Spelling suggestions: "subject:" stata"" "subject:" staat""
131 |
Investigation of experimental and numerical methods, and analysis of stator clocking and instabilities in a high-speed multistage compressor / Investigation des méthodes expérimentales et numériques, et analyse du clocking et des instabilités aérodynamique dans un compresseur axial haute-vitesse multi-étagesSchreiber, Johannes 16 December 2016 (has links)
Les études expérimentales et numériques suivantes visent à la compréhension profonde de l’écoulement se développant dans le compresseur haute-vitesse axial de 3.5 étages CREATE, étudié sur un banc d’essai de 2 MW au Laboratoire de Mécanique des Fluides et Acoustique (LMFA) à Lyon, France. Ce travail a trois objectifs principaux : D’abord, une description globale de l’écoulement avec une identification des limites aux méthodes d’exploration utilisées ; Ensuite, la caractérisation de l’effet du clocking stator-stator dans un compresseur à haute-vitesse ; Troisièmement, l’identification des instabilités à faibles débits pour confirmer les études sur les compresseurs à basse-vitesse et contribuer à plus de compréhension.Il est montré qu’une mauvaise interprétation des données de performance stationnaire se fait facilement en raison des contraintes de mesure et des coefficients de correction sont proposés. À certains endroits dans le compresseur, des limites aux méthodes d’exploration (expérimentales et numériques) de l’écoulement sont identifiées. Cette identification va permettre la poursuite du développement des méthodes. Les principales erreurs de prédiction des simulations concernent la surestimation du blocage induit par l’écoulement de jeu et l’augmentation de pression. En outre, les mesures fournies par les sondes de pression pneumatique surestiment la pression statique en amont des stators. Cette erreur est probablement provoquée par l’interaction entre le champ potentiel du stator et la sonde elle-même. De plus, l’anémométrie Doppler laser surestime la vitesse en aval des stators. Le transport des sillages du rotor à travers des stators n’est pas correctement capturé avec les particules d’ensemencement.Le clocking a seulement un petit effet global dans la bande d’incertitude de mesure dans ce compresseur. Plusieurs contributions à ce faible effet de clocking sont identifiées par l’analyse du transport des structures d’écoulement : Le mélange circonférentiel du sillage de stator et la déformation des sillages le long de leur trajet dans l’écoulement. L’effet local du clocking dépend de la hauteur de veine en raison de la variation de la forme des aubages et du transport des sillages. Des effets positifs et négatifs sont présentés, qui globalement se compensent dans ce compresseur. Les instabilités dans ce compresseur dépendent du point de fonctionnement et des méthodes d’exploration de l’écoulement. Aux points de fonctionnement stables et à la vitesse nominale du compresseur, les résultats numériques montrent une perturbation tournante dans les rotors 2 et 3, alors que les mesures montrent une perturbation tournante que dans le premier rotor et seulement à basse vitesse du compresseur. Dans les deux cas, les perturbations montrent des caractéristiques semblables. Une étude numérique permet d’exclure l’influence des interactions rotor-stator sur la perturbation tournante et met en évidence sa source. Des nouvelles connaissances sur le comportement stable et la périodicité du rotating instability (mesuré) sont dérivées contrairement au comportement instable suggéré par la dénomination et la littérature. Il est montré que cette perturbation évolue en cellule de décrochage tournante à l’approche de la limite de stabilité. A la vitesse nominale du compresseur, une entrée en instabilités de type spike est identifiée expérimentalement. Une description précise de l’apparition brutale du spike et sa différence par rapport à une cellule de décollement tournant sont présentées. / The following experimental and numerical investigations aim at the deep understanding of the flow field in the 3.5 stages high-speed axial compressor CREATE, studied on a 2 MW test rig at the Laboratory of Fluid Mechanics and Acoustics (LMFA) in Lyon, France. This work focuses on three major objectives: Firstly, a global description of the flow field with an identification of limitations to the used exploration methods; Secondly, the characterization of the effect of stator-stator clocking in a high-speed compressor; Thirdly, the identification of instabilities arising at low mass flow rates for confirming studies on low-speed compressors and giving new insights.This work demonstrates that a mis-interpretation of steady performance data occurs easily due to measurement constraints and correction coefficients are proposed. At certain locations in the compressor, the flow field exploration (experimental and