluções para problemas elípticos singulares envolvendo crescimento crítico

Xavier de Souza, Manassés 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T18:28:40Z (GMT). No. of bitstreams: 2 arquivo637_1.pdf: 901737 bytes, checksum: 0ab7823a865239707eb0c5143fe95131 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2010 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Usando métodos variacionais e o método de sub e super soluções, neste trabalho estudamos existência e multiplicidade de soluções para algumas classes de problemas elípticos singulares envolvendo crescimento crítico do tipo Trudinger-Moser. Tratamos também de uma generalização para desigualdade de Trudinger-Moser e a existência de uma função extremal. A prova deste resultado é baseada na análise de blow-up
42

Cauchy problem for the incompressible Navier-Stokes equation with an external force and Gevrey smoothing effect for the Prandtl equation / Problème de Cauchy pour les équations de Navier-Stokes en présence d'une force extérieure et l'effet régularisant Gevrey de l'équation de Prandtl

Wu, Di 06 November 2017 (has links)
Dans cette thèse on étudie des équations de la mécanique des fluides. On considère deux modèles : les équations de Navier-Stokes équation dans R3 en présence d'une force extérieure, et l'équation de Prandtl dans le demi plan. Pour le système de Navier-Stokes, on s'intéresse à l'existence locale en temps, l'unicité, le comportement global en temps et des critères d'explosion. Pour l'équation de Prandtl dans le demi plan, on s'intéresse à la régularité Gevrey. Le manuscrit est constitué de quatre chapitres. Dans le premier chapitre, on introduit quelques concepts de base sur les équations de la mécanique des fluides et on rappelle le sens physique des deux modèles précédents ainsi que quelques résultats mathématiques. Ensuite on énonce brièvement nos principaux résultats et les motivations. Enfin on mentionne quelques problèmes ouverts. Le second chapitre est consacré au problème de Cauchy pour les équations de Navier-Stokes dans R3 en présence d'une petite force extérieure, peu régulière. On démontre l'existence locale en temps pour ce système pour toute donnée initiale appartenant à un espace de Besov critique avec régularité négative. On obtient de plus trois résultats d'unicité pour ces solutions. Enfin on étudie le comportement en temps grand et la stabilité de solutions a priori globales. Le troisième chapitre traite d'un critère d'explosion pour les équations de Navier-Stokes avec une force extérieure indépendante du temps. On met en place une décomposition en profils pour les équations de Navier-Stokes forcées. Cette décomposition permet de faire un lien entre les équations forcées et non forcées, ce qui permet de traduire une information d'explosion de la solution non forcée vers la solution forcée. Dans le Chapitre 4 on étudie l'effet régularisant Gevrey de la solution locale en temps de l'équation de Prandtl dans le demi plan. Il est bien connu que l'équation de couche limite de Prandtl est instable pour des données initiales générales, et bien posée dans des espaces de Sobolev pour des données initiales monotones. Sous une hypothèse de monotonie de la vitesse tangentielle du flot, on démontre la régularité Gevrey pour la solution de l'équation de Prandtl dans le demi plan pour des données initiales dans un espace de Sobolev. / This thesis deals with equations of fluid dynamics. We consider the following two models: one is the Navier-Stokes equation in R3 with an external force, the other one is the Prandtl equation on the half plane. For the Navier-Stokes system, we focus on the local in time existence, uniqueness, long-time behavior and blowup criterion. For the Prandtl equation on the half-plane, we consider the Gevrey regularity. This thesis consists in four chapters. In the first chapter, we introduce some background on equations of fluid dynamics and recall the physical meaning of the above two models as well as some well-known mathematical results. Next, we state our main results and motivations briefly. At last we mention some open problems. The second chapter is devoted to the Cauchy problem for the Navier-Stokes equation equipped with a small rough external force in R3. We show the local in time existence for this system for any initial data belonging to a critical Besov space with negative regularity. Moreover we obtain three kinds of uniqueness results for the above solutions. Finally, we study the long-time behavior and stability of priori global solutions.The third chapter deals with a blow-up criterion for the Navier-Stokes equation with a time independent external force. We develop a profile decomposition for the forced Navier-Stokes equation. The decomposition enables us to connect the forced and the unforced equations, which provides the blow-up information from the unforced solution to the forced solution. In Chapter 4, we study the Gevrey smoothing effect of the local in time solution to the Prandtl equation in the half plane. It is well-known that the Prandtl boundary layer equation is unstable for general initial data, and is well-posed in Sobolev spaces for monotonic initial data. Under a monotonicity assumption on the tangential velocity of the outflow, we prove Gevrey regularity for the solution to Prandtl equation in the half plane with initial data belonging to some Sobolev space.
43

