• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • 2
  • Tagged with
  • 21
  • 16
  • 13
  • 13
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of the structure and dynamics of the centromeric epigenetic mark

Padeganeh, Abbas 04 1900 (has links)
Le centromère est le site chromosomal où le kinetochore se forme, afin d’assurer une ségrégation fidèles des chromosomes et ainsi maintenir la ploïdie appropriée lors de la mitose. L’identité du centromere est héritée par un mécanisme épigénétique impliquant une variante de l’histone H3 nommée centromere protein-A (CENP-A), qui remplace l’histone H3 au niveau de la chromatine du centromère. Des erreurs de propagation de la chromatine du centromère peuvent mener à des problèmes de ségrégation des chromosomes, pouvant entraîner l’aneuploïdie, un phénomène fréquemment observé dans le cancer. De plus, une expression non-régulée de CENP-A a aussi été rapportée dans différentes tumeurs humaines. Ainsi, plusieurs études ont cherchées à élucider la structure et le rôle de la chromatine contenant CENP-A dans des cellules en prolifération. Toutefois, la nature moléculaire de CENP-A en tant que marqueur épigénétique ainsi que ces dynamiques à l'extérieur du cycle cellulaire demeurent des sujets débat. Dans cette thèse, une nouvelle méthode de comptage de molécules uniques à l'aide de la microscopie à réflexion totale interne de la fluorescence (TIRF) sera décrite, puis exploitée afin d'élucider la composition moléculaire des nucléosomes contenant CENP-A, extraits de cellules en prolifération. Nous démontrons que les nucléosomes contenant CENP-A marquent les centromères humains de façon épigénétique à travers le cycle cellulaire. De plus, nos données démontrent que la forme prénucléosomale de CENP-A, en association avec la protéine chaperon HJURP existe sous forme de monomère et de dimère, ce qui reflète une étape intermédiaire de l'assemblage de nucléosomes contenant CENP-A. Ensuite, des analyses quantitatives de centromères lors de différenciation myogénique, et dans différents tissus adultes révèlent des changements globaux qui maintiennent la marque épigénétique dans une forme inactive suite à la différentiation terminale. Ces changements incluent une réduction du nombre de points focaux de CENP-A, un réarrangement des points dans le noyau, ainsi qu'une réduction importante de la quantité de CENP-A. De plus, nous démontrons que lorsqu'une dédifférenciation cellulaire est induite puis le cycle cellulaire ré-entamé, le phénotype "différencié" décrit ci-haut est récupéré, et les centromères reprennent leur phénotype "prolifératif". En somme, cet oeuvre décrit la composition structurale sous-jacente à l'identité épigénétique des centromères de cellules humaines lors du cycle cellulaire, et met en lumière le rôle de CENP-A à l'extérieur du cycle cellulaire. / The centromere is a unique chromosomal locus where the kinetochore is formed to mediate faithful chromosome partitioning, thus maintaining ploidy during cell division. Centromere identity is inherited via an epigenetic mechanism involving a histone H3 variant, called centromere protein-A (CENP-A) which replaces histone H3 in centromeric chromatin. Defects in the centromeric chromatin can lead to missegregation of chromosomes resulting in aneuploidy, a ¬¬frequently observed phenomenon in cancer. Moreover, deregulated CENP-A expression has also been documented in a number of human malignancies. Therefore, much effort has been devoted to uncover the structure and role of CENP-A-containing chromatin in proliferating cells. However, the molecular nature of this epigenetic mark and its potential dynamics during and outside the cell cycle remains controversial. In this thesis, the development of a novel single-molecule imaging approach based on total internal reflection fluorescence and the use of this assay to gain quantitative information about the molecular composition of CENP-A-containing nucleosomes extracted from proliferating cells throughout the cell cycle as well as the dynamics and cellular fate of CENP-A chromatin in terminal differentiation are described. Here, we show that octameric CENP-A nucleosomes containing core Histones H2B and H4 epigenetically mark human centromeres throughout the cell cycle. Moreover, our data demonstrate that the prenucleosomal form of CENP-A bound by the chaperone HJURP transits between monomeric and dimeric forms likely reflecting intermediate steps in CENP-A nucleosomal assembly. Moreover, quantitative analyses of centromeres in myogenic differentiation and adult mouse tissue sections revealed that centromeres undergo global changes in order to retain a minimal CENP-A epigenetic code in an inactive state, upon induction of terminal differentiation. These include a robust decrease in the number of centromeric foci, subnuclear rearrangement as well as extensive loss of CENP-A protein. Interestingly, we show that forced dedifferentiation under cell cycle reentry permissive conditions, rescued the above-mentioned phenotype concomitantly with the restoration of cell division. Altogether, this work delineates the structural basis for the epigenetic specification of human centromeres during the cell cycle and sheds light on the cellular fate of the CENP-A epigenetic code outside the cell cycle.
12

Causes and consequences of chromosome segregation errors in the mouse preimplantation embryo