numerical) methods are identified to be challenged. This identification will initiate further development of the methods. The main mis-predictions of the simulations concern the over-prediction of the blockage induced by the tip leakage flow and eventually an over-predicted pressure rise. Furthermore, the measurements provided by the pneumatic pressure probes over-estimate the static pressure upstream of the stators. This error is induced by the interaction between the stator potential field and the probe it-self. In addition, the laser Doppler anemometry method over-estimates the velocity downstream the stators. The transport of the rotor wakes through the stators might not be correctly captured with the seeding particles in this high-speed compressor.The investigation of the stator clocking reveals only a small global effect within the measurement uncertainty band. Several contributions to the weak effect of clocking are identified by analysis of the flow structure transport, namely the time-mean mixing out of the stator wakes and the deformation of wakes along their flow path. The local effect of clocking depends on the span-height because of the variation of the circumferential position of the stator wakes and the stator blade shape over the span-height. Local possible positive and negative effects of clocking are identified and are shown to be almost in balance in this compressor. Furthermore, this work demonstrates that the unsteadiness in the flow field is not linked conclusively to the stator clocking.In this compressor, the arising instabilities depend on the operating point and flow field exploration methods. At stable operating points and nominal compressor speed, the numerical results reveal a rotating disturbance in the rotors 2 and 3, whereas the measurements show a rotating disturbance only in the first rotor and only at part speed. In both cases the disturbance exhibits rotating instability like characteristics. An exhaustive numerical study allows to exclude the commonly assumed influence of rotor-stator interactions on the rotating disturbance and pinpoints its source. New insights into the stable behavior and periodicity of the measured rotating instability are derived contrary to the unstable behavior suggested by the naming and literature. This disturbance is shown to evolve into rotating stall cells when approaching the stability limit. At nominal compressor speed, a spike type surge inception is identified I n the measured field. A precise description of the abrupt onset of the spike cell and its difference to a rotating stall cell are presented.
|
132 |
Simulation numérique de l'écoulement en régime de pompage dans un compresseur axial multi-étage / Numerical simulation of the flow in an axial multistage compressor at surgeCrevel, Flore 23 September 2013 (has links)
Dans le contexte économique et environnemental actuel, la prochaine génération de moteurs d’avion devra offrir opérabilité, compacité et hauts rendements. Les compresseurs demeurent une des pièces critiques de ces moteurs, et leur conception un challenge. À débit réduit, leur plage de fonctionnement est contrainte par la limite de pompage, phénomène hautement instable et dangereux. À ce jour, peu d’études expérimentales sur un compresseur en situation de pompage ont été réalisées, étant donné le danger inhérent pour les installations. Dans ce cadre, la simulation numérique peut apporter des informations sur le développement des instabilités aérodynamiques et aider à la prévision de la limite de pompage. L’objectif du travail présenté dans cette thèse est de mettre en place une méthode afin de simuler numériquement l’entrée en pompage et un cycle complet de l’instabilité avec le code elsA. Le cas test retenu est le compresseur de recherche axial multi-étage CREATE dessiné par Snecma, et étudié expérimentalement par le LMFA. Des études antérieures ont montré le rôle joué par les volumes entourant le compresseur ; l’originalité de cette étude réside donc dans l’inclusion des volumes du banc d’essai dans la simulation du compresseur. Une des difficultés inhérentes à la simulation de ces instabilités est leur temps caractéristique, qui représente plus d’une centaine de rotations de la machine. Le calcul a donc nécessité le recours à une approche massivement parallèle ; environ un million d’heures CPU ont été utilisées pour décrire le cycle. Enfin, compte tenu du retournement de l’écoulement dans le compresseur, les conditions aux limites ont été modifiées pour pouvoir s’adapter aux changements de sens de l’écoulement. La simulation a permis de décrire l’entrée en pompage et un cycle complet de l’instabilité. La comparaison avec les données expérimentales montre que les caractéristiques du cycle sont correctement prédites (phénomènes physiques précurseurs de l’instabilité, durée du cycle..). En parallèle, une