11 |
考慮族群間共同改善趨勢效果下之死亡率模型建構 / Mortality modeling based on traditional LC model and co-Improvement effect between populations黃見桐, Hwang, Chien Tung Unknown Date (has links)
臺灣的男女死亡率皆呈現逐年遞減的趨勢,自1993年進入高齡化社會後,預計將會在2018年進入高齡社會;人口不斷老化的結果讓社會上不論人民或是如保險公司等年金提供者皆面臨愈來愈嚴重的長壽風險;目前現有文獻提出了許多方式以解決長壽風險,其中多數的方法皆需使用到對未來死亡率之預估。
本研究為了能夠更準確的預估未來死亡率的趨勢,參考了Lee Carter (1992)所提出之模型以及Li and Lee (2005)、Li (2013)提出之共同改善趨勢效果,提出考慮商品與商品間以及商品與整體人口間共同改善趨勢之死亡率模型;本研究利用臺灣之保險公司壽險及年金業務經驗死亡率和Human Mortality Database之臺灣人口資料對模型進行配適,並以MAE、MAPE、RMSE三項指標比較與Lee Carter模型之優劣。
最後,本研究利用所配適之模型進行預測,模擬自然避險之效果,檢視臺灣保險業進行自然避險的可能效益,並對決策者在於決定是否要進行自然避險方面給出建議。 / Taiwan became an aging society in 1993 and is expected to become an aged society in 2018. The progressive decrease in Taiwan mortality since the 20th century for both genders has made longevity risk a serious problem for both people and annuity provider in Taiwan.
So far, the literature has discussed about how to deal with longevity risk and came out with several solutions which can be categorize as “industry self-insurance”, “ mortality projection improvement” and “capital market solutions” , most of them are related to the projection of mortality.
In order to provide a more precise projection of future mortality trend, this article designs several models which collaborates Lee Carter Model (1992) and the common improvement trend suggested by Li and Lee (2005). Based on our models, the Taiwan insurance industry experience mortality data and the Taiwan population mortality data, we test the performance of our models and make comparison.
Lastly, we use the model we find to project future mortality trend and try to make a simulation of natural hedging strategy in Taiwan. The purpose we do this is to test the performance of natural hedging method and give suggestion for the decision-maker when they are considering whether to execute a natural hedging strategy.
|
12 |
引入總體因子之信用計量模型 / The CreditMetrics Model with Macro Factors吳亞諾, Wu, Ya-No Unknown Date (has links)
在金融海嘯之後, 信用風險的重要性益發為銀行金融業所重視。 為深入探索此議題, 本文以 CreditMetrics(TM) 模型為基底, 設定台灣 458 間上市櫃公司為虛擬資產組合, 做出其資產組合價值分配與資產組合損失分配, 以估量信用風險的大小, 提供銀行業計提資本時一個適當的方向。
在模型上, 本文採納 CreditMetrics(TM) 考量交易對手資產報酬率相關性的優點, 此點使我們交易對手評等的移轉產生相關性, 不致低估信用風險; 並修正其以外部評等機構所提供的無條件移轉矩陣為模型參數的設定, 使用排序普羅比模型 (Ordered Probit Model) 在移轉矩陣上引入總體因子, 搭配 Svensson 四因子模型所估計的放款殖利率, 做出條件情境的的經濟資本, 增加資本計提的準確度。 此外, 為了解總體因子的重要性, 本文將之與評等因子做比較。
實證結果發現, 加入總體因子會對信用風險造成一定程度的衝擊, 銀行業實不宜再以無條件情境做為計提資本的標準。 而在評等與曝險額呈現正相關的條件下, 評等因子的重要性比起總體因子有過之而無不及。 銀行業在計提資本時, 與其費盡心思在模型中納入總體因子, 也許應該先看看評等是否已經納入考量。
|
13 |
加入信用風險之銀行股價多因子模型:日本銀行業之實證分析 / Stock Price Multi-factor Model with Credit Risk--Empirical Evidence from Japanese Banks林玫君, Lin, Mei-Chun Unknown Date (has links)
商業銀行是以借貸為主的金融機構,銀行獲利的主要來源,是從存款大眾手中取得短期資金,再將資金貸放給政府或企業進行長期投資。銀行「借短貸長」的業務,常使得其資產與負債產生存續期間不一致的問題,當利率非預期變動時,會改變資產與負債的真實價值,進而影響到銀行的淨值及股票報酬率。此外,匯率變動的風險也是銀行常常面臨的問題,尤其是當銀行涉足國際業務時,匯率的變動常常會使銀行所持有的外幣部位價值改變,進而影響到銀行的真實價值。另外一個會影響到銀行資產與負債價值的因素,就是信用風險的問題,總體經濟環境的信用品質變動,常常會影響銀行放款的還款機率,進而改變銀行放款的實質價值。