Vázquez de Castro Diez, Cayetana 04 1900 (has links)
La division cellulaire est un processus biologique universel nécessaire à la reproduction, au développement, à la survie cellulaire ainsi qu’à la réparation des tissus. Une ségrégation chromosomique exacte pendant la mitose est essentielle pour une répartition égale des chromosomes répliqués entre les cellules filles. Des erreurs dans la ségrégation des chromosomes mènent à une condition appelée aneuploïdie, définie par un nombre inadéquat de chromosomes dans une cellule. L’aneuploïdie est associée à une altération de la santé cellulaire, la tumorigénèse, des malformations congénitales et l'infertilité. Contre toute attente, les embryons préimplantatoires de mammifères, dont les humains, consistent souvent en un mélange de cellules euploïdes et de cellules aneuploïdes. Ce mosaïcisme est inexorablement causé par des erreurs dans la ségrégation des chromosomes au cours des divisions mitotiques suivant la fécondation et est associé à un potentiel de développement réduit lors des traitements de fertilité. Malgré sa découverte il y a 25 ans, les mécanismes qui sous-tendent l’apparition de l'aneuploïdie mosaïque dans les embryons préimplantatoires sont toujours méconnus. Pour explorer les causes et les conséquences des erreurs de ségrégation chromosomique, des approches d'imagerie de fine pointe ont été utilisées sur des embryons préimplantatoires murins. L'analyse de la dynamique de la ségrégation des chromosomes via l’imagerie de cellules vivantes a permis d’identifier les chromosomes retardataires, lors de l’anaphase, comme la forme la plus répandue des erreurs de ségrégation. Ces chromosomes retardataires entraînent fréquemment une encapsulation de chromosome unique dans une structure appelée micronoyau. D'autres expériences d'imagerie par immunofluorescence sur des cellules vivantes ou fixées ont révélé que les chromosomes des micronoyaux subissent des dommages importants à l'ADN et sont mal répartis de manière récurrente lors des divisions cellulaires subséquentes dans la phase préimplantatoire. D’autres approches ont aussi permis d’examiner l'efficacité du mécanisme de contrôle de l’assemblage du fuseau mitotique, (SAC pour Spindle Assembly Checkpoint). Les résultats obtenus attestent que le SAC fonctionne, cependant la signalisation liée au SAC n’est pas efficace et ne permet pas de différer l'anaphase, malgré la présence de chromosomes retardataires et ce indépendamment de la taille des cellules. Les résultats présentés révèlent aussi qu’une inhibition partielle d’une cible du SAC, le complexe de promotion de l'anaphase (APC/C), cause une mitose prolongée et une réduction des erreurs de ségrégation. En outre, les études présentées démontrent que la fonction déficiente du SAC pendant le développement préimplantatoire est la cause principale d’une forte incidence de chromosomes retardataires qui entraînent une mauvaise ségrégation chromosomique répétée et qui causent une aneuploïdie mosaïque dans l’embryon. De plus, ce travail fournit la preuve que la modulation pharmacologique de la signalisation SAC-APC/C permet d’éviter les erreurs de ségrégation des chromosomes dans les embryons précoces. En conclusion, ces résultats apportent de nouvelles perspectives sur les causes et la nature des erreurs de ségrégation chromosomique dans les embryons. De plus, ce travail apporte de nouvelles explications mécanistiques sur l'apparition du mosaïcisme dans les embryons ce qui aura des implications importantes dans la détection et la prévention thérapeutique potentielle de l'aneuploïdie mosaïque dans les embryons préimplantatoires. / Cell division is a universal biological process necessary for reproduction, development, cell survival and the maintenance and repair of tissues. Accurate chromosome segregation during mitosis is essential to ensure replicated chromosomes are partitioned equally into daughter cells. Errors in chromosome segregation often result in cells with abnormal numbers of chromosomes, a condition termed aneuploidy, which is associated with impaired cellular health, tumorigenesis, congenital defects and infertility. Counterintuitively, preimplantation embryos from many mammalian species, including humans, often consist of a mixture euploid and aneuploid cells. Such mosaic aneuploidy in embryos is inexorably caused by errors in chromosome segregation during mitotic divisions following fertilization and has been associated with reduced developmental potential in fertility treatments. However, ever since its discovery 25 years ago, how and why mosaic aneuploidy arises in the preimplantation embryo has remained elusive. To explore the causes and consequences of embryonic chromosome segregation errors, advanced imaging approaches were employed in the mouse preimplantation embryo. Live cell imaging analysis of chromosome segregation dynamics identified lagging anaphase chromosomes as the most prevalent form of chromosome mis-segregation in embryos. Lagging chromosomes frequently result in the encapsulation of single chromosomes into micronuclei, which occur in embryos in vitro and in vivo. Further live imaging and immunofluorescence experiments revealed chromosomes within micronuclei are subject to extensive DNA damage and centromeric identity loss, failing to assemble functional kinetochores and being recurrently mis-segregated during ensuing cell divisions in preimplantation development. To uncover the underlying causes for the increased propensity for chromosome mis-segregation in embryos, live imaging and loss-of-function approaches were used to examine the effectiveness of the mitotic safeguard mechanism, the Spindle Assembly Checkpoint (SAC). These studies demonstrated that the SAC normally functions to prevent segregation errors during preimplantation development but SAC signaling at misaligned chromosomes fails to delay anaphase. Moreover, SAC failure in embryos is most evident during mid-preimplantation development, independent of cell size. Partial inhibition of SAC target, the Anaphase Promoting Complex (APC/C), extended mitosis and reduced chromosome segregation errors in embryos. These studies have uncovered deficient SAC function during preimplantation development as a major cause for the high incidence of lagging chromosomes in embryos, which result in repeated mis-segregation of single chromosomes in a manner that necessarily causes mosaic aneuploidy. Additionally, this work provides proof-of-principle demonstration that pharmacological modulation of SAC-APC/C signalling can avert chromosome segregation errors in the early embryo. Altogether, these findings present new insights into the causes and nature of chromosome mis-segregation in embryos, providing novel mechanistic explanations for the occurrence of mosaicism that will have substantial implications for the detection and potential therapeutic prevention of aneuploidy in preimplantation embryos.
13

The role of the kinetochore in chromosome segregation during Meiosis I

Turrin, Evelyne 12 1900 (has links)
La ségrégation des chromosomes est un processus complexe permettant la division égale du matériel génétique entre les cellules filles. Contrairement aux cellules somatiques, ce processus est sujet à des erreurs dans les cellules germinales telles que les ovocytes. Lorsque des erreurs surviennent lors de la ségrégation des chromosomes durant la méiose cela peut conduire à une aneuploïdie. L’aneuploïdie est la présence d’un nombre incorrect de chromosomes dans une cellule et est connue pour causer l’infertilité et des arrêts de grossesses chez l’humain. L’incidence de l’aneuploïdie augmente avec l’âge maternel (1). Le kinétochore est une structure cellulaire impliqué dans la ségrégation des chromosomes. Il est composé de plus de 100 protéines et se situe entre les microtubules et les centromères. Les microtubules se lient aux kinétochores, et ces derniers s’attachent sur les centromères afin de séparer les chromosomes homologues durant la méiose et les chromatides des sœurs pendant la mitose (1–3). Dans les cellules somatiques, cette structure est bien connue (2). Pourtant, moins d’informations sont connues à dans l’ovocyte de mammifère en développement au cours de la méiose I (3,4). Ce projet vise à étudier le rôle du kinétochore durant la ségrégation des chromosomes dans l’ovocyte de souris en développement. Plus spécifiquement, l’assemblage, le désassemblage, la dynamique et la tension des protéines du kinétochore seront évalués. Ce projet permettra de mieux comprendre le rôle du kinétochore durant la méiose I, ses implications durant la séparation des chromosomes, et éventuellement ses implications dans l’aneuploïdie. / Chromosome segregation is an intricate process in dividing genetic material equally between daughter cells. This process, unlike in somatic cells, is error prone in germ cells like the oocyte. When errors occur during meiosis in segregating chromosomes, aneuploidy results when the cell has an incorrect number of chromosomes. This can result in infertility and birth defects in human reproduction. The incidences of aneuploidy are also seen to increase with increasing maternal age (1). The kinetochore is a cellular structure at the heart of chromosome segregation. It is composed of more than 100 proteins and is located between the microtubules and the centromeres. The microtubules attach onto the kinetochores, which themselves attach onto the centromeres, in order to pull the homologous chromosomes apart during meiosis and the sister chromatids during mitosis (1–3). Much is known about this multi-protein structure in somatic cells (2). Yet, very little is known about this in the developing mammalian oocyte during Meiosis I (1,3,4). This project aims to investigate the role of the kinetochore in chromosome segregation in a developing mouse oocyte. More specifically, kinetochore protein assembly, disassembly, dynamics and tension will be assessed. This project will achieve a better understanding of the kinetochore’s role in Meiosis I, its implications in chromosome segregation in a developing mouse oocyte, and how it may be involved in aneuploidy.
14