étude acoustique a été menée afin de mettre en évidence les modes propres du banc d’essai. L’analyse de ces résultats a notamment montré le rôle de l’acoustique dans le déclenchement du pompage. Les différentes phases du cycle de pompage sont ensuite étudiées, et caractérisées (déclenchement, débit inversé, récupération et recompression). Ce travail a généré une base de données qui permet de mieux comprendre les instabilités qui se développent dans ce type de machine. À terme, ces résultats pourront être utilisés pour élaborer et valider des modélisations du phénomène de pompage moins coûteuses, pouvant intervenir dans un cycle de conception. / In order to deal with the current economical and environmental context, the next engine generation will need to offer great operability, compactness and high efficiency. In aircraft engines, the compressor remains one of the critical components, and its design is still a challenging task. At low massflow rate, their operability is bounded by the surge limit, surge being a highly unstable and dangerous phenomenon. Today, few experimental studies on compressor surge are available because of the inherent threat to the facility. In that context, numerical simulation can bring about information on the onset of aerodynamic instabilities and help to predict the surge limit. The work presented in this PhD thesis aims at setting up a method to perform the numerical simulation of surge inception and of an entire cycle of the instability with the CFD code elsA. The chosen test case is the axial multistage research compressor CREATE designed and built by Snecma, and experimentally studied at LMFA. Previous studies have pointed out the role of the volumes adjacent to the compressor ; the originality of this work is thus the inclusion of the volumes of the test-rig in the simulation of the compressor. One of the difficulties inherent to the simulation of those instabilities is their characteristic time of at least one hundred revolutions of the machine. Hence the computation has required a massively parallel approach and about one million CPU hours. Finally, given that the flow reverses during a surge cycle, the boundary conditions have been modified to be able to cope with the flow inversions. The simulation was able to capture surge inception and the entire cycle of the instability. The comparison with the experimental data showed that the main patterns of the cycle are correctly predicted (precursor phenomena of surge, duration of the cycle...). In the meantime, an acoustic study has been performed in order to isolate the eigenmodes of the test-rig. The analysis of the results pointed out the role of acoustic phenomena in surge inception. The different phases of the cycle are then studied and characterized (surge inception, reversed-flow phase, recovery and repressurization). This work has incremented a database that allows a better understanding of the instabilities that develop in this kind of machine. From now on, those results may help to elaborate and validate cheaper models of the surge phenomenon to be used in the design process.
|
133 |
Stall Flutter of a Cascade of Blades at Low Reynolds NumberJha, Sourabh Kumar January 2013 (has links) (PDF)
Due to the requirements for high blade loading, modern turbo‐machine blades operate very close to the stall regime. This can lead to flow separation with periodic shedding of vortices, which could lead to self induced oscillations or stall flutter of the blades. Previous studies on stall flutter have focused on flows at high Reynolds number (Re ~ 106). The Reynolds numbers for fans/propellers of Micro Aerial Vehicles (MAVs), high altitude turbofans and small wind turbines are substantially lower (Re < 105). Aerodynamic characteristics of flows at such low Re is significantly different from those at high Re, due in part to the early separation of the flow and possible formation of laminar separation bubbles (LSB). The present study is targeted towards study of stall flutter in a cascade of blades at low Re.
We experimentally study stall flutter of a cascade of symmetric NACA 0012 blades at low Reynolds number (Re ~ 30, 000) through forced sinusoidal pitching of the blades about mean angles of incidences close to stall. The experimental arrangement permits variations of the inter‐blade phase (σ) in addition to the oscillation frequency (f) and amplitude; the inter‐blade phase angle (σ) being the phase difference between the motions of adjacent blades in the cascade. The unsteady moments on the central blade in the cascade are directly measured, and used to calculate the energy transfer from the flow to the blade. This energy transfer is used to predict the propensity of the blades to undergo self‐induced oscillations or stall flutter. Experiments are also conducted on an isolated blade in addition to the cascade.