本文採用過去學者們所研究過的銀行股價三因子模型,即市場因子、債券因子、匯率因子,並加入代表總體信用風險的第四個因子,以及代表抵押品價值變動的第五個因子,成為銀行股價五因子模型。以日本銀行業的股價報酬為研究對象,實證結果顯示:新加入的總體信用風險因子,對於銀行股價報酬率的確產生顯著的負向影響,也就是當借貸市場信用品質愈差(信用風險越高)時,整體銀行股價的報酬率下降。且在四種類型的銀行中,地方銀行所估計出的信用風險顯著的比例最高,代表資產規模較小、放款業務較集中的地方銀行,其信用風險確實較其他類型的銀行為高。另外,在日本泡沫經濟破滅以後的銀行危機時期,以股價多因子模型來衡量的銀行信用風險也有上升的現象。
|
14 |
狀態轉換漸進極值因子模型下擔保債權憑證之評價與避險 / Pricing and Hedging of CDOs under a Regime Switching Asymptotic Single Factor Model賴冠宇, Lai, Kuan Yu Unknown Date (has links)
本篇論文使用了LHP的近似方法去評價擔保債權憑證,並推導出漸進極值因子模型,又稱單因子copula模型,單因子copula模型被廣泛運用在CDO之風險管理與一些風險因子模擬之應用,但由於2008年之金融海嘯造成市場標準模型Gaussian copula model會有評價上的誤差,所以為了能在市場不穩定時能更精確的求算出分券價差,我們必須找到一個更簡單且快速捕捉到市場不穩定性的模型。在這篇論文中,我們引用了Anna Schloesser在2009年所提出以NIG copula model為基礎的兩個延伸,讓模型更穩健和且擁有良好的性質去進行模擬,NIG Regime-Switch 模型有兩大特色: (i)可以用一致的方法去評價不同到期日的分券,放寬了同一分券必須是相同到期日的假設,和(ii)有不同的相關係數狀態,對於金融風暴來說,狀態轉換可以有效地降低市場不穩定所帶來的評價誤差。本文也對不同模型下的CDO進行風險分析與避險,分券的期望損失廣泛被信評公司視為一項審定信用評等重要的風險衡量指標,但是並無法真實反映出擔保債權憑證分券之間相對風險之大小,因此本文採用期望損失率的觀念,利用期望損失佔本金的比例來比較各分券之相對風險,且本文也求算出CDO之避險參數,讓投資人了解對合成行擔保債權憑證分券避險時所需之避險部位,分券持有人也可依據所要規避的風險類型,選擇市場上現有的信用違約交換指數或是單一資產之信用違約交換(single-name credit default swap)來進行避險。 / This paper presents the Large Homogeneous Portfolio (LHP) approach to the pricing of CDOs and we derive the one-factor copula model. It is popular that the one-factor copula models are very useful for risk management and measurement applications involving the generation of scenarios for the complete universe of risk factors. However, since the financial crisis in 2008 induces some errors in the valuation by Gaussian copula model, which is originally adopted by credit rating firms, it is necessary to have a simple and fast model that can capture the market unstableness. In this paper we apply two extensions of the NIG copula model, which are first present by Anna Schloesser (2009), since they make the model well defined and powerful for scenario simulation. The NIG Regime-Switch copula model allows for two important features: (i) tranches with different maturities modeled in a consistent way, and (ii) different correlation regimes. The regime-switching component of the NIG copula model is especially important in view of the financial crisis. This paper also targets on different models to conduct risk analysis and hedging strategy. The expected loss of tranches is widely used by credit rating organizations as one of the important indicators for risk measurement. However, it can’t reflect the relative risk level between CDO’s tranches. Therefore, our research adopts the concept of expected loss rate, which use the proportion of expected loss to total principal amount to compare the relative risk of each tranche. Moreover, when we want to hedge the spread risk of synthetic CDO tranches, the holders of tranches can choose the existing CDS index or the single-name CDS based on different risks types to hedge. The employment of the NIG Regime-Switch copula model not only has more precise estimation for the spread of tranches but also possess more stable hedge ratio to hedge.