Impact of aneuploidy on cytoplasm of mouse oocytes

Kravarikova, Karolina 12 1900 (has links)
Durant le développement préimplantatoire, les défauts de ségrégation des chromosomes conduisent à l'héritage d'un nombre incorrect de chromosomes, connu sous le nom d'aneuploïdie, qui provoque l'infertilité. L’imagerie à intervalle du développement préimplantatoire est introduite pour sélectionner le meilleur embryon et des efforts sont en cours pour utiliser l'imagerie non invasive pour identifier les ovocytes euploïdes en métaphase-II comme prédicteur de la viabilité future de l'embryon. Il est déjà bien établi que les ovocytes de mammifères en métaphase-II subissent des mouvements cytoplasmiques stéréotypés qui peuvent être visualisés par imagerie non invasive à fond clair à intervalle, appelée « flux cytoplasmique ». Ici, nous avons émis l'hypothèse que le flux cytoplasmique pourrait être affecté par le statut de ploïdie de l'ovule et donc être un outil de sélection utile pour sélectionner les ovules euploïdes de manière non invasive. Nous avons développé des conditions pour générer des ovules euploïdes et aneuploïdes à partir du même bassin d'ovocytes sains. Nous avons ensuite utilisé la microscopie d'imagerie en temps réel DIC, permettant de visualiser et de mesurer le flux cytoplasmique sans manipulation de l'ovule. Les mouvements cytoplasmiques ont été liés au statut de ploïdie pour chaque ovule individuel par immunofluorescence. Nos résultats montrent qu'il n'y a pas de différence de flux cytoplasmique entre les ovules euploïdes et aneuploïdes. Nos données démontrent que l'état de la ploïdie n'a pas d'impact sur les mouvements cytoplasmiques, suggérant que l'utilisation d'une imagerie non invasive pour essayer de distinguer l'état de la ploïdie entre des ovocytes autrement sains sera difficile. / Chromosome segregation errors during early development lead to inheritance of incorrect number of chromosomes, known as aneuploidy, which causes infertility and birth defects. Time-lapse microscopy of preimplantation development is being widely introduced with the aim of selecting the best embryo and efforts to use non-invasive brightfield imaging to identify euploid oocytes at metaphase-II as a predictor of future embryo viability are underway. It is already well established that mammalian metaphase-II oocytes undergo stereotyped cytoplasmic movements that can be visualised by non-invasive brightfield timelapse imaging, termed “cytoplasmic flow”. Here, we hypothesised that this cytoplasmic flow might be affected by ploidy status of the egg and therefore be a useful selection tool to select euploid eggs non-invasively. To address this, we developed conditions to generate euploid and aneuploid eggs from the same pool of otherwise healthy oocytes. We then used DIC live-imaging microscopy, which allowed us to visualise and measure flow without any manipulation to the egg. Importantly, individual eggs were scored for their ploidy status by immunofluorescence, so that cytoplasmic movements could be related to ploidy on an egg-by-egg basis. Our results show that there is no difference in cytoplasmic flow between euploid and aneuploid eggs. Therefore, our data demonstrates that ploidy status does not impact biologically relevant stereotyped cytoplasmic movements, suggesting that using non-invasive imaging to try to distinguish ploidy status between otherwise healthy oocytes will be challenging.
15

Cytokinesis in the mouse preimplantation embryo : mechanism and consequence of failure