A variety of parameters can influence stall flutter in a cascade, namely the oscillation frequency (f), the mean angle of incidence, and the inter‐blade phase angle (σ). The measurements show that there exists a range of reduced frequencies, k (=πfc/U, c being the chord length of the blade and U being the free stream velocity), where the energy transfer from the flow to the blade is positive, which indicates that the flow can excite the blade. Above and below this range, the energy transfer is negative indicating that blade excitations, if any, will get damped. This range of excitation is found to depend upon the mean angle of incidence, with shifts towards higher values of k as the mean angle of incidence increases. An important parameter for cascades, which is absent in the isolated blade case is the inter‐blade phase angle (σ). An excitation regime is observed only for σ values between ‐450 and 900, with the value of excitation being maximum for σ of 900. Time traces of the measured moment were found to be non‐sinusoidal in the excitation regime, whereas they appear to be sinusoidal in the damping regime.
Stall flutter in a cascade has differences when compared with an isolated blade. For the cascade, the maximum value of excitation (positive energy transfer) is found to be an order of magnitude lower compared to the isolated blade case. Further, for similar values of mean incidence angle, the range of excitation is at lower reduced frequencies for a cascade when compared with an isolated blade. A comparison with un‐stalled or classical flutter in a cascade at high Re, shows that the inter‐blade phase angle is a major factor governing flutter in both cases. Some differences are observed as well, which appear to be due to stalled flow and low Re.
|
134 |
Viscous Vortex Method Simulations of Stall Flutter of an Isolated Airfoil at Low Reynolds NumbersKumar, Vijay January 2013 (has links) (PDF)
The flow field and forces on an isolated oscillating NACA 0012 airfoil in a uniform flow is studied using viscous vortex particle method. The simulations are carried out at very low chord (c) based Reynolds number (Re=1000), motivated by the current interest in development of Micro Air Vehicles (MAV). The airfoil is forced to oscillate in both heave and pitch at different normalized oscillation frequencies (f), which is represented by the non-dimensional reduced frequency fc/U).( From the unsteady loading on the airfoil, the net energy transfer to the airfoil is calculated to determine the propensity for the airfoil to undergo self-induced oscillations or flutter at these very low Reynolds numbers. The simulations are carried out using a viscous vortex particle method
that utilizes discrete vortex elements to represent the vorticity in the flow field. After validation of the code against test cases in the literature, simulations are first carried out for the stationary airfoil at different angles of attack, which shows the stall characteristics
of the airfoil at this very low Reynolds numbers.
For the airfoil oscillating in heave, the airfoil is forced to oscillate at different reduced frequencies at a large angle of attack in the stall regime. The unsteady loading on the blade is obtained at different reduced frequencies. This is used to calculate the net energy transfer to the airfoil from the flow, which is found to be negative in all cases studied. This implies that stall flutter or self-induced oscillations are not possible under the given heave conditions. The wake vorticity dynamics is presented for the different reduced frequencies, which show that the leading edge vortex dynamics is progressively
more complex as the reduced frequency is increased from small values. For the airfoil oscillating in pitch, the airfoil is forced to oscillate about a large mean angle of attack corresponding to the stall regime. The unsteady moment on the blade is obtained at different reduced frequencies, and this is used to calculate the net energy transfer to the airfoil from the flow, which is found to be positive in all cases studied. This implies that stall flutter or self-induced oscillations are possible in the pitch mode, unlike in the heave case. The wake vorticity dynamics for this case is found to be relatively simple compared to that in heave. The results of the present simulations are broadly in agreement with earlier stall flutter studies at higher Reynolds numbers that show that stall flutter does not occur in the heave mode, but can occur in the pitch mode. The main difference in the present very low Reynolds number case appears to be the broader extent of the excitation region in the pitch mode compared to large Re cases studied earlier.
region in the pitch mode compared to large Re cases studied earlier.
|
135 |
Plan de Negocio para la distribución de bolsas de papel reciclado como medio publicitario en bodegas, mini-markets y puestos de mercado de Lima Metropolitana / Business Plan for a company that distributes recycled paper bags as printed advertising in grocery stores, mini-markets and market stalls in Lima.Noguera de las Casas, Ana Vanessa, Orams Camacho, Edgar Alfred, Perea Isasi, Cinthya Paola 27 August 2020 (has links)
A través del presente trabajo de investigación, buscamos sustentar la deseabilidad, viabilidad y rentabilidad del Modelo de Negocio de Innobag Perú, que tiene como objetivo la distribución gratuita de bolsas de papel reciclado con publicidad impresa a bodegas, mini-markets y puestos de mercado en Lima Metropolitana.
