• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 23
  • 10
  • Tagged with
  • 60
  • 44
  • 36
  • 33
  • 31
  • 19
  • 19
  • 19
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Korrelation elektronischer und struktureller Eigenschaften selbstorganisierter InAs-Nanostrukturen der Dimensionen 0 und 1 auf Verbindungshalbleitern

Walther, Carsten 20 December 2000 (has links)
Das gitterfehlangepaßte Kristallwachstum führt unter bestimmten Bedingungen zu einem 3-D Wachstumsmodus, der oft Stranski-Krastanow-Wachstum genannt wird. Resultierende Strukturgrößen liegen in der Größenordnung 10 nm und die Halbleiterstrukturen besitzen daher Quanteneigenschaften. Sie stehen im Fokus grundlagenwissenschaftlichen Interesses, da künstliche Atome und Dimensionalitätseffekte an ihnen untersucht werden können. Auch von der Anwendungsseite wächst das Interesse, da niederdimensionale Strukturen hoher Kristallqualität und mit hoher gestalterischer Freiheit geschaffen werden können. In dieser Arbeit wurden Mischhalbleiter-Heterostrukturen der Dimensionalität d= 0,1 und 2 mittels Gasphasen-MBE hergestellt. Ziel war eine Korrelation der strukturellen mit den elektronischen und optischen Eigenschaften. Selbstformierende Quantendrähte und Quantenpunkte in leitfähigen Kanälen wurden in ihrem Einfluß auf den lateralen Transport untersucht. Weiterhin wird dargestellt, wie zusätzliche, durch Quantenpunkte induzierte Oberflächenzustände eine deutliche Verschiebung der Energie des Oberflächen-Ferminiveau-Pinning einer (100)-GaAs-Oberfläche verursachen. Der senkrechte Elektronentransport durch Quantenpunkte dient der Untersuchung von Dot-induzierten, tiefen elektronischen Zuständen und der Erklärung eines eindimensionalen Modells elektronischer Kopplung zwischen denselben. Zusätzlich führen uns die Ergebnisse optischer Messungen zu einem besseren Verständnis des Vorgangs der Dotformierung und der elektronischen Kopplung zwischen zufällig verteilten Quantenpunkten. / The lattice-mismatched epitaxial growth is known to induce a three-dimensional growth mode often referred to as Stranski-Krastanov growth. The resulting structures have typical sizes of 10 nm and possess quantum properties, which are of fundamental physical interest, since artificial atoms and dimensionality effects can be studied. There is a growing interest from an applicational point of view also, since low dimensional structures of a high crystal quality and of a high degree of designerabillity can be created. In this work such structures of a dimensionality d=0,1 and 2 based on compound semiconductors have been designed and prepared by molecular beam epitaxy to perform comparative studies with respect to their electronic, structural and optical properties. Self assembled quantum wires and dots in conductive channels have been examined according to their influence on lateral electrical transport. It is demonstrated how additional surface states from quantum dots cause a distinct shift in the Surface Fermi-level of a GaAs (100) surface. Vertical transport through dots is used to support a model of one-dimensional coupling between deep states induced by the dots. Additionally, optical investigations let us attain a better understanding of the process of dot formation and the electronic coupling between the randomly distributed dots.
42

Ternary Rare-Earth Coinage Metal Arsenides LnTAs2, Sm2Cu3As3; Quaternary Arsenide Oxides Sm2CuAs3O and Selenides KGd2CuSe4, KLn2Cu3Se5, and K2Ln4Cu4Se9 (Ln = Y, La - Nd, Sm, Gd - Lu; T = Cu, Ag, Au): Syntheses, Crystal Structures and Physical Properties