Gomes Paim, Lia Mara 01 1900 (has links)
Essentiel au maintien d’un organisme sain, la division cellulaire est un processus biologique composée de deux phases : la mitose et la cytokinèse. Au cours de la mitose, un fuseau mitotique bipolaire est assemblé et les chromosomes s’alignent au niveau de la plaque métaphasique par l’attachement des kinétochores aux microtubules du fuseau. Une fois les chromosomes alignés, les chromatides soeurs sont séparées par les microtubules pendant l'anaphase et sont ségréguées entre les cellules filles. La cytokinèse est initiée peu après le début de l'anaphase, marquant ainsi la fin de la division cellulaire en séparant le cytoplasme en deux nouvelles cellules filles. Une exécution précise de la mitose et de la cytokinèse est essentielle pour le maintien de l'intégrité du génome. L'échec de l'un de ces processus affecte la fidélité génétique. Les erreurs de ségrégation des chromosomes durant la mitose peuvent entraîner un gain ou une perte de chromosomes entiers, appelé aneuploïdie. Tandis que l'échec de la cytokinèse conduit à la formation d'une cellule binucléée avec un génome entièrement dupliqué, appelé tétraploïdie. Dans les cellules somatiques, la tétraploïdie peut conduire à l'arrêt du cycle cellulaire, à la mort cellulaire, ou provoquer une instabilité chromosomique (CIN), favorisant ainsi la prolifération de cellules avec un potentiel tumorigène. Par conséquent, il est essentiel de bien comprendre la régulation et les causes potentielles de l’échec de la cytokinèse en particulier dans le contexte des systèmes multicellulaires comme l’embryon. En effet, dans ces systèmes, la réduction progressives de la taille des cellules coïncident avec les principaux évènements du développement. De plus, la binucléation est fréquemment observée dans les cliniques de fertilité chez les embryons humains. Cependant, l’impact de la binucléation sur les divisions préimplantatoires demeure inexpliqué à ce jour. Afin de déterminer les conséquences de la tétraploïdie, nous avons utilisé l'embryon de souris pour modèle et réalisé des expériences d'immunofluorescence à haute résolution et une imagerie sur cellules vivantes. Nous avons découvert que la tétraploïdie chez les embryons de souris provoque une CIN et l'aneuploïdie par un mécanisme différent de celui des cellules somatiques. Dans les cellules somatiques, la formation des fuseaux multipolaires causée par des centrosomes surnuméraires est le principal mécanisme conduisant à la tétraploïdie et ainsi, à une CIN. En revanche, chez les embryons de souris, qui ne possèdent pas de centrosomes, la tétraploïdie ne conduit pas à la formation des fuseaux multipolaires. Les embryons tétraploïdes de souris développent une CIN en raison d’une réduction du renouvellement des microtubules et d’une altération de l’activité de correction d’erreurs dans l’attachement des kinétochores aux microtubules. Ainsi, une mauvaise correction de l’attachement des kinétochores aux microtubules entraîne des niveaux élevés d'erreurs de ségrégation chromosomique. Dans le cadre d'une étude de suivi, nous avons ensuite utilisé des différentes expériences d'imageries sur des cellules vivantes et d'immunofluorescences. Celles-ci furent couplées à des micromanipulations de la taille des cellules, des techniques modifiant l'adhésion cellulaire et des approches de knock-down des protéines pour étudier les mécanismes de régulation de la cytokinèse. Les expériences d'imageries sur cellules vivantes et les micromanipulations du volume cytoplasmique ont démontré que la taille des cellules détermine la vitesse de constriction de l'anneau contractile, c'est-à-dire que la vitesse de constriction devient progressivement plus lente à mesure que la taille des cellules diminue. Cependant, ce phénomène n'a lieu que lorsque les embryons atteignent le stade de 16 cellules ce qui suggère qu'une limite supérieure de vitesse de constriction peut exister pour restreindre l’augmentation de cette vitesse quand les cellules sont trop grandes. La taille des cellules étant un déterminant de la progression de la cytokinèse, nos expériences de knock-down des protéines ont, de plus, démontré que la formation de la polarité cellulaire a un impact négatif sur l'assemblage et la constriction de l'anneau contractile dans les cellules externes au stade de morula. Plus précisément, nous avons constaté que la polarité limite le recrutement des composants de la cytokinèse spécifiquement d'un côté de l'anneau contractile, provoquant ainsi un déséquilibre de l’ingression du sillon de clivage et réduisant la vitesse de constriction dans les cellules externes. Nous spéculons que la polarité cellulaire agit comme un obstacle à la progression de la cytokinèse, rendant ainsi les cellules externes plus sensibles à un échec de la cytokinèse. Ces études ont démontré un nouveau mécanisme par lequel la tétraploïdie conduit à l’instabilité chromosomique et à l’aneuploïdie chez les embryons. Ainsi un défaut de la dynamique de correction de l’attachement des kinétochores aux microtubules entraîne une mauvaise ségrégation des chromosomes indépendamment à la formation des fuseaux multipolaires. Ce travail a mis en évidence un rôle inhibiteur de la polarité apicale inattendu sur la machinerie cytokinétique. Cette inhibition pourrait fournir une explication mécanistique de l’incidence élevée de la binucléation dans le trophectoderme. Dans l'ensemble, ces résultats contribuent à notre compréhension du contrôle spatio-temporel de la cytokinèse au cours du développement embryonnaire et fournissent de nouvelles informations mécanistiques sur les origines et les conséquences biologiques de la tétraploïdie chez les embryons préimplantatoires. Les résultats présentés dans cette thèse ont des implications cliniques importantes, puisqu’ils fournissent des preuves définitives que la tétraploïdie générée par un échec de la cytokinèse est délétère pour le développement embryonnaire. Ces travaux mettent ainsi en lumière que la binucléation est un critère de sélection embryonnaire important à considérer lors des traitements de fertilité. / Cell division is comprised of mitosis and cytokinesis and is an essential biological process for the maintenance of healthy organisms. During mitosis, a bipolar spindle is assembled, and the chromosomes are aligned at the metaphase plate via the attachment of kinetochores to spindle microtubules. Once chromosome alignment is achieved, the sister chromatids are pulled apart by the microtubules during anaphase and segregated into the nascent daughter cells. Cytokinesis is initiated after anaphase onset and marks the completion of cell division by partitioning the cytoplasm of the dividing cell into two new daughter cells. Successful and timely completion of both mitosis and cytokinesis is key for the maintenance of genome integrity, and failure in either one of these processes affects genetic fidelity. Whereas chromosome segregation errors in mitosis can lead to whole chromosome gains or losses, termed aneuploidy, cytokinesis failure leads to the formation of a binucleated cell with an entirely duplicated genome, termed tetraploidy. In somatic cells, tetraploidy can either lead to cell cycle arrest and death or cause chromosomal instability (CIN), thereby promoting the proliferation of cells with high tumorigenic potential. Therefore, understanding cytokinesis regulation and the potential causes of cytokinesis failure is key, especially in the context of multicellular embryonic systems, wherein progressive cell size reductions coincide with developmental transitions. Moreover, binucleation is frequently observed in human embryos in fertility clinics, and whether binucleation impacts early divisions remains elusive. To elucidate the consequences of tetraploidy, we used the mouse embryo as a model and employed high-resolution immunofluorescence and live-cell imaging experiments. We found that tetraploidy in mouse embryos causes CIN and aneuploidy by a mechanism distinct from that of somatic cells. Whereas in somatic cells multipolar spindle formation caused by supernumerary centrosomes is the major mechanism by which tetraploidy leads to CIN, in mouse embryos - which are acentriolar – tetraploidy does not lead to multipolar spindle formation. Instead, mouse tetraploid embryos develop CIN due to reduced microtubule turnover and impaired error correction activity, which prevents the timely resolution of kinetochore-microtubule mis-attachments, thereby leading to high levels of chromosome segregation errors. As a follow-up study, we next employed live imaging and immunofluorescence experiments, coupled with micromanipulations of cell size, cell adhesion and protein knockdown approaches to investigate the regulatory mechanisms of cytokinesis. Live imaging experiments and micromanipulations of cytoplasmic volume demonstrated that cell size determines the speed of contractile ring constriction i.e., constriction speed becomes progressively slower as the cells decrease in size. However, this phenomenon takes place only when embryos reach the 16-cell stage, suggesting that an upper limit of constriction speed may exist to restrict the scalability of ring constriction to cell size. In addition to cell size being a powerful determinant of cytokinesis progression, our loss-of-function experiments revealed that the emergence of cell polarity negatively impacts contractile ring assembly and constriction in outer cells at the morula stage. More specifically, we found that polarity limits the recruitment of cytokinesis components specifically to one side of the contractile ring, thereby causing unbalanced furrow ingression and reducing constriction speed in outer cells. We speculate that cell polarity may act as an obstacle for cytokinesis progression and render outer cells to be more susceptible to cytokinesis failure. These studies have revealed a novel mechanism by which tetraploidy leads to chromosomal instability and aneuploidy in embryos, wherein defective kinetochore-microtubule dynamics cause chromosome mis-segregation in a manner independent of multipolar spindle formation. In addition, this work unravelled an unexpected inhibitory role of apical polarity on the cytokinetic machinery that might provide a mechanistic explanation for the high incidences of binucleation in the outer layer of blastocysts. Altogether, these findings contribute to our understanding of the spatiotemporal control of cytokinesis during embryonic development and provide new mechanistic insights into the origins and biological consequences of tetraploidy in preimplantation embryos. The results presented in this thesis have substantial clinical implications, as they provide definitive evidence that tetraploidy generated by cytokinesis failure is deleterious to embryonic development, therefore underlining binucleation as an important embryo selection criterion to be considered during fertility treatments.
16

La phase-M chez les ovocytes et les embryons de mammifères : impact et conséquence d’une prolongation de la phase-M