Innobag Perú busca contribuir con la reducción en el consumo de bolsas plásticas, atacando y aprovechando uno de los principales momentos de uso, generando ahorros en los establecimientos e incrementando la atractividad de nuestro producto.
Completamos nuestra propuesta de valor, convirtiendo estas bolsas de papel reciclado en un medio para que las empresas anunciantes publiciten su marca de manera efectiva y directa en un momento de alto uso asegurando la viabilidad de nuestro modelo de negocio.
A través de un sondeo realizado entre consumidores, administradores de bodegas, mini-markets y puesto de mercado; y decisores de inversión en publicidad de empresas anunciantes, hemos logrado validar la deseabilidad de nuestro modelo de negocio.
Nuestro análisis económico financiero, nos ha permitido validar la rentabilidad del modelo, esperando un VAN de S/ 114,202 y una TIR de 81.26%. / Through this research work, we seek to support the desirability, feasibility and profitability of the Innobag Peru Business Model, which aims to distribute free recycled paper bags with printed advertising to grocery stores, mini-markets and market stalls in Lima.
Innobag Peru seeks to contribute to the reduction in the consumption of plastic bags taking advantage of one of the main moments of its use, generating savings for the owners of these establishments and increasing the attractiveness of our product.
We complete our value proposition by turning these recycled paper bags into a mean for companies to advertise their brand effectively and directly at a time of high use, ensuring the viability of our business model.
Through our market research conducted among consumers, decision makers of investment in advertising as well as managers of grocery stores, mini-markets and market stalls, we have validated the desirability of our business model.
Our financial and economic analysis allowed us to validate the profitability of the model, expecting an NPV of S / 114,202 and an IRR of 81.26%. / Trabajo de investigación
|
136 |
Equestrian World : Riding Arena / Modern hästanläggningOlson Ehn, Isa January 2015 (has links)
Once you have experienced the art of riding your life will never be the same, and for most riders it is a lifelong passion. Riding is the second largest youth sport in Sweden, but it is also an almost mythical sport for those who have never tried it. This project aims to create a stable to showcase the equestrian world to a greater audience, a National Riding Arena, designed form the perspective of horses, riders and visitors. / Ridning är en upplevelse som för de flesta blir en livslång passion. I Sverige är ridning den näst största ungdomssporten, men för de som aldrig har prövat är det en nästan mytisk sport. Det här projektet syftar till att skapa ett stall som visar upp ridsporten och hästvärlden för en större publik. En nationell ridarena, designad från hästens, ryttarens och besökarens perspektiv.
|
137 |
Still-LifestockLidén, Konrad January 2021 (has links)
Howdoyoudo (HDYD): How do you do, Howdy! Howdy (HD): Howdy, Howdoyoudo! HDYD: Vi ser ut att få en fin dag idag, tycker du inte? Synd att den måste befläckas med det vanliga smutsgörat. En efterlysning har kommit in. HD: Det har hänt igen? HDYD: Ja, det är samma visa varje gång. En luststyrd elev som oaktsamt klivit in på högskoleterritorium och inte tänkt på konsekvenserna... men räkenskapens tid kommer till alla: textförklaringen måste fram.