Etude asymptotique et multiplicité pour l'équation de Sobolev Poincaré

Dellinger, Marie 30 March 2007 (has links) (PDF)
Sur une variété riemanienne compacte de dimension supérieure à 3,<br />on considère une edp elliptique non linéaire à exposant critique particulière : l'équation de Sobolev Poincaré. D'une part, nous décrivons le comportement asymptotique d'une suite de solutions de cette équation grâce à une analyse fine de phénomènes de concentration. D'autre part, en imposant des invariances par des groupes d'isométries, nous montrons des résultats de multiplicité de solutions pour cette équation. Notre méthode permet aussi d'obtenir des multiplicités de solutions pour des équations plus classiques provenant du problème deYamabe et de Nirenberg, ainsi que <br /> pour des équations à exposants sur critiques. Notre travail est intimement lié à la description des meilleures constantes dans des inégalités fonctionnelles de Sobolev associées aux équations.
44

Characterization of the unfolding of a weak focus and modulus of analytic classification

Arriagada Silva, Waldo G. 06 1900 (has links)
La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante. / The thesis gives a geometric description for the germ of the singular holomorphic foliation associated with the complexification of a germ of generic analytic family unfolding a real analytic vector field with a weak focus at the origin. We show that two such germs of families are orbitally analytically equivalent if and only if the germs of families of diffeomorphisms unfolding the complexified Poincaré map of the singularities are conjugate by a real analytic conjugacy. The Z2-equivariance of the family of real vector fields in R^4 is called the “real character” of the system. It is expressed by the invariance of the real plane under the flow of the system which, in turn, carries the real asymptotic expansion of the Poincaré map when the parameter is real. After blowing up the singularity, the pullback of the real plane by the standard monoidal map intersects the foliation in a real Möbius strip. The blow up technique allows to “realize” a germ of generic family unfolding a germ of diffeomorphism of codimension one and multiplier −1 at the origin as the semi-monodromy of a generic family unfolding an order one weak focus. In order to study the orbit space of the Poincaré map, we perform a trade-off between geometry and dynamics under the Glutsyuk point of view (where the dynamics is linearizable near the singular points): in the resulting “unwrapping coordinate” the dynamics becomes much simpler, but the price we pay is that the local geometry of the ambient complex plane turns into a much more involved Riemann surface. Over the latter, two notions of translations are defined. After taking the quotient by the lifted dynamics we get the orbit space, which turns out to be the union of three complex tori and the singular points (this space is non- Hausdorff). The Glutsyuk invariant is then defined over annular-like regions on the tori. The translations, the real character and the fact that the Poincaré map is the square of the semi-monodromy map, relate the different components of the Glutsyuk modulus. That property yields only one independent component of the Glutsyuk invariant.
45

Explosion des solutions de Schrödinger de masse critique sur une variété riemannienne / Blow-up solutions for the 2-dimensional critical Schrödinger equation on a riemannian manifold