Allais, Adélaïde 08 1900 (has links)
Un couple canadien sur six aurait des problèmes de fertilité. Jusqu’à 70% des embryons humains générés en clinique de fertilité possèdent des cellules avec un nombre erroné de chromosomes appelées cellules aneuploïdes. L’aneuploïdie est le résultat d’une mauvaise ségrégation des chromosomes durant la division cellulaire et réduit les chances de grossesse à terme. Il fut démontré que les embryons ont un temps de division différent et que ce temps peut être un indicateur de sa santé. Cependant, comment cette division affecte l’embryon au niveau cellulaire reste à démontrer. Chez les cellules somatiques, le temps de divisions cellulaires (phase-M) est directement lié à l'intégrité chromosomique. Plus précisément, une phase-M prolongée peut provoquer une séparation prématurée des chromatides sœurs appelée "fatigue des cohésions" (CF). Indépendamment, divers mécanismes réduisent les erreurs de ségrégation des chromosomes. L’un d’entre eux, le point de contrôle de l'horloge mitotique (mitotic-timer) fut décrit chez les cellules somatiques comme actif après une prolongation de la phase-M provoquant ainsi un arrêt G1/S des cellules filles. L’existence du mitotic-timer et la présence de CF chez l'embryon de mammifère reste inconnues. Des travaux suggèrent que certains points de contrôle sont défaillants chez les embryons. Ici, nous faisons l’hypothèse que les embryons préimplantatoires n'ont pas de mitotic-timer et examinons leurs capacités de division après une exposition à des agents perturbateurs de la mitose. La durée de la phase-M fut manipulée chez des embryons de souris au stade deux-cellules avec un inhibiteur du complexe de promotion de l’anaphase. L'imagerie de cellules fixées et vivantes fut réalisée sur un microscope confocal et à fluorescence inversée. Contrairement aux cellules somatiques, les embryons préimplantatoires ne parviennent pas à activer le mitotic-timer après une phase-M prolongée de 6 heures au stade 2-cellules, et ils se développent jusqu'au stade blastocyste. Cette même extension conduit à la CF, qui induit des défauts de ségrégation chromosomique. En revanche, une extension extrême (14 heures) de la phase-M provoque un arrêt du cycle cellulaire à l'interphase suivante. Également, une accumulation de dommages à l'ADN est observée avec l'individualisation des chromosomes en phase-M. Pour résumer, une prolongation extrême de la phase-M provoque un arrêt du cycle cellulaire. Une phase-M de 6 heures suffit à provoquer des erreurs de ségrégation, mais n’active pas le mitotic-timer et conduit ainsi à une instabilité chromosomique. Par conséquent, comme les embryons sont sensibles à la CF, nous nous sommes demandé si les œufs en métaphase II, où le fuseau persiste pendant plusieurs heures, pourraient également être sujets à la CF. Pour tester cela, nous avons examiné des ovocytes de souris jeunes (2-3 mois) et âgées (16 mois), ainsi que des ovocytes humains. De manière frappante, la fréquence des chromosomes mal alignés n'était pas associée à la durée de l'arrêt en métaphase II, quel que soit l'espèce ou l'âge. En conclusion, contrairement aux embryons, les ovocytes en métaphase-II semblent protégés de la CF pour garantir l'intégrité du génome pendant l'arrêt prolongé qui précède la fécondation. Nous pensons que l’intégration de la durée de la phase-M pourrait améliorer la sélection des embryons viable en clinique. / One in six Canadian couples struggle with infertility. Nearly 70% of human embryos generated in fertility clinics contain aneuploid cells, possessing the wrong number of chromosomes due to errors during embryonic cell division in chromosome segregation. Aneuploidy reduces the risk of full-term pregnancy and is the cause of various genetic disorders. It has been reported that the timing of cell divisions in the early embryo is variable and may be an indicator of embryo health, but we have a limited understanding of how mitotic timing in the embryo impacts the embryo on a cellular level. In somatic cells the timing of cell divisions has recently been shown to relate directly to chromosome integrity. Specifically, extended M-phase can cause premature separation of sister chromatids, known as "cohesion fatigue" (CF). In addition, several checkpoints operate to reduce chromosome segregation errors. The mitotic timer (MitClock) has been described in somatic cells where an extended duration of M-phase can cause a subsequent G1/S arrest. But whether MitClock can operate in the mammalian embryo, and whether the embryo is susceptible to CF, are unknown. Other work suggests that well characterised genetic integrity-protecting pathways may be lacking in embryos. We therefore hypothesized that early mammalian embryos lack a mitotic clock checkpoint and we aimed to examine their ability to divide following exposure to mitotic disrupting agents. To address these questions, M-phase duration was manipulated in two-cell stage mice embryos with an anaphase promoting complex inhibitor. Fixed-cell and live imaging were performed on confocal and inverted fluorescence microscopes. In contrast to somatic cells, preimplantation embryos fail to activate MitClock after 6-hours in a prolonged M-phase at the 2-cell stage, and embryos develop to blastocysts. Importantly however, this same extension leads to CF, which induces chromosome segregation defects. In contrast, an extreme (14 hour) M-phase extension causes cell cycle arrest in the subsequent interphase, which we show involves the accumulation of DNA damage and is potentiated by chromosome individualisation in M-phase. To summarise, while extreme elongation of M-phase can cause cell cycle arrest, even a 6-hour M-phase is enough to elicit CF and chromosome segregation errors. The 6-hour M-phase fails to activate a mitotic clock checkpoint and thus leads to chromosomal instability. As we have shown that embryos are susceptible to CF, we wondered whether Metaphase-II eggs, where the spindle persists for several hours, might also be prone to CF. To test this, we examined oocytes from young (2-3 months) and old (16 months) mice, as well as human oocytes matured from GV stage from patients undergoing fertility treatment. Strikingly, the frequency of misaligned chromosomes was not associated with the length of Metaphase-II arrest regardless of species, or age. We conclude that, contrary to what we found to be the case for mitotic M-phases in the early embryo, the chromosomes on Metaphase-II spindles are protected from cohesion fatigue to protect genome integrity during the prolonged Metaphase-II arrest that precedes fertilization. Altogether, we speculate that integration of M-phase lengths into embryo selection algorithms may in future improve the ability to select the most viable embryo in the clinic.
17