Jemetio Feudjio, Jean Paul 22 August 2004 (has links) (PDF)
This thesis describes the syntheses, the crystal structures, and the physical properties of some new ternary and quaternary rare-earth coinage metal arsenides, selenides and oxides. All ternary compounds LnCu1+[delta]As2 (Ln = Y, La, Ce, Nd, Sm, Gd - Lu), LnAg1+[delta]As2 (Ln = La - Nd, Sm), and LnAuAs2 (Ln = Pr, Sm, Gd, Tb) adopt structures closely related to the HfCuSi2 type consisting of PbO-like layers of T and As atoms, square layers of As atoms and layers of Ln atoms separating the former two building units. All copper compounds of this series contain regular square nets of As atoms, whereas the respective nets in the silver and gold compounds are distorted. Two principally different patterns of distortion have been found: [As] zigzag chains in LnAgAs2 (Ln = Pr, Nd, Sm) and [As] cis-trans chains in LaAg1.01(1)As2, CeAgAs2, and PrAuAs2. Both patterns can undergo a further reduction of symmetry to end up with a pattern of As2 dumb-bells as can be seen in SmAuAs2, GdAuAs2, and TbAuAs2. Stoichiometric samples LnCuAs2 (Ln = Y, Pr, Nd, Sm, Gd, Tb, Dy, Er) have been used for measurements of the conductivity [rho], magnetic susceptibility [chi] and heat capacity cp. All investigated compounds exhibit metallic conductivity and, except for Y, order antiferromagnetically at temperatures below 10 K. In contrast to LnCuAs2 compounds, the silver compound CeAgAs2 shows semiconducting behavior throughout the temperature range from 4 to 350 K, whereas in PrAgAs2 metallic conductivity is preserved. The crystal structure of Sm2CuAs3O contains two different PbO-like layers formed either by Sm and O or Cu and As atoms. Both PbO-type layers are separated by sheets of Sm and distorted square nets of As atoms. The As atoms are arranged in planar zigzag chains, like those found in NdAgAs2. Sm2CuAs3O is thus the first quaternary rare-earth pnictide oxide with a distorted As net. The quaternary potassium rare-earth copper selenides KGd2CuSe4, KLn2Cu3Se5 (Ln = Ho, Er, Tm), and K2Ln4Cu4Se9 (Ln = Dy, Y) extend three series of previously described sulfide and selenide compounds. All three series adopt a three-dimensional tunnel structure built up by [LnSe6] octahedra and [CuSe4] tetrahedra. The K atoms reside in the tunnels with a bicapped trigonal prismatic coordination of eight Se atoms for KGd2CuSe4 and KLn2Cu3Se5 (Ln = Ho, Er, Tm), while for K2Ln4Cu4Se9 (Ln = Dy, Y), the K atoms are coordinated by seven Se atoms in monocappped trigonal prisms.
43

de Haas-van Alphen Untersuchungen nichtmagnetischer Borkarbidsupraleiter

Bergk, Beate 04 March 2010 (has links) (PDF)
Im Rahmen dieser Doktorarbeit werden de Haas-van Alphen-Untersuchungen an den nichtmagnetischen Borkarbidsupraleitern LuNi2B2C und YNi2B2C präsentiert. Aus den Quantenoszillationen in der normalleitenden Phase in Kombination mit Bandstrukturrechnungen konnten Informationen über die verzweigte Fermiflächenarchitektur und über die Elektron-Phonon-Kopplung der Borkarbide gewonnen werden. Die Kopplung ist stark anisotrop und fermiflächenabhängig. Dies spricht für einen Mehrbandmechanismus der Supraleitung in der Materialklasse. Zusätzlich konnten de Haas-van-Alphen-Oszillationen mehrerer Fermiflächen unterhalb von Bc2 tief in der Shubnikov-Phase beobachtet werden. Das Verhalten dieser Oszillationen lässt sich nicht mit bisher bekannten Theorien beschreiben. Allerdings weist das Bestehen der Oszillationen weit unterhalb von Bc2 auf ein Bestehen von elektronischen Zuständen in der Shubnikov-Phase hin.
44

Alternative Way for Detecting Franck-Condon Shifts from Thermally Broadened Photoneutralization Cross-Section Bands of Deep Traps in Semiconductors