|
15 |
總體商業訊息與台灣股票報酬之關係:以Fama-MacBeth兩階段方法實證 / News Related to Macroeconomics and Taiwan Stock Market Return: Using two-step Fama-MacBeth Procedure王崇育, Wang, Chung Yu Unknown Date (has links)
本文利用向量自我迴歸模型所得出來的殘差值來模擬未預期到的總體經濟訊息,以期限利差和一個月定存利率來捕捉殖利率曲線,以違約利差和股利收益率來描繪資產報酬的條件機率分布,本文實證未預期到的期限利差和未預期到的違約風險與淨值市價比因子和市值規模因子包含相同的訊息,因此後續檢驗這些能夠捕捉未來投資機會的總體經濟訊息比起Fama-French三因子模型是否對台灣股票橫斷面的平均報酬更具有解釋能力。
實證方法採用Fama-MacBeth(1973)兩階段迴歸方法,Fama-French三因子模型實證結果顯示台灣股票市場存在著負向的淨值市價比效果,但卻不存在著規模效果,這與國外一些學者研究1980年代之後規模效果逐漸消失的結論相同。在實證未預期到的總體經濟訊息模型時,由於被解釋變數為股票超額報酬率,因此常數項應該為不顯著的關係,但此假設強烈的被未預期到的總體經濟訊息模型拒絕,代表此模型可能遺漏了重要的解釋變數。因此,Fama-French 三因子模型對台灣股票橫斷面平均報酬率的解釋能力比未預期到的總體經濟訊息模型更佳。 / The Fama and French factors HML and SMB are correlated with innovations in variables that describe investment opportunities. I find that shocks to term spread and shocks to default spread have the same information with the Fama and French factors HML and SMB. This paper investigates whether a model that includes shocks to the aggregate dividend yield and term spread, default spread, and one-month deposit interest rate can explain the cross section of average return on Taiwan stock market as well as the Fama and French can.
Using the Fama-MacBeth (1973) two steps cross-sectional regressions, I find there exists the negative book-to-market effect on Taiwan stock market, but the size effect disappears. Since the dependent variables in the regression is excess returns, the intercept of the cross-sectional regression should be zero. This hypothesis is strongly rejected in the case of the model includes shocks to the Macroeconomics variables and the market portfolio. It means this model omits some important variables, so the Fama and French three-factor model can explain the cross section of average returns better.
|
16 |
研究發展與專利權對於股票報酬影響之探討 / The Effect on Stock Returns of R&D and Patents鄭雯馨, Jeng,Wen-Shin Unknown Date (has links)
在知識經濟時代下,無形資產的對於公司的重要性愈來愈高。有別於在工業時代下的生產重心,著重在大量的土地,機器設備...等有形的資產,在二十一世紀競爭中致勝的關鍵因素卻是那些無實體存在的知識累積,例如:研究發展的能力、員工的素質、顧客關係的維持…等;然而,會計處理對於無形資產卻是停留在歷史的取得成本,而不是現時的市場價值,更甚,有些無形資產根本無法入帳;因此,資本市場如何看待與反應公司的無形資產就是一項有趣的議題。本研究之研究目的是:依據Fama and French (1993)三因子模型,以橫斷面的分析方式,欲控制了系統風險、規模效果和淨值與市價比效果後,進一步分別探討研究發展活動與專利權對於股票報酬之影響,是否擁有投入愈多的研發活動與專利可以在股票市場獲得愈高的報酬?是否研究發展費用與專利權數對於股票報酬有遞延效果的影響?
樣本期間從民國七十一年到民國九十三年,包含上市與上櫃公司,總共有21717筆觀察值,在研究發展活動方面,本研究採用了當期研究發展費用與依五年資本化後之研究發展費用二種替代變數,專利權方面,採用專利權數與累積專利權數二種代理變數,其實證結果發現:
(1)當期研究發展費用溢酬與股票超額報酬呈現顯著的正向相關,將研究發展費用依五年資本化後,資本化後之研究發展費用溢酬仍與股票超額報酬呈現顯著的正向相關。
(2)專利權數之溢酬與股票超額報酬卻是顯著的負相關,累積專利權數之溢酬與股票超額報酬也是呈現顯著的負向關係,可能的原因是:在本研究樣本裡的大部分的專利權數量是非常集中在少部分的公司。
(3)研究發展溢酬對於超額報酬最多有三年的遞延效果,專利權溢酬對於超額報酬至少有五年遞延的效果。
(4)當期研究發展費用溢酬與資本化後之研究發展費用溢酬對於超額報酬有顯著不同的影響,二者比較下,當期研究發展費用溢酬對於股票報酬的影響程度大於資本化後之研究發展費用溢酬。可能的原因是:Fama and French三因子模型某種程度上代表著流量的概念,因此,當期研究發展費用溢酬的效果較為顯著。
(5)在專利權數之溢酬與累積專利權數之溢酬二者之間,對於超額報酬不具有顯著差異性的影響。可能的原因是:大部分的樣本都沒有專利權,因此,專利權數之溢酬與累積專利權數之溢酬沒有太大的差異。
(6)以研究發展與專利來說,二者對於超額報酬具有顯著不同差異的影響。 / Since the change in the global economy in the last decade, from manufacturing and industry-based to knowledge-based, it has created new interest in intellectual capital and increased the demand for measuring and reporting the effect on business and profitability. Nonetheless, accounting conventions based on historical cost often understate their value. Thus, from a practical point of view, how the stock market responses to the innovative activity is an interesting issue.
