Spelling suggestions: "subject:"central limit"" "subject:"central timit""
81 |
Portfolio Risk Modelling in Venture Debt / Kreditriskmodellering inom Venture DebtEriksson, John, Holmberg, Jacob January 2023 (has links)
This thesis project is an experimental study on how to approach quantitative portfolio credit risk modelling in Venture Debt portfolios. Facing a lack of applicable default data from ArK and publicly available sets, as well as seeking to capture companies that fail to service debt obligations before defaulting per se, we present an approach to risk modeling based on trends in revenue. The main framework revolves around driving a Monte Carlo simulation with Copluas to predict future revenue scenarios across a portfolio of early-stage technology companies. Three models for a random Gaussian walk, a Linear Dynamic System and an Autoregressive Integrated Moving Average (ARIMA) time series are implemented and evaluated in terms of their portfolio Value-at-Risk influence. The model performance confirms that modeling portfolio risk in Venture Debt is challenging, especially due to lack of sufficient data and thus a heavy reliance on assumptions. However, the empirical results for Value-at-Risk and Expected Shortfall are in line with expectations. The evaluated portfolio is still in an early stage with a majority of assets not yet in their repayment period and consequently the spread of potential losses within one year is very tight. It should further be recognized that the scope in terms of explanatory variables for sales and model complexities has been narrowed and simplified for computational benefits, transparency and communicability. The main conclusion drawn is that alternative approaches to model Venture Debt risk is fully possible, and should improve in reliability and accuracy with more data feeding the model. For future research it is recommended to incorporate macroeconomic variables as well as similar company analysis to better capture macro, funding and sector conditions. Furthermore, it is suggested to extend the set of financial and operational explanatory variables for sales through machine learning or neural networks. / Detta examensarbete är en experimentell studie för kvantitativ modellering av kreditrisk i Venture Debt-portföljer. Givet en brist på tillgänlig konkurs-data från ArK samt från offentligt tillgängliga databaser i kombination med ambitionen att inkludera företag som misslyckas med skuldförpliktelser innan konkurs per se, presenterar vi en metod för riskmodellering baserad på trender i intäkter. Ramverket för modellen kretsar kring Monte Carlo-simulering med Copluas för att estimera framtida intäktsscenarier över en portfölj med tillväxtbolag inom tekniksektorn. Tre modeller för en random walk, ett linjärt dynamiskt system och ARIMA- tidsserier implementeras och utvärderas i termer av deras inflytande på portföljens Value-at- Risk. Modellens prestationer bekräftar att modellering av portföljrisk inom Venture Debt är utmanande, särskilt på grund av bristen på tillräckliga data och därmed ett stort beroende av antaganden. Dock är de empiriska resultaten för Value-at-Risk och Expected Shortfall i linje med förväntningarna. Den utvärderade portföljen är fortfarande i ett tidigt skede där en majoritet av tillgångarna fortfarande befinner sig i en amorteringsfri period och följaktligen är spridningen av potentiella förluster inom ett år mycket snäv. Det bör vidare tillkännages att omfattningen i termer av förklarande variabler för intäkter och modellkomplexitet har förenklats för beräkningsfördelar, transparens och kommunicerbarhet. Den främsta slutsatsen som dras är att alternativa metoder för att modellera risker inom Venture Debt är fullt möjliga och bör förbättras i tillförlitlighet och precision när mer data kan matas in i modellen. För framtida arbete rekommenderas det att inkorporera makroekonomiska variabler samt analys av liknande bolag för att bättre fånga makro-, finansierings- och sektorsförhållanden. Vidare föreslås det att utöka uppsättningen av finansiella och operationella förklarande variabler för intäkter genom maskininlärning eller neurala nätverk.