Boulenger, Thomas 12 November 2012 (has links)
Ce travail cherche a comprendre comment l'ajout d'une géométrie non euclidienne dans un problème de Schrödinger non linéaire influe sur l'existence et l'unicité des solutions explosives de masse critique. On s'inspire pour beaucoup des travaux de Merle et Raphaël sur la méthode de modulation des paramètres d'invariance géométrique pour une EDP qui possède de bonnes lois de conservations. On s'appuie ici plus particulièrement sur un article de Raphaël et Szeftel qui prouve l'existence et l'unicité d'une solution de masse critique en dimension 2 pour l'équation de Schrödinger non linéaire avec potentiel d'inhomogénéité devant la non-linéarité, et qui explose par ailleurs au maximum de l'inhomogénéité. Dans un premier temps, il s'agit de reprendre la méthode dans son ensemble afin de l'adapter à des cas où le Laplacien n'est plus plat, et est remplacé par un opérateur de type Laplace-Beltrami ou Laplacien généralisé. Ayant mis en avant le rôle de la courbure au point d'explosion, en termes de conditions sur les dérivées de termes métriques, on reprend dans un deuxième temps l'étude dans le cas plus général d'une variété riemannienne. Grâce à un ansatz sur la solution qui intègre maintenant la transformation induite par la métrique, on est capable d'énoncer un résultat d'existence et d'unicité en termes de conditions géométriques sur la variété elle même. Par soucis de simplicité, on se limite néanmoins au rôle local de la métrique, en la supposant globalement définie dans une certaine carte, et asymptotiquement équivalente a la métrique euclidienne. / The present work aims at investigating the effects of a non-euclidean geometry on existence and uniqueness results for critical blow up NLS solutions. We will use many ideas from the works of Merle and Raphaël, particularly ideas from modulation theory which describes a solution in terms of geometric invariants parameters. We will rely more specically on a paper from Raphaël and Szeftel for existence and uniqueness of a critical mass blow up solution in dimension two tothe nonlinear Schrödinger equation with inhomogeneous potential acting on the nonlinearity, and which blows up where the inhomogeneity reaches its maximum. At first, we consider a generalized Laplacian operator and deploy the classical ansatz method to point out difficulties inherited from the non-flat metric terms, and in particular the key role played by the curvature at the blow-up point. In a second part, we reproduce the method when modifying the geometrical ansatz on which the parametrix is constructed, and investigate more precisely what is needed for existence and then uniqueness when dealing with a Laplace-Beltrami operator associated to a riemannian manifold. For simplicity, we shall only consider the role of g locally around the blow up point we are constructing, by assuming g is globally defined in some map, and asymptotically equals the usual euclidean metric.
46

Formules de monotonie appliquées à des problèmes à frontière libre et de modélisation en biologie

Blanchet, Adrien 12 December 2005 (has links) (PDF)
Ce mémoire présente des résultats de régularité pour des problèmes d'équations aux dérivées partielles paraboliques. Dans la première partie nous nous intéressons à des problèmes à frontière libre issus du problème de<br />l'obstacle parabolique à coefficients variables. Nous montrons des résultats de régularité de la solution et de la frontière libre. Cette étude utilise des méthodes d'explosion et des formules de monotonie. La seconde partie est consacrée à l'étude d'un problème issu de la modélisation de l'agrégation en biologie : le système de<br />Keller-Segel. En utilisant une énergie libre, nous montrons l'existence d'une masse critique en deçà de laquelle les solutions existent et au delà de laquelle elles explosent en temps fini. Nous précisons leur comportement asymptotique, dans le cas où les solutions existent en temps long.
47

Equations elliptiques semilineaires avec potentiel singulier

Dupaigne, Louis 13 June 2001 (has links) (PDF)
On considère des équations elliptiques semilinéaires simples de la forme Lu = F(x,u), où L est le Laplacien usuel avec condition de Dirichlet sur un ouvert borné régulier de R^n et où F peut être singulière en la variable x. On obtient notemment un critère exact pour l'existence de solutions, qui se traduit par l'apparition d'un nouvel exposant critique dans les applications.
48

Characterization of the unfolding of a weak focus and modulus of analytic classification