Here, the major objective of this study is, on the basis of the three-factor model in Fama and French (1993), to investigate the relationship between innovation activities in firms and stock returns. That is, the aim in this study is to examine whether the intellectual capital, in particularly focusing on R&D and patents, has impact on stock returns. Does the market provide the premium for the value of the innovation in firms? Do the stocks with more innovation efforts worth the higher market rate of returns? Do R&D and patents have time lag effect on returns?
We find that: (1) The return premiums are significantly greater for high-level of R&D than for low-level R&D. The mimicking returns both for the R&D-expense factor and capitalized-R&D factors are significantly positive related to excess stock returns. (2) Contrary to our intuition and expectation, the mimicking returns both for patent count and cumulated patent count are significantly negative associated with excess stock returns. One possible explanation is that the distribution of patented innovation is known to be extremely skewed, implying that a few patents are very valuable and many are worth almost nothing. (3) R&D-related return premiums have 3-year lag effect on excess stock returns at most. As for patent-related return premiums, it shows 5-year lag at least for excess stock returns. (4) R&D expenses have more impact on stock returns than the R&D capitalization. One possible explanation is that the “flow” concept is more suitable than the “stock” concept in the Fama and French (1993) regression of stock returns. (5) There is no difference between patent count and cumulated patent count in explaining stock returns. It is likely that, for a large proportion of the sample, they do not possess any patents. (6) When it comes to compare R&D to patents, we find that there is statistically significant difference between the two in explaining excess stock returns.
|
17 |
流動性交易需求與股價報酬率 / Liquidity trading demand and stock returns曾和風 Unknown Date (has links)
本文旨在探討台灣流動性交易需求對於股票報酬之波動性(變異數)與共移性(共變異數)的解釋能力。我們仿照Greenwood and Thesmar (2011) 的作法,完全利用共同基金的資料來近似股票的流動性交易需求(共同基金增加或減少其持有某支股票的部位)以及股權分佈,並據以推導出股票的脆弱性以及共脆弱性來預測股票報酬的變異數以及股票間的股票報酬共變異數。根據這個理論模型,當股票投資者面臨流動性衝擊,如果股權高度集中,或是散戶投資者間的流動性交易需求具有高度相關(即同時買進或同時賣出)時,流動性交易需求對股票報酬變異數以及股票間的股票報酬共變異數會產生顯著的影響。本文利用台灣2002年至2011年50家共同基金的資料,得到以下的結果:一、由股票流動性交易需求所推導出來的股票報酬波動(即股票之脆弱性)與利用股價所計算出的股票報酬變異數有明顯的正相關。二、股票的共脆弱性以及股票之間的共移性呈明顯正相關。三、小公司股、成長股、歷史表現好的股票均具有高脆弱性。以上實證結果指出,流動性交易需求對股票報酬有顯著的影響力,因此可利用股票之脆弱性預測股票報酬之波動。
|
18 |
資本資產定價模型之穩健估計分析顏培俊, Yen, Pei-Chun Unknown Date (has links)
長期性資料(longitudinal data)的最主要特徵是為對多個被觀測個體在不同的時間點上重複測量一個或多個反應變數。而在分析長期性資料的方法中,Laird & Ware(1982)建議以線性混合效果模型(linear mixed effects model,LME)來進行估計分析,此模型方法中,資料可以允許遺失值,並可將受測個體間與個體內的變異分開說明。