|
82 |
Limit theorems for limit order booksPaulsen, Michael Christoph 21 August 2014 (has links)
Im ersten Teil der Dissertation wird ein diskretes stochastisches zustandsabhängiges Modell eines zweiseitigen Limit Orderbuchs als bestehend aus den Zustandsgrößen bester Bidpreis (Geldkurs), bester Askpreis (Briefkurs) und vorhandener Kauf- bzw. Verkaufsdichte definiert. Für eine einfache Skalierung mit zwei Zeitskalen wird ein Grenzwertsatz bewiesen. Die Veränderungen der besten Bid- und Askpreise werden im Sinne des Gesetzes der großen Zahlen skaliert und dies entspricht der langsameren Zeitskala. Das Platzieren bzw. Stornieren der Limitorder findet auf der schnelleren Zeitskala statt. Der Grenzwertsatz besagt, dass die fundamentalen Zustandsgrößen, gegeben Regularitätsbedingungen der einkommenden Order, fast sicher zu einem stetigen Limesmodell konvergieren. Im Limesmodell sind der beste Bidpreis und der beste Askpreis die eindeutigen Lösungen von zwei gekoppelten gewöhnlichen DGLen. Die Kauf- und Verkaufsdichten sind jeweils als eindeutige Lösungen von linearen hyperbolischen PDGLen, die anhand der Erwartungswerte der einkommenden Orderparameter festgelegt sind, gegeben. Die Lösungen sind in geschlossener Form erhältlich. Im zweiten Teil wird ein funktionaler zentraler Grenzwertsatz d.h. ein Invarianzprinzip für ein vereinfachtes Modell eines Limitorderbuches bewiesen. Unter einer natürlichen Skalierung konvergiert der zweidimensionale Preisprozess (Bid- und Askpreis) in Verteilung zu einer Semimartingal reflektierten Brownschen Bewegung in der zugelassenen Preismenge. Gleichzeitig konvergieren die Kauf- und Verkaufsdichten im schwachen Sinn zum Betrag einer zweiparametrischen Brownschen Bewegung. Es wird weiterhin anhand eines Beispiels gezeigt, wie man für das Modell im ersten Teil eine stochastiche PDGL, unter einer starken Stationaritätsannahme für die Orderplatzierungen und -stornierungen, herleiten kann. Im dritten Teil wird ein Mittelungs- bzw. ein Invarianzprinzip für diskrete Banach- bzw. Hilbertraumwertige stochastische Prozesse bewiesen. / In the first part of the thesis, we define a random state-dependent discrete model of a two-sided limit order book in terms of its key quantities best bid [ask] price and the standing buy [sell] volume density. For a simple scaling that introduces a slow time scaling, that is equivalent to the classical law of large numbers, for the bid/ask prices and a faster time scale for the limit volume placements/cancelations, that keeps the expected volume rate over the considered price interval invariant, we prove a limit theorem. The limit theorem states that, given regularity conditions on the random order flow, the key quantities converge in the sense of a strong law of large numbers to a tractable continuous limiting model. The limiting model is such that the best bid and ask price dynamics can be described in terms of two coupled ODE:s, while the dynamics of the relative buy and sell volume density functions are given as the unique solutions of two linear first-order hyperbolic PDE:s with variable coefficients, specified by the expectation of the order flow parameters. In the second part, we prove a functional central limit theorem i.e. an invariance principle for an order book model with block shaped volume densities close to the spread. The weak limit of the two-dimensional price process (best bid and ask price) is given by a semi-martingale reflecting Brownian motion in the set of admissible prices. Simultaneously, the relative buy and sell volume densities close to the spread converge weakly to the modulus of a two-parameter Brownian motion. We also demonstrate an example how to easily derive an SPDE for the relative volume densities in a simple case, when a strong stationarity assumption is made on the limit order placements and cancelations for the model suggested in the first part. In the third and final part of the thesis, we prove an averaging and an invariance principle for discrete processes taking values in Banach and Hilbert spaces, respectively.
|
83 |
Central limit theorems and confidence sets in the calibration of Lévy models and in deconvolutionSöhl, Jakob 03 May 2013 (has links)
Zentrale Grenzwertsätze und Konfidenzmengen werden in zwei verschiedenen, nichtparametrischen, inversen Problemen ähnlicher Struktur untersucht, und zwar in der Kalibrierung eines exponentiellen Lévy-Modells und im Dekonvolutionsmodell. Im ersten Modell wird eine Geldanlage durch einen exponentiellen Lévy-Prozess dargestellt, Optionspreise werden beobachtet und das charakteristische Tripel des Lévy-Prozesses wird geschätzt. Wir zeigen, dass die Schätzer fast sicher wohldefiniert sind. Zu diesem Zweck beweisen wir eine obere Schranke für