Arriagada Silva, Waldo G. 06 1900 (has links)
La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante. / The thesis gives a geometric description for the germ of the singular holomorphic foliation associated with the complexification of a germ of generic analytic family unfolding a real analytic vector field with a weak focus at the origin. We show that two such germs of families are orbitally analytically equivalent if and only if the germs of families of diffeomorphisms unfolding the complexified Poincaré map of the singularities are conjugate by a real analytic conjugacy. The Z2-equivariance of the family of real vector fields in R^4 is called the “real character” of the system. It is expressed by the invariance of the real plane under the flow of the system which, in turn, carries the real asymptotic expansion of the Poincaré map when the parameter is real. After blowing up the singularity, the pullback of the real plane by the standard monoidal map intersects the foliation in a real Möbius strip. The blow up technique allows to “realize” a germ of generic family unfolding a germ of diffeomorphism of codimension one and multiplier −1 at the origin as the semi-monodromy of a generic family unfolding an order one weak focus. In order to study the orbit space of the Poincaré map, we perform a trade-off between geometry and dynamics under the Glutsyuk point of view (where the dynamics is linearizable near the singular points): in the resulting “unwrapping coordinate” the dynamics becomes much simpler, but the price we pay is that the local geometry of the ambient complex plane turns into a much more involved Riemann surface. Over the latter, two notions of translations are defined. After taking the quotient by the lifted dynamics we get the orbit space, which turns out to be the union of three complex tori and the singular points (this space is non- Hausdorff). The Glutsyuk invariant is then defined over annular-like regions on the tori. The translations, the real character and the fact that the Poincaré map is the square of the semi-monodromy map, relate the different components of the Glutsyuk modulus. That property yields only one independent component of the Glutsyuk invariant.
49

Soluções blow-up para uma classe de equações elípticas. / Blow-up solutions for a class of elliptic equations.

SILVA, Geizane Lima da. 24 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-24T16:01:03Z No. of bitstreams: 1 GEIZANE LIMA DA SILVA - DISSERTAÇÃO PPGMAT 2010..pdf: 596736 bytes, checksum: d02e34d40e7147e46c734ba297c181bf (MD5) / Made available in DSpace on 2018-07-24T16:01:03Z (GMT). No. of bitstreams: 1 GEIZANE LIMA DA SILVA - DISSERTAÇÃO PPGMAT 2010..pdf: 596736 bytes, checksum: d02e34d40e7147e46c734ba297c181bf (MD5) Previous issue date: 2010-03 / Capes / Neste trabalho estudamos a existência de soluções positivas do tipo blow-up para uma classe de equações elípticas semilineares. Usamos argumentos desenvolvidos por Cîrstea & Radulescu [6], Lair & Wood [20] e as técnicas empregadas são o Método de Sub e Supersolução, Teoremas de Ponto Fixo e em alguns resultados exploramos a simetria radial e algumas estimativas para equações elípticas. / In this work we studied the existence of blow-up positive solutions for the class of semilinear elliptic equations. We used arguments developed by Cîrstea & Radulescu [6], and by Lair & Shaker [20] and the techniques used are the method of Sub and Supersolution, Fixed point theorems and some results explored radial symmetry and some estimates for elliptic equations.
50

Analysis of singularities in elliptic equations : the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and conformal geometry / Analyse des singularités dans les équations elliptiques : le modèle de superconductivité Ginzburg-Landau, le problème Lin-Ni-Takagi, le modèle Keller-Segel de chimiotaxie , et la géométrie conforme