Pässler, Roland 29 March 2010 (has links)
no abstract
45

de Haas-van Alphen Untersuchungen nichtmagnetischer Borkarbidsupraleiter

Bergk, Beate 05 February 2010 (has links)
Im Rahmen dieser Doktorarbeit werden de Haas-van Alphen-Untersuchungen an den nichtmagnetischen Borkarbidsupraleitern LuNi2B2C und YNi2B2C präsentiert. Aus den Quantenoszillationen in der normalleitenden Phase in Kombination mit Bandstrukturrechnungen konnten Informationen über die verzweigte Fermiflächenarchitektur und über die Elektron-Phonon-Kopplung der Borkarbide gewonnen werden. Die Kopplung ist stark anisotrop und fermiflächenabhängig. Dies spricht für einen Mehrbandmechanismus der Supraleitung in der Materialklasse. Zusätzlich konnten de Haas-van-Alphen-Oszillationen mehrerer Fermiflächen unterhalb von Bc2 tief in der Shubnikov-Phase beobachtet werden. Das Verhalten dieser Oszillationen lässt sich nicht mit bisher bekannten Theorien beschreiben. Allerdings weist das Bestehen der Oszillationen weit unterhalb von Bc2 auf ein Bestehen von elektronischen Zuständen in der Shubnikov-Phase hin.
46

Electronic properties of organic-inorganic halide perovskites and their interfaces

Zu, Fengshuo 21 August 2019 (has links)
Über die besonders hohe Effizienz von Halid-Perowskit (HaP)-basierten optoelektronischen Bauteilen wurde bereits in der Literatur berichtet. Um die Entwicklung dieser Bauteile voranzutreiben, ist ein umfassendes und verlässliches Verständnis derer elektronischen Struktur, sowie der Energielevelanordnung (ELA) an HaP Grenzflächen von größter Bedeutung. Demzufolge beschäftigt sich die vorliegende Arbeit mit der Untersuchung i) der Bandstruktur von Perowskit-Einkristallen, um ein solides Fundament für die Darlegung der elektronischen Eigenschaften von polykristallinen Dünnschichten zu erarbeiten, und mit ii) den Einflüssen von Oberflächenzuständen auf die elektronische Struktur der Oberfläche, sowie deren Rolle bei der Kontrolle von ELA an HaP Grenzflächen. Die Charakterisierung erfolgt überwiegend mithilfe von Photoelektronenspektroskopie (PES) und ergänzenden Messmethoden wie Beugung niederenergetischer Elektronen an Oberflächen, UV-VIS-Spektroskopie, Rasterkraftmikroskopie und Kelvin-Sonde. Erstens weist die Banddispersion von zwei prototypischen Perowskit-Einkristallen eine starke Dispersion des jeweiligen oberen Valenzbandes (VB) auf, dessen globales Maximum in beiden Fällen am R-Punkt in der Brillouin-Zone liegt. Dabei wird eine effektive Lochmasse von 0.25 m0 für CH3NH3PbBr3, bzw. von ~0.50 m0 für CH3NH3PbI3 bestimmt. Basierend auf diesen Ergebnissen werden die elektronischen Spektren von polykristallinen Dünnschichten konstruiert und es wird dadurch aufgezeigt, dass eine Bestimmung der Valenzbandkantenposition ausgehend von einer logarithmischen Intensitätsskala aufgrund von geringer Zustandsdichte am VB Maximum vorzuziehen ist. Zweitens stellt sich bei der Untersuchung der elektronischen Struktur von frisch präparierten Perowskit-Oberflächen heraus, dass die n-Typ Eigenschaft eine Folge der Bandverbiegung ist, welche durch donatorartige Oberflächenzustände hervorgerufen wird. Des Weiteren weisen die PES-Messungen an Perowskiten mit unterschiedlichen Zusammensetzungen aufgrund von Oberflächenphotospannung eine Anregungslichtintensitätsabhängigkeit der Energieniveaus von bis zu 0.7 eV auf. Darüber hinaus wird die Kontrolle von ELA durch gezielte Variation der Oberflächenzustandsdichte gezeigt, wodurch sich unterschiedliche ELA-Lagen (mit Abweichungen von über 0.5 eV) an den Grenzflächen mit organischen Akzeptormolekülen erklären lassen. Die vorliegenden Ergebnisse verhelfen dazu, die starke Abweichung der in der Literatur berichteten Energieniveaus zu erklären und somit ein verfeinertes Verständnis des Funktionsprinzips von perowskit-basierten Bauteilen zu erlangen. / Optoelectronic devices based on halide perovskites (HaPs) and possessing remarkably high performance have been reported. To push the development of such devices even further, a comprehensive and reliable understanding of their electronic structure, including the energy level alignment (ELA) at HaPs interfaces, is essential but presently not available. In an attempt to get a deep insight into the electronic properties of HaPs and the related interfaces, the work presented in this thesis investigates i) the fundamental band structure of perovskite single crystals, in order to establish solid foundations for a better understanding the electronic properties of polycrystalline thin films and ii) the effects of surface states on the surface electronic structure and their role in controlling the ELA at HaPs interfaces. The characterization is mostly performed using photoelectron spectroscopy, together with complementary techniques including low-energy electron diffraction, UV-vis absorption spectroscopy, atomic force microscopy and Kelvin probe measurements. Firstly, the band structure of two prototypical perovskite single crystals is unraveled, featuring widely dispersing top valence bands (VB) with the global valence band maximum at R point of the Brillouin zone. The hole effective masses there are determined to be ~0.25 m0 for CH3NH3PbBr3 and ~0.50 m0 for CH3NH3PbI3. Based on these results, the energy distribution curves of polycrystalline thin films are constructed, revealing the fact that using a logarithmic intensity scale to determine the VB onset is preferable due to the low density of states at the VB maximum. Secondly, investigations on the surface electronic structure of pristine perovskite surfaces conclude that the n-type behavior is a result of surface band bending due to the presence of donor-type surface states. Furthermore, due to surface photovoltage effect, photoemission measurements on different perovskite compositions exhibit excitation-intensity dependent energy levels with a shift of up to 0.7 eV. Eventually, control over the ELA by manipulating the density of surface states is demonstrated, from which very different ELA situations (variation over 0.5 eV) at interfaces with organic electron acceptor molecules are rationalized. Our findings further help to explain the rather dissimilar reported energy levels at perovskite surfaces and interfaces, refining our understanding of the operational principles in perovskite related devices.
47