|
138 |
Beeinflussung der Umströmung eines aerodynamischen Profils mithilfe passiver, elastischer RückstromklappenReiswich, Artur 29 April 2022 (has links)
Im Rahmen dieser Arbeit wurde der Einfluss von passiven und elastischen Rückstromklappen, die auch als Flaps bezeichnet werden, auf einen Tragflügel mit NACA0020 Profil untersucht. Mithilfe einer Kraftwaage erfolgte zunächst die Erfassung der Auswirkungen auf das aerodynamische Verhalten des Tragflügels vor und nach der Strömungsablösung. Für ein detailliertes Verständnis wurde zusätzlich die Umströmung mit der Rauchdrahttechnik visualisiert und die Flapkinematik mit der Stereo Vision Technik aufgenommen. Es konnte festgestellt werden, dass die Vorderkantenflaps mit der geringsten Biegesteifigkeit die Gleitzahl des Tragflügels vor allem in abgelöster Strömung erhöhen. Die festgestellte Auftriebssteigerung resultiert aus der langsamen Aufstellbewegung und beschleunigten Anlegebewegung der Flaps, die eine einhergehende Reduzierung der turbulenten Ablösung verursachen. Die Ergebnisse der Arbeit liefern zahlreiche Erkenntnisse, die eine Übertragung des festgestellten Effekts auf andere technische Anwendungen erleichtern.:Abbildungsverzeichnis....................................................................... VII
Tabellenverzeichnis............................................................................ XII
Symbol- & Abkürzungsverzeichnis..................................................XVI
1 Einleitung......................................................................................... 1
2 Stand der Forschung........................................................................ 4
2.1 Wesentliche Aspekte von Profilumströmungen ................................. 4
2.2 Zusammenfassung essenzieller Aspekte von Tragflügeln mit Flaps ......7
3 Numerische Untersuchung der Profilumströmung....................... 13
3.1 Numerische Modell ......................................................................13
3.1.1 Grundgleichungen und Turbulenzmodell ..............................13
3.1.2 Randbedingungen und Diskretisierungsschema .....................16
3.2 Ergebnisse für das NACA0018 Profil .............................................18
3.3 Ergebnisse für das NACA0020 Profil .............................................19
3.4 Schlussfolgerung aus den Simulationen ..........................................22
4 Kraftmessungen an einem NACA0020 Tragflügel ....................... 23
4.1 Versuchsvorbereitung ...................................................................23
4.1.1 Windkanal ........................................................................23
4.1.2 Tragflügel und Funktionsweise der Kraftwaage .....................25
4.2 Messunsicherheit und Validierung .................................................27
4.3 Position der Flaps auf dem Tragflügel............................................ 31
4.3.1 Flapgeometrie und Flappositionen....................................... 31
4.3.2 Polardiagramme für variierende Flapposition........................34
4.4 Faserverstärkte Silikonflaps...........................................................36
4.4.1 Verwendeten Materialien ....................................................36
4.4.2 Polardiagramm für faserverstärkte Silikonflaps .....................38
4.5 Flapgeometrie .............................................................................40
4.5.1 Untersuchte Flapformen .....................................................40
4.5.2 Polardiagramm der untersuchten Flapformen ....................... 41
4.6 Wirkung der Flaps bei instationären Anströmung...........................43
4.6.1 Versuchsdurchführung ........................................................43
4.6.2 Ergebnisse der instationären Untersuchung...........................45
4.7 Schlussfolgerung der Auftriebs- und Widerstandsuntersuchungen .....47
5 Strömungsvisualisierung mithilfe der Rauchdrahttechnik........... 49
5.1 Experimenteller Aufbau ...............................................................49
5.2 Vorgehensweise bei der Auswertung...............................................50
5.3 Ergebnisse der Visualisierung........................................................ 51
6 Flapkantenkinematik..................................................................... 58
6.1 Versuchsaufbau und Versuchsdurchführung ....................................58
6.2 Bildauswertung ........................................................................... 61
6.3 Ergebnisse ..................................................................................62
6.3.1 VK Konfiguration - ohne Faserverstärkung...........................62
6.3.2 Bewegungsausführung des Vorderkantenflaps der VK-HK Konfiguration - ohne Faserverstärkung.......................................69
6.3.3 Bewegungsausführung des Vorderkantenflaps der VK-HK Konfiguration - mit Faserverstärkung ........................................75
6.3.4 Auswertung und Interpretation ...........................................82
7 Zusammenfassung.......................................................................... 87
8 Ausblick.......................................................................................... 89
Anhang ................................................................................................ 97
A Anhang 1....................................................................................97
B Anhang 2....................................................................................98
C Anhang 3....................................................................................99 / In the following study the effects of elastic and passive flaps were investigated on an airfoil with a NACA0020 profile. At first the aerodynamic performance of different