另在配適最小平方法(OLS)的迴歸模型中,係數估計經常會受到異常值的影響,而Rousseeuw & Leroy(1987)提出最小消去平方法(least trimmed squares,LTS)的穩健迴歸模型,即是解決最小平方法中對於異常值敏感的問題。
本研究主要針對台灣股票預期報酬之三種模型:資本資產定價模型、特徵模型、因子模型分別以OLS、LTS、LME三種估計方法做配適,並比較配適模型之適當與否,樣本資料為民國七十年七月至九十年六月共252個月516家上市公司股票報酬。實證結果顯示,不論是採用OLS、LTS、LME的估計方法,股票報酬解釋變數:系統風險、公司規模、帳面權益對市值比、SMB、HML皆為股票報酬的顯著解釋因子;而在模型比較方面,不論是配適資本資產定價模型、特徵模型或因子模型,LME都較OLS為較適當配適模型。這顯示了在分析長期性資料時,LME的確是一個較佳的統計分析模型。
|
19 |
台灣產物保險業之資金成本與費率自由化 / Cost of capital and deregulation in Taiwan property-liability insurance張孝銓, Chang, Hsiao Chuan Unknown Date (has links)
本研究目的欲探討實施費率自由化第一及第二階段後之情形,即在2006年第二階段實施後,台灣產物保險公司及各險種個別之資金成本,以檢視兩階段自由化實施後是否顯著影響國內產險業。而資金成本為公司每段期間內應支付資金提供者之期望報酬,故以此可做為日後公司經營之參考指標。研究期間為2002年至2008年,分別由一因子模型及多因子模型解釋台灣產物保險業之資金成本,及系統風險(β)的變化是否會影響其資金成本之變動。利用資本資產定價模型(Capital Asset Pricing Model, CAPM)及Fama-French三因子模型(Fama-French Three-Factor Model, FF3F)求得公司資金成本,再透過完備資訊方法(The Full-information Industry Beta Method, FIB)了解不同險種間之系統風險及資金成本。實證結果顯示:
1. 無論在整體產險公司或是不同險種間,由FF3F模型所估計之資金成本均高於由CAPM模型所估計之資金成本。說明CAPM模型無法反映公司規模及財務危機因子(淨值市價比因子)之溢酬,而造成資金成本之低估。
2. 經CAPM模型及FF3F模型之估計,顯示台灣產險業之資金成本均低於國外產險業之資金成本,如美國。說明台灣產險業於資本市場之融資成本較低,造成其資本效率偏低,投資人變相縱容產險公司從事高風險性資產之投資。
本研究由台灣實證資料,顯示現行產險業資金取得成本低,導致其資本效率偏低,且投資人無法由市場資訊檢視其保險本業是否根據成本之考量來定價,故主管機關應於費用完全自由化後,加強產險業經營之監理,導正產險市場經營模式,避免因核保循環(underwriting cycle)而影響公司財務穩健。
關鍵詞:費率自由化、資金成本、資本資產定價模型、Fama-French三因子模型、完備資訊方法。
|
20 |
台灣市場小型股與成交量之實證關係 / An empirical study of relations between small cap stock and volume in taiwanese stock market林大偉 Unknown Date (has links)
量價關係,一直以來皆為技術分析學派所廣泛運用,其主張運用過去的股價以及成交量來推測股票未來的走勢,而也有許多的研究以及投資策略皆是從量價關係所出。在國內,小型股也由於其股本小的特性,往往成為有心人士炒作之標的。此外,小型股亦較大型股具有不對稱資訊的性質,而由於成交量背後往往隱藏著許多的資訊,因此投資人利用量與價之間的關係,得到能夠有效預測小型股股價的方法以利其投資。
而本文之研究,將量價關係運用在小型股上,想檢視彼此間有無任何關係存在。本文中我們使用了因果關係檢定,三因子模型,以及縱橫迴歸模型,用來分別檢視小型股與大型股的量價關係。驗證結果發現,在不同的檢驗方式下,都會得到小型股較大型股,有顯著量價影響的關係存在。 / The relation between volume and price is widely used in technical analysis. It predicts future stock price by using past stock price and volume. There are lots of investigations and investment strategies are stemmed from it. In Taiwan, small caps are preferred to be held by the people who would like to manipulate the price because of their small number of capitalization. In addition, compared with large caps, small caps are of asymmetric information to the investors. As there is lot of information hidden behind volume, investors are likely to use the relation between volume and price to get a useful way to predict small caps’ stock price.
In this paper, I use granger causality test, three-factor model, and panel data model to test the relation between price/return and volume of small caps and big caps separately. The experiment shows that use different ways, we can verify there exist more obvious relations between volume and price in small caps than in large caps.
|
Page generated in 0.0264 seconds