Ternary Rare-Earth Coinage Metal Arsenides LnTAs2, Sm2Cu3As3; Quaternary Arsenide Oxides Sm2CuAs3O and Selenides KGd2CuSe4, KLn2Cu3Se5, and K2Ln4Cu4Se9 (Ln = Y, La - Nd, Sm, Gd - Lu; T = Cu, Ag, Au): Syntheses, Crystal Structures and Physical Properties

Jemetio Feudjio, Jean Paul 16 September 2004 (has links)
This thesis describes the syntheses, the crystal structures, and the physical properties of some new ternary and quaternary rare-earth coinage metal arsenides, selenides and oxides. All ternary compounds LnCu1+[delta]As2 (Ln = Y, La, Ce, Nd, Sm, Gd - Lu), LnAg1+[delta]As2 (Ln = La - Nd, Sm), and LnAuAs2 (Ln = Pr, Sm, Gd, Tb) adopt structures closely related to the HfCuSi2 type consisting of PbO-like layers of T and As atoms, square layers of As atoms and layers of Ln atoms separating the former two building units. All copper compounds of this series contain regular square nets of As atoms, whereas the respective nets in the silver and gold compounds are distorted. Two principally different patterns of distortion have been found: [As] zigzag chains in LnAgAs2 (Ln = Pr, Nd, Sm) and [As] cis-trans chains in LaAg1.01(1)As2, CeAgAs2, and PrAuAs2. Both patterns can undergo a further reduction of symmetry to end up with a pattern of As2 dumb-bells as can be seen in SmAuAs2, GdAuAs2, and TbAuAs2. Stoichiometric samples LnCuAs2 (Ln = Y, Pr, Nd, Sm, Gd, Tb, Dy, Er) have been used for measurements of the conductivity [rho], magnetic susceptibility [chi] and heat capacity cp. All investigated compounds exhibit metallic conductivity and, except for Y, order antiferromagnetically at temperatures below 10 K. In contrast to LnCuAs2 compounds, the silver compound CeAgAs2 shows semiconducting behavior throughout the temperature range from 4 to 350 K, whereas in PrAgAs2 metallic conductivity is preserved. The crystal structure of Sm2CuAs3O contains two different PbO-like layers formed either by Sm and O or Cu and As atoms. Both PbO-type layers are separated by sheets of Sm and distorted square nets of As atoms. The As atoms are arranged in planar zigzag chains, like those found in NdAgAs2. Sm2CuAs3O is thus the first quaternary rare-earth pnictide oxide with a distorted As net. The quaternary potassium rare-earth copper selenides KGd2CuSe4, KLn2Cu3Se5 (Ln = Ho, Er, Tm), and K2Ln4Cu4Se9 (Ln = Dy, Y) extend three series of previously described sulfide and selenide compounds. All three series adopt a three-dimensional tunnel structure built up by [LnSe6] octahedra and [CuSe4] tetrahedra. The K atoms reside in the tunnels with a bicapped trigonal prismatic coordination of eight Se atoms for KGd2CuSe4 and KLn2Cu3Se5 (Ln = Ho, Er, Tm), while for K2Ln4Cu4Se9 (Ln = Dy, Y), the K atoms are coordinated by seven Se atoms in monocappped trigonal prisms.
48

Study on the Electronic Band Structure of the Spinel Superconductor LiTi2O4 / Studie om den Elektroniska Bandstrukturen hos Spinel Supraledaren LiTi2O4

Di Berardino, Gaia January 2022 (has links)