Dépistage prénatal de la trisomie 21 et autres aneuploïdies au premier trimestre

Miron, Pierre 01 1900 (has links)
La présente thèse par articles aborde différentes facettes du dépistage prénatal de certaines aneuploïdies au premier trimestre de la grossesse. L’introduction retrace l’historique du dépistage prénatal et énonce les différents marqueurs biochimiques et échographiques associés aux aneuploïdies. La première publication démontre que le tabagisme maternel abaisse significativement les niveaux sanguins maternels de PAPP-A et de la fraction libre de la β-hCG et augmente significativement la clarté nucale, confirmant la nécessité de contrôler cette co-variable dans le calcul de risque final, du moins pour la trisomie 18. Le deuxième article identifie des seuils de clarté nucale au-delà desquels la biochimie génétique n’apporte aucune valeur additionnelle au dépistage prénatal de la trisomie 21 et de la trisomie 18. Pour les fœtus avec clarté nucale supérieure aux seuils établis, un diagnostic prénatal intrusif devrait être offert sans délai. Le troisième et dernier article porte sur la première détermination des niveaux plasmatiques maternels de la protéine FLRG (follistatin-related gene) au premier trimestre de grossesse et sur son rôle potentiel à titre de marqueur biochimique dans le dépistage prénatal de la trisomie 21. Bien que détectables, les niveaux plasmatiques maternels de FLRG ne sont pas significativement altérés en présence de fœtus avec syndrome de Down. Dans la discussion générale, les trois articles sont abordés sous un angle plus spécifique au Québec. Des données complémentaires et originales y sont présentées. Une discussion sur l’évolution future du dépistage prénatal est entamée et des axes de recherche sont proposés. / In this thesis by articles, we explore different facets of first trimester prenatal screening of aneuploidy. Introduction retraces the origin of prenatal screening and enunciates current biochemical and ultrasound markers associated with aneuploidy. In the first article, impact of maternal smoking on first-trimester prenatal screening results is assessed for Down syndrome and trisomy 18. Both maternal blood levels of PAPP-A and free β-hCG are significantly decreased by maternal smoking while fetal nuchal translucency (NT) thickness is significantly increased. Without adjustment, this results in an increase of false positives, at least for trisomy 18. Based on these results, adjustment for smoking should be mandatory in first-trimester prenatal screening. In the second article, we identify NT threshold values above which biochemical screening provides no additional benefit. In pregnancies in which NT is above the proposed upper cut-offs, invasive prenatal screening should be offered without undue delay. In the third and last article, maternal plasma levels of follistatin- related gene protein (FLRG) are determined for the first time in first trimester of pregnancy. Its potential role as a new marker for Down syndrome is assessed. Although FLRG can be successfully detected in maternal plasma, its levels are not significantly altered by the presence of Down syndrome fetuses. In the general discussion, articles are mainly addressed under a Quebec standpoint. Additional and complementary original data are presented and different clinical research avenues are proposed.
18

Implication de MEK1 et MEK2 dans l'initiation et la progression du cancer colorectal

Duhamel, Stéphanie 08 1900 (has links)
Une dérégulation de la voie de signalisation Ras/Raf/MEK/ERK1/2 est observée dans plus de 30% des cancers et des mutations activatrices de RAS sont observées dans 30% à 50% des adénomes colorectaux. À la suite d’une analyse extensive de biopsies de tumeurs colorectales humaines par micromatrices tissulaires (TMA), nous avons observé que 44% des tissus cancéreux exprimaient MEK1/2 phosphorylés, contre 10% des tissus normaux. L'analyse des TMA a également révélé que 79% des tumeurs arboraient un marquage nucléaire de MEK1/2 phosphorylés, contre 4 % pour les tissus normaux. Bien que la voie MEK/ERK1/2 soit fréquemment activée dans les cancers, le rôle précis des isoformes de MEK1 et de MEK2 n'a jamais été clairement établie. De même, l'impact de cette localisation nucléaire aberrante de phospho-MEK1/2, dans l'initiation et la progression des cancers colorectaux, est inconnu. Lors d'un premier projet, nous avons démontré, que l’expression de MEK1 ou MEK2 activé est suffisante pour transformer in vitro des cellules intestinales épithéliales de rat (IEC-6). L'expression des mutants actifs de MEK1 ou MEK2 est suffisante pour induire une dérégulation de la prolifération cellulaire et engendrer la formation d'adénocarcinomes invasifs dans un modèle de greffe orthotopique du côlon chez la souris. Nous avons également démontré que l'inhibition de MEK2 par shRNA supprime complètement la prolifération des lignées humaines de cancer du côlon, alors que la suppression de MEK1 a peu d'effet sur la capacité de prolifération. Le deuxième projet, nous a permis d'observer que l'expression d'un mutant nucléaire de MEK1 dans les cellules IEC-6 transforme drastiquement les cellules. Une augmentation de prolifération, une résistance à l'anoikose, un dérèglement du cycle cellulaire, de l'instabilité chromosomique (CIN), de la tétra/aneuploïdie sont observés. La caractérisation des mécanismes responsables de cette localisation aberrante de MEK1/2 phosphorylés, a permis d'identifier la protéine Sef, un régulateur de la localisation cytoplasmique de MEK/ERK1/2. Nous avons démontré que l'expression d'une forme oncogénique de Ras (H-RasV12) inhibe l'expression de Sef, engendrant alors une accumulation nucléaire de MEK1/2 activés. Plus encore, la réexpression de Sef restaure la localisation cytoplasmique de MEK1/2 et renverse les propriétés tumorigéniques ainsi que l'aneuploïdie induite par Ras activé. Un troisième projet, visant la caractérisation des mécanismes associés à la CIN et à l'aneuploïde engendrés par l'activation aberrante de la voie de Ras-ERK1/2, a permis d'observer que l'hyperactivation de ERK1/2 induit des anomalies mitotiques menant à la binucléation. Une localisation erronée et une surexpression de la kinase Aurora A, de même que des protéines de passage du complexe chromosomique (CPC), Aurora B, Survivine et INCENP, sont observées. L'inhibition partielle de l'activation de ERK1/2 par de faible dose de PD184352, un inhibiteur de MEK1/2, est suffisante pour renverser la surexpression de ces régulateurs mitotiques, de même que corriger les anomalies de la mitose et réduire la tétra/aneuploïdie engendrée par Ras oncogénique. Ainsi, nous avons démontré, pour la première fois, que la voie des MAP kinases ERK1/2 est impliquée dans la CIN, la tétraploïdie et l'aneuploïdie. Nos résultats suggèrent que la perte de Sef est un événement oncogénique précoce, qui contribue à la localisation nucléaire aberrante de MEK1/2 qui est observée dans les tumeurs colorectales. Cette localisation anormale de MEK1/2 est associée à l'initiation de la transformation, la progression tumorale et la CIN, via l'activité soutenue de ERK1/2. Ces informations sont capitales et démontrent l’importance de la voie de signalisation Ras/Raf/MEK/ERK1/2 dans le processus de tumorigénèse colorectale. / The Ras-dependent Raf/MEK/ERK1/2 signaling pathway is frequently hyperactivated in human cancer as a result of receptor tyrosine kinase overexpression or gain-of-function mutations in RAS or RAF genes. More specificaly, activating mutation in RAS genes are found in ~ 30-50% of colorectal adenomas and phosphorylation of ERK1/2 is frequently observed in human colorectal cancer cells and tumor specimens. In a large TMA analysis, we found that MEK1/MEK2 are aberrantly activated in 44% of human colorectal cancers. In addition, our analysis revealed that 79% of colorectal cancers exhibit aberrant phospho-MEK1/2 staining in the nucleus, as compared to 4% of normal tissue. How dysregulation and mislocalization of MEK1/2 contribute to tumor initiation and progression is not well understood. In order to determine the exact contribution of MEK1 and MEK2 to the pathogenesis of colorectal cancer, wild type and constitutively active forms of MEK1 and MEK2 were ectopically expressed by retroviral gene transfer in the normal intestinal epithelial cell line IEC-6. We found that the expression of activated MEK1 or MEK2 is sufficient to morphologically transform intestinal epithelial cells, dysregulate cell proliferation and induce the formation of high-grade adenocarcinomas after orthotopic transplantation in mice. A large proportion of these intestinal tumors metastasize to the liver and lung. Importantly, we show that silencing of MEK2 expression completely suppresses the proliferation of human colon carcinoma cell lines, whereas inactivation of MEK1 has a much weaker effect. In a second project, we have investigated the impact of the nuclear mislocalization of phosphorylated MEK1/2 observed in colorectal tumors. We show that oncogenic activation of Ras is sufficient to induce the nuclear accumulation of phosphorylated MEK1/2 and ERK1/2 in intestinal epithelial cells. To evaluate the biological impact of the mislocalization of MEK1/2, we have forced the localization of MEK1 in the nucleus of epithelial cells. We found that sustained nuclear MEK1 signaling leads to hyperactivation of ERK1/2 and to enhanced cell proliferation. Nuclear localization of MEK1 also leads to tetraploidization, chromosomal instability (CIN) and tumorigenesis. Importantly, we show that oncogenic Ras downregulates the spatial regulator Sef, concomitant to nuclear accumulation of activated MEK1/2. Moreover, re-expression of Sef is sufficient to restore the normal localization of MEK1/2 and to revert the cell cycle defects and tumorigenesis induced by oncogenic Ras. Another project was initiated to characterize the tetraploidy and CIN observed upon hyperactivation of the Ras-ERK1/2 pathway. Aneuploidy and CIN are observed in the majority of colorectal cancers and are associated with a poorer prognosis. We show that hyperactivation of ERK1/2 by oncogenic Ras or sustained nuclear MEK-ERK1/2 signaling induces mitotic defects that lead to tetraploidy, aneuploidy and CIN. We also found that dysregulation of Ras-ERK1/2 signaling alters the expression and localization of Aurora A and the Chromosomal passenger complex proteins. In conclusion, we show for the first time that the MEK/ERK1/2 signaling pathway is implicated in aneuploidy and CIN. Our results suggest that sustained nuclear ERK1/2 signaling may contribute to the initiation and progression of colorectal cancer by rapidly inducing aneuploidy and CIN. We suggest that loss of Sef is an early oncogenic event that contributes to genetic instability and tumor progression by sustaining nuclear ERK1/2 signaling. These observations are significant and highlight the importance of the Ras-ERK1/2 signaling pathway in colorectal tumorigenesis.
19