configurations was measured with a force balance. In order to detect its effects before and after stall the angle of attack was varied during the experiments. For
the configurations with increased aerodynamic performance additional experiments were carried out. The smoke wire visualization and stereo vision technique allowed a detailled insight in the flow around the NACA0020 profile and the flap movement. The results show that elastic flaps at the leading and trailing edge of the airfoil improve notably the airfoil performance in deep stall. Furthermore, the highest increase of the lift-to-drag ratio was achieved for the configuration with lowest bending stiffness. It was observed that the highest reduction of the turbulent separation region is caused by the flap movement. The increase of lift-to-drag ratio results from a slow upward and a fast downward motion of the elastic flap. The study delivers helpful information for transfer of the observed effect to other technical applications.:Abbildungsverzeichnis....................................................................... VII
Tabellenverzeichnis............................................................................ XII
Symbol- & Abkürzungsverzeichnis..................................................XVI
1 Einleitung......................................................................................... 1
2 Stand der Forschung........................................................................ 4
2.1 Wesentliche Aspekte von Profilumströmungen ................................. 4
2.2 Zusammenfassung essenzieller Aspekte von Tragflügeln mit Flaps ......7
3 Numerische Untersuchung der Profilumströmung....................... 13
3.1 Numerische Modell ......................................................................13
3.1.1 Grundgleichungen und Turbulenzmodell ..............................13
3.1.2 Randbedingungen und Diskretisierungsschema .....................16
3.2 Ergebnisse für das NACA0018 Profil .............................................18
3.3 Ergebnisse für das NACA0020 Profil .............................................19
3.4 Schlussfolgerung aus den Simulationen ..........................................22
4 Kraftmessungen an einem NACA0020 Tragflügel ....................... 23
4.1 Versuchsvorbereitung ...................................................................23
4.1.1 Windkanal ........................................................................23
4.1.2 Tragflügel und Funktionsweise der Kraftwaage .....................25
4.2 Messunsicherheit und Validierung .................................................27
4.3 Position der Flaps auf dem Tragflügel............................................ 31
4.3.1 Flapgeometrie und Flappositionen....................................... 31
4.3.2 Polardiagramme für variierende Flapposition........................34
4.4 Faserverstärkte Silikonflaps...........................................................36
4.4.1 Verwendeten Materialien ....................................................36
4.4.2 Polardiagramm für faserverstärkte Silikonflaps .....................38
4.5 Flapgeometrie .............................................................................40
4.5.1 Untersuchte Flapformen .....................................................40
4.5.2 Polardiagramm der untersuchten Flapformen ....................... 41
4.6 Wirkung der Flaps bei instationären Anströmung...........................43
4.6.1 Versuchsdurchführung ........................................................43
4.6.2 Ergebnisse der instationären Untersuchung...........................45
4.7 Schlussfolgerung der Auftriebs- und Widerstandsuntersuchungen .....47
5 Strömungsvisualisierung mithilfe der Rauchdrahttechnik........... 49
5.1 Experimenteller Aufbau ...............................................................49
5.2 Vorgehensweise bei der Auswertung...............................................50
5.3 Ergebnisse der Visualisierung........................................................ 51
6 Flapkantenkinematik..................................................................... 58
6.1 Versuchsaufbau und Versuchsdurchführung ....................................58
6.2 Bildauswertung ........................................................................... 61
6.3 Ergebnisse ..................................................................................62
6.3.1 VK Konfiguration - ohne Faserverstärkung...........................62
6.3.2 Bewegungsausführung des Vorderkantenflaps der VK-HK Konfiguration - ohne Faserverstärkung.......................................69
6.3.3 Bewegungsausführung des Vorderkantenflaps der VK-HK Konfiguration - mit Faserverstärkung ........................................75
6.3.4 Auswertung und Interpretation ...........................................82
7 Zusammenfassung.......................................................................... 87
8 Ausblick.......................................................................................... 89
Anhang ................................................................................................ 97
A Anhang 1....................................................................................97
B Anhang 2....................................................................................98
C Anhang 3....................................................................................99
|
139 |
An Experimental and Computational Study of Surge in Turbocharger Compression SystemsDehner, Richard D. January 2016 (has links)
No description available.