This master’s thesis focuses on investigating the electronic properties of the superconducting spinel compound LiTi2O4 by means of computational and experimental effort. The title compound has been extensively studied in the past years, being the only known superconducting spinel oxide with relatively high Tc = 11.5 K. Even so, the origin of its superconducting mechanism is under debate, and its anomalous superconductivity is still inquired. Thanks to the recently developed ability to produce high-quality epitaxial LiTi2O4 thin films, a renewed research interest in this compound has matured. With this work, we partake in this challenge and present combined experimental and computational results on the electronic band structure of the material. Density functional theory (DFT) has been employed for the first principle electronic structure calculations performed with the Quantum ESPRESSO software. Furthermore, thin-film samples were in-situ realized with the pulsed laser deposition (PLD) method and investigated through the angle-resolved photoemission spectroscopy (ARPES) technique conducted at the ULTRA end-station of the SLS synchrotron facility at PSI in Switzerland. Here, we report the computed electronic band structure of LiTi2O4, with a detailed investigation of its density of states and Fermi surface. Further, we compare these calculations with the obtained experimental ARPES data. Emerging from this study are results supporting the non-conventional superconducting nature of LiTi2O4, which presents coexisting correlation effects, such as electron-phonon coupling and enhanced electron-electron interactions. / Denna masteruppsats fokuserar på att undersöka de elektroniska egenskaperna hos det supraledande spinellmaterialet LiTi2O4 med hjälp av datorsimuleringar samt experimentella mätningar. LiTi2O4 har studerats omfattande under de senaste åren, eftersom den är den enda kända supraledande spinelloxiden med relativt hög Tc = 11.5 K. Trots det är ursprunget till dess supraledande mekanism debatterad, och meaknismen för dess okonventionella supraledning är fortfarande inte helt förstådd. Tack vare den nyligen utvecklade förmågan att producera tunna högkvalitativa epitaxiella LiTi2O4 filmer, har ett förnyat forskningsintresse för denna förening mognat. Med detta arbete deltar vi i denna utmaning och presenterar kombinerade experimentella och beräkningsresultat om materialets elektroniska bandstruktur. Densitetsfunktionsteori (DFT) har använts för principiella elektroniska strukturberäkningar utförda med Quantum ESPRESSO-mjukvaran. Vidare realiserades tunnfilmsprover in-situ med pulsed laser deposition (PLD) medoden och undersöktes experimentellt via vinkelupplöst fotoemissionsspektroskopi (ARPES) som utfördes vid ULTRA-ändstationen på SLS synkrotronanläggningen vid PSI i Schweiz. Här rapporterar vi den beräknade elektroniska bandstrukturen för LiTi2O4, med en detaljerad undersökning av dess tillståndstäthet och Fermi-yta. Vidare jämför vi dessa teoretiska beräkningar med de erhållna experimentella ARPES data. Resultat från denna studie stöder den icke-konventionella supraledande naturen hos LiTi2O4, som också uppvisare samexisterande korrelationseffekter, såsom elektron-fononkoppling samt starka elektron-elektron-interaktioner.
49