Dépistage prénatal de la trisomie 21 et autres aneuploïdies au premier trimestre

Miron, Pierre 01 1900 (has links)
La présente thèse par articles aborde différentes facettes du dépistage prénatal de certaines aneuploïdies au premier trimestre de la grossesse. L’introduction retrace l’historique du dépistage prénatal et énonce les différents marqueurs biochimiques et échographiques associés aux aneuploïdies. La première publication démontre que le tabagisme maternel abaisse significativement les niveaux sanguins maternels de PAPP-A et de la fraction libre de la β-hCG et augmente significativement la clarté nucale, confirmant la nécessité de contrôler cette co-variable dans le calcul de risque final, du moins pour la trisomie 18. Le deuxième article identifie des seuils de clarté nucale au-delà desquels la biochimie génétique n’apporte aucune valeur additionnelle au dépistage prénatal de la trisomie 21 et de la trisomie 18. Pour les fœtus avec clarté nucale supérieure aux seuils établis, un diagnostic prénatal intrusif devrait être offert sans délai. Le troisième et dernier article porte sur la première détermination des niveaux plasmatiques maternels de la protéine FLRG (follistatin-related gene) au premier trimestre de grossesse et sur son rôle potentiel à titre de marqueur biochimique dans le dépistage prénatal de la trisomie 21. Bien que détectables, les niveaux plasmatiques maternels de FLRG ne sont pas significativement altérés en présence de fœtus avec syndrome de Down. Dans la discussion générale, les trois articles sont abordés sous un angle plus spécifique au Québec. Des données complémentaires et originales y sont présentées. Une discussion sur l’évolution future du dépistage prénatal est entamée et des axes de recherche sont proposés. / In this thesis by articles, we explore different facets of first trimester prenatal screening of aneuploidy. Introduction retraces the origin of prenatal screening and enunciates current biochemical and ultrasound markers associated with aneuploidy. In the first article, impact of maternal smoking on first-trimester prenatal screening results is assessed for Down syndrome and trisomy 18. Both maternal blood levels of PAPP-A and free β-hCG are significantly decreased by maternal smoking while fetal nuchal translucency (NT) thickness is significantly increased. Without adjustment, this results in an increase of false positives, at least for trisomy 18. Based on these results, adjustment for smoking should be mandatory in first-trimester prenatal screening. In the second article, we identify NT threshold values above which biochemical screening provides no additional benefit. In pregnancies in which NT is above the proposed upper cut-offs, invasive prenatal screening should be offered without undue delay. In the third and last article, maternal plasma levels of follistatin- related gene protein (FLRG) are determined for the first time in first trimester of pregnancy. Its potential role as a new marker for Down syndrome is assessed. Although FLRG can be successfully detected in maternal plasma, its levels are not significantly altered by the presence of Down syndrome fetuses. In the general discussion, articles are mainly addressed under a Quebec standpoint. Additional and complementary original data are presented and different clinical research avenues are proposed.
20

Implication de MEK1 et MEK2 dans l'initiation et la progression du cancer colorectal