|
140 |
Numerical investigation of the flow and instabilities at part-load and speed-no-load in an axial turbineKranenbarg, Jelle January 2023 (has links)
Global renewable energy requirements rapidly increase with the transition to a fossil-free society. As a result, intermittent energy resources, such as wind- and solar power, have become increasingly popular. However, their energy production varies over time, both in the short- and long term. Hydropower plants are therefore utilized as a regulating resource more frequently to maintain a balance between production and consumption on the electrical grid. This means that they must be operated away from the design point, also known as the best-efficiency-point (BEP), and often are operated at part-load (PL) with a lower power output. Moreover, some plants are expected to provide a spinning reserve, also referred to as speed-no-load (SNL), to respond rapidly to power shortages. During this operating condition, the turbine rotates without producing any power. During the above mentioned off-design operating conditions, the flow rate is restricted by the closure of the guide vanes. This changes the absolute velocity of the flow and increases the swirl, which is unfavorable. The flow field can be described as chaotic, with separated regions and recirculating fluid. Shear layer formation between stagnant- and rotating flow regions can be an origin for rotating flow structures. Examples are the rotating-vortex-rope (RVR) found during PL operation and the vortical flow structures in the vaneless space during SNL operation, which can cause the flow between the runner blades to stall, also referred to as rotating stall. The flow structures are associated with pressure pulsations throughout the turbine, which puts high stress on the runner and other critical parts and shortens the turbine's lifetime. Numerical models of hydraulic turbines are highly coveted to investigate the detrimental flow inside the hydraulic turbines' different sections at off-design operating conditions. They enable the detailed study of the flow and the origin of the instabilities. This knowledge eases the design and assessment of mitigation techniques that expand the turbines' operating range, ultimately enabling a wider implementation of intermittent energy resources on the electrical grid and a smoother transition to a fossil-free society. This thesis presents the numerical study of the Porjus U9 model, a scaled-down version of the 10 MW prototype Kaplan turbine located along the Luleå river in northern Sweden. The distributor contains 20 guide vanes, 18 stay vanes and the runner is 6-bladed. The numerical model is a geometrical representation of the model turbine located at Vattenfall Research and Development in Älvkarleby, Sweden. The commercial software ANSYS CFX 2020 R2 is used to perform the numerical simulations. Firstly, the draft tube cone section of the U9 model is numerically studied to investigate the sensitivity of a swirling flow to the GEKO (generalized kω) turbulence model. The GEKO model aims to consolidate different eddy viscosity turbulence models. Six free coefficients are changeable to tune the model to flow conditions and obtain results closer to an experimental reference without affecting the calibration of the turbulence model to basic flow test cases. Especially, the coefficients affecting wall-bounded flows are of interest. This study aims to analyze if the GEKO model can be used to obtain results closer to experimental measurements and better predict the swirling flow at PL operation compared to other eddy viscosity turbulence models. Results show that the near-wall- and separation coefficients predict a higher swirl and give results closer to experimentally obtained ones. Secondly, a simplified version of the U9 model is investigated at BEP and PL operating conditions and includes one distributor passage with periodic boundary conditions, the runner and the draft tube. The flow is assumed axisymmetric upstream of the runner, hence the single distributor passage. Previous studies of hydraulic turbines operating at PL show difficulties predicting the flow's tangential velocity component as it is often under predicted. Therefore, a parametric analysis is performed to investigate which parameters affect the prediction of the tangential velocity in the runner domain. Results show that the model predicts the flow relatively well at BEP but has problems at PL; the axial velocity is overpredicted while the tangential is underpredicted. Moreover, the torque is overpredicted. The root cause for the deviation is an underestimation of the head losses. Another contributing reason is that the runner extracts too much swirl from the flow, hence the low tangential velocity and the high torque. Sensitive parameters are the blade clearance, blade angle and mass flow. Finally, the full version of the U9 model is analyzed at SNL operation, including the spiral casing, full distributor, runner and draft tube. During this operating condition, the flow is not axisymmetric; vortical flow structures extend from the vaneless space to the draft tube and the flow stalls between the runner blades. A mitigation technique with independent control of each guide vane is presented and implemented in the model. The idea is to open some of the guidevanes to BEP angle while keeping the remaining ones closed. The aim is to reduce the swirl and prevent the vortical flow structures from developing. Results show that the flow structures are broken down upstream the runner and the rotating stall between the runner blades is reduced, which decreases the pressure- and velocity fluctuations. The flow down stream the runner remains mainly unchanged.
|
Page generated in 0.0392 seconds