Microscopic description of magnetic model compounds

Schmitt, Miriam 24 June 2013 (has links) (PDF)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds. This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities. Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials. We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully. In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx. This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.
50

Advanced electronic structure theory: from molecules to crystals / Höhere Elektronenstrukturtheorie: vom Molekül zum Kristall

Buth, Christian 21 October 2005 (has links) (PDF)
In dieser Dissertation werden ab initio Theorien zur Beschreibung der Zustände von perfekten halbleitenden und nichtleitenden Kristallen, unter Berücksichtigung elektronischer Korrelationen, abgeleitet und angewandt. Als Ausgangsbasis dient hierzu die Hartree-Fock Approximation in Verbindung mit Wannier-Orbitalen. Darauf aufbauend studiere ich zunächst in Teil I der Abhandlung den Grundzustand der wasserstoffbrückengebundenen Fluorwasserstoff und Chlorwasserstoff zick-zack Ketten und analysiere die langreichweitigen Korrelationsbeiträge. Dabei mache ich die Basissatzextrapolationstechniken, die für kleine Moleküle entwickelt wurden, zur Berechnung von hochgenauen Bindungsenergien von Kristallen nutzbar. In Teil II der Arbeit leite ich zunächst eine quantenfeldtheoretische ab initio Beschreibung von Elektroneneinfangzuständen und Lochzuständen in Kristallen her. Grundlage hierbei ist das etablierte algebraische diagrammatische Konstruktionsschema (ADC) zur Approximation der Selbstenergie für die Bestimmung der Vielteilchen-Green's-Funktion mittels der Dyson-Gleichung. Die volle Translationssymmetrie des Problems wird hierbei beachtet und die Lokalität elektronischer Korrelationen ausgenutzt. Das resultierende Schema wird Kristallorbital-ADC (CO-ADC) genannt. Ich berechne damit die Quasiteilchenbandstruktur einer Fluorwasserstoffkette und eines Lithiumfluoridkristalls. In beiden Fällen erhalte ich eine sehr gute Übereinstimmung zwischen meinen Resultaten und den Ergebnissen aus anderen Methoden. / In this dissertation, theories for the ab initio description of the states of perfect semiconducting and insulating crystals are derived and applied. Electron correlations are treated thoroughly based on the Hartree-Fock approximation formulated in terms of Wannier orbitals. In part I of the treatise, I study the ground state of hydrogen-bonded hydrogen fluoride and hydrogen chloride zig-zag chains. I analyse the long-range contributions of electron correlations. Thereby, I employ basis set extrapolation techniques, which have originally been developed for small molecules, to also obtain highly accurate binding energies of crystals. In part II of the thesis, I devise an ab initio description of the electron attachment and electron removal states of crystals using methods of quantum field theory. I harness the well-established algebraic diagrammatic construction scheme (ADC) to approximate the self-energy, used in conjunction with the Dyson equation, to determine the many-particle Green's function for crystals. Thereby, the translational symmetry of the problem and the locality of electron correlations are fully exploited. The resulting scheme is termed crystal orbital ADC (CO-ADC). It is applied to obtain the quasiparticle band structure of a hydrogen fluoride chain and a lithium fluoride crystal. In both cases, a very good agreement of my results to those determined with other methods is observed.

Page generated in 0.217 seconds