Duhamel, Stéphanie 08 1900 (has links)
Une dérégulation de la voie de signalisation Ras/Raf/MEK/ERK1/2 est observée dans plus de 30% des cancers et des mutations activatrices de RAS sont observées dans 30% à 50% des adénomes colorectaux. À la suite d’une analyse extensive de biopsies de tumeurs colorectales humaines par micromatrices tissulaires (TMA), nous avons observé que 44% des tissus cancéreux exprimaient MEK1/2 phosphorylés, contre 10% des tissus normaux. L'analyse des TMA a également révélé que 79% des tumeurs arboraient un marquage nucléaire de MEK1/2 phosphorylés, contre 4 % pour les tissus normaux. Bien que la voie MEK/ERK1/2 soit fréquemment activée dans les cancers, le rôle précis des isoformes de MEK1 et de MEK2 n'a jamais été clairement établie. De même, l'impact de cette localisation nucléaire aberrante de phospho-MEK1/2, dans l'initiation et la progression des cancers colorectaux, est inconnu. Lors d'un premier projet, nous avons démontré, que l’expression de MEK1 ou MEK2 activé est suffisante pour transformer in vitro des cellules intestinales épithéliales de rat (IEC-6). L'expression des mutants actifs de MEK1 ou MEK2 est suffisante pour induire une dérégulation de la prolifération cellulaire et engendrer la formation d'adénocarcinomes invasifs dans un modèle de greffe orthotopique du côlon chez la souris. Nous avons également démontré que l'inhibition de MEK2 par shRNA supprime complètement la prolifération des lignées humaines de cancer du côlon, alors que la suppression de MEK1 a peu d'effet sur la capacité de prolifération. Le deuxième projet, nous a permis d'observer que l'expression d'un mutant nucléaire de MEK1 dans les cellules IEC-6 transforme drastiquement les cellules. Une augmentation de prolifération, une résistance à l'anoikose, un dérèglement du cycle cellulaire, de l'instabilité chromosomique (CIN), de la tétra/aneuploïdie sont observés. La caractérisation des mécanismes responsables de cette localisation aberrante de MEK1/2 phosphorylés, a permis d'identifier la protéine Sef, un régulateur de la localisation cytoplasmique de MEK/ERK1/2. Nous avons démontré que l'expression d'une forme oncogénique de Ras (H-RasV12) inhibe l'expression de Sef, engendrant alors une accumulation nucléaire de MEK1/2 activés. Plus encore, la réexpression de Sef restaure la localisation cytoplasmique de MEK1/2 et renverse les propriétés tumorigéniques ainsi que l'aneuploïdie induite par Ras activé. Un troisième projet, visant la caractérisation des mécanismes associés à la CIN et à l'aneuploïde engendrés par l'activation aberrante de la voie de Ras-ERK1/2, a permis d'observer que l'hyperactivation de ERK1/2 induit des anomalies mitotiques menant à la binucléation. Une localisation erronée et une surexpression de la kinase Aurora A, de même que des protéines de passage du complexe chromosomique (CPC), Aurora B, Survivine et INCENP, sont observées. L'inhibition partielle de l'activation de ERK1/2 par de faible dose de PD184352, un inhibiteur de MEK1/2, est suffisante pour renverser la surexpression de ces régulateurs mitotiques, de même que corriger les anomalies de la mitose et réduire la tétra/aneuploïdie engendrée par Ras oncogénique. Ainsi, nous avons démontré, pour la première fois, que la voie des MAP kinases ERK1/2 est impliquée dans la CIN, la tétraploïdie et l'aneuploïdie. Nos résultats suggèrent que la perte de Sef est un événement oncogénique précoce, qui contribue à la localisation nucléaire aberrante de MEK1/2 qui est observée dans les tumeurs colorectales. Cette localisation anormale de MEK1/2 est associée à l'initiation de la transformation, la progression tumorale et la CIN, via l'activité soutenue de ERK1/2. Ces informations sont capitales et démontrent l’importance de la voie de signalisation Ras/Raf/MEK/ERK1/2 dans le processus de tumorigénèse colorectale. / The Ras-dependent Raf/MEK/ERK1/2 signaling pathway is frequently hyperactivated in human cancer as a result of receptor tyrosine kinase overexpression or gain-of-function mutations in RAS or RAF genes. More specificaly, activating mutation in RAS genes are found in ~ 30-50% of colorectal adenomas and phosphorylation of ERK1/2 is frequently observed in human colorectal cancer cells and tumor specimens. In a large TMA analysis, we found that MEK1/MEK2 are aberrantly activated in 44% of human colorectal cancers. In addition, our analysis revealed that 79% of colorectal cancers exhibit aberrant phospho-MEK1/2 staining in the nucleus, as compared to 4% of normal tissue. How dysregulation and mislocalization of MEK1/2 contribute to tumor initiation and progression is not well understood. In order to determine the exact contribution of MEK1 and MEK2 to the pathogenesis of colorectal cancer, wild type and constitutively active forms of MEK1 and MEK2 were ectopically expressed by retroviral gene transfer in the normal intestinal epithelial cell line IEC-6. We found that the expression of activated MEK1 or MEK2 is sufficient to morphologically transform intestinal epithelial cells, dysregulate cell proliferation and induce the formation of high-grade adenocarcinomas after orthotopic transplantation in mice. A large proportion of these intestinal tumors metastasize to the liver and lung. Importantly, we show that silencing of MEK2 expression completely suppresses the proliferation of human colon carcinoma cell lines, whereas inactivation of MEK1 has a much weaker effect. In a second project, we have investigated the impact of the nuclear mislocalization of phosphorylated MEK1/2 observed in colorectal tumors. We show that oncogenic activation of Ras is sufficient to induce the nuclear accumulation of phosphorylated MEK1/2 and ERK1/2 in intestinal epithelial cells. To evaluate the biological impact of the mislocalization of MEK1/2, we have forced the localization of MEK1 in the nucleus of epithelial cells. We found that sustained nuclear MEK1 signaling leads to hyperactivation of ERK1/2 and to enhanced cell proliferation. Nuclear localization of MEK1 also leads to tetraploidization, chromosomal instability (CIN) and tumorigenesis. Importantly, we show that oncogenic Ras downregulates the spatial regulator Sef, concomitant to nuclear accumulation of activated MEK1/2. Moreover, re-expression of Sef is sufficient to restore the normal localization of MEK1/2 and to revert the cell cycle defects and tumorigenesis induced by oncogenic Ras. Another project was initiated to characterize the tetraploidy and CIN observed upon hyperactivation of the Ras-ERK1/2 pathway. Aneuploidy and CIN are observed in the majority of colorectal cancers and are associated with a poorer prognosis. We show that hyperactivation of ERK1/2 by oncogenic Ras or sustained nuclear MEK-ERK1/2 signaling induces mitotic defects that lead to tetraploidy, aneuploidy and CIN. We also found that dysregulation of Ras-ERK1/2 signaling alters the expression and localization of Aurora A and the Chromosomal passenger complex proteins. In conclusion, we show for the first time that the MEK/ERK1/2 signaling pathway is implicated in aneuploidy and CIN. Our results suggest that sustained nuclear ERK1/2 signaling may contribute to the initiation and progression of colorectal cancer by rapidly inducing aneuploidy and CIN. We suggest that loss of Sef is an early oncogenic event that contributes to genetic instability and tumor progression by sustaining nuclear ERK1/2 signaling. These observations are significant and highlight the importance of the Ras-ERK1/2 signaling pathway in colorectal tumorigenesis.

Page generated in 0.4142 seconds