Román, Carlos 15 December 2017 (has links)
Cette thèse est consacrée à l'analyse des singularités apparaissant dans des équations différentielles partielles elliptiques non linéaires découlant de la physique mathématique, de la biologie mathématique, et de la géométrie conforme. Les thèmes abordés sont le modèle de supraconductivité de Ginzburg-Landau, le problème de Lin-Ni-Takagi, le modèle de Keller-Segel de la chimiotaxie, et le problème de courbure scalaire prescrite. Le modèle de Ginzburg-Landau est une description phénoménologique de la supraconductivité. Une caractéristique essentielle des supraconducteurs de type II est la présence de vortex, qui apparaissent au-dessus d'une certaine valeur de la force du champ magnétique appliqué, appelée premier champ critique. Nous nous intéressons au régime de epsilon petit, où epsilon est l'inverse du paramètre de Ginzburg-Landau (une constante du matériau). Dans ce régime, les vortex sont au premier ordre des singularités topologiques de co-dimension 2. Nous fournissons une construction quantitative par approximation de vortex en dimension trois pour l'énergie de Ginzburg-Landau, ce qui donne une approximation des lignes de vortex ainsi qu'une borne inférieure pour l'énergie, qui est optimale au premier ordre et vérifiée au niveau epsilon. En utilisant ces outils, nous analysons ensuite le comportement des minimiseurs globaux en dessous et proche du premier champ critique. Nous montrons que, en dessous de cette valeur critique, les minimiseurs de l'énergie de Ginzburg-Landau sont des configurations sans vortex et que les minimiseurs, proche de cette valeur, ont une vorticité bornée. Le problème de Lin-Ni-Takagi apparait comme l'ombre (dans la littérature anglaise ``shadow'') du système de Gierer-Meinhardt d'équations de réaction-diffusion qui modélise la formation de motifs biologiques. Ce problème est celui de trouver des solutions positives d'une équation critique dans un domaine régulier et borné de dimension trois, avec une condition de Neumann homogène au bord. Dans cette thèse, nous construisons des solutions à ce problème présentant un comportement explosif en un point du domaine, lorsqu'un certain paramètre converge vers une valeur critique. La chimiotaxie est l'influence de substances chimiques dans un environnement sur le mouvement des organismes. Le modèle de Keller-Segel pour la chimiotaxie est un système de diffusion-advection composé de deux équations paraboliques couplées. Ici, nous nous intéressons aux états stationnaires radiaux de ce système. Nous sommes alors amenés à étudier une équation critique dans la boule unité de dimension 2, avec une condition de Neumann homogène au bord. Dans cette thèse, nous construisons plusieurs familles de solutions radiales qui explosent à l'origine de la boule, et se concentrent sur le bord et/ou sur une sphère intérieure, lorsqu' un certain paramètre converge vers zéro. Enfin, nous étudions le problème de la courbure scalaire prescrite. Étant donnée une variété Riemannienne compacte de dimension n, nous voulons trouver des métriques conformes dont la courbure scalaire soit une fonction prescrite, qui dépend d'un petit paramètre. Nous supposons que cette fonction a un point critique qui satisfait une hypothèse de platitude appropriée. Nous construisons plusieurs métriques, qui explosent lorsque le paramètre converge vers zéro, avec courbure scalaire prescrite. / This thesis is devoted to the analysis of singularities in nonlinear elliptic partial differential equations arising in mathematical physics, mathematical biology, and conformal geometry. The topics treated are the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and the prescribed scalar curvature problem. The Ginzburg-Landau model is a phenomenological description of superconductivity. An essential feature of type-II superconductors is the presence of vortices, which appear above a certain value of the strength of the applied magnetic field called the first critical field. We are interested in the regime of small epsilon, where epsilon is the inverse of the Ginzburg-Landau parameter (a material constant). In this regime, the vortices are at main order co-dimension 2 topological singularities. We provide a quantitative three-dimensional vortex approximation construction for the Ginzburg-Landau energy, which gives an approximation of vortex lines coupled to a lower bound for the energy, which is optimal to leading order and valid at the epsilon-level. By using these tools we then analyze the behavior of global minimizers below and near the first critical field. We show that below this critical value, minimizers of the Ginzburg-Landau energy are vortex-free configurations and that near this value, minimizers have bounded vorticity. The Lin-Ni-Takagi problem arises as the shadow of the Gierer-Meinhardt system of reaction-diffusion equations that models biological pattern formation. This problem is that of finding positive solutions of a critical equation in a bounded smooth three-dimensional domain, under zero Neumann boundary conditions. In this thesis, we construct solutions to this problem exhibiting single bubbling behavior at one point of the domain, as a certain parameter converges to a critical value. Chemotaxis is the influence of chemical substances in an environment on the movement of organisms. The Keller-Segel model for chemotaxis is an advection-diffusion system consisting of two coupled parabolic equations. Here, we are interested in radial steady states of this system. We are then led to study a critical equation in the two-dimensional unit ball, under zero Neumann boundary conditions. In this thesis, we construct several families of radial solutions which blow up at the origin of the ball and concentrate on the boundary and/or an interior sphere, as a certain parameter converges to zero. Finally, we study the prescribed scalar curvature problem. Given an n-dimensional compact Riemannian manifold, we are interested in finding bubbling metrics whose scalar curvature is a prescribed function, depending on a small parameter. We assume that this function has a critical point which satisfies a suitable flatness assumption. We construct several metrics, which blow-up as the parameter goes to zero, with prescribed scalar curvature.

Page generated in 0.0196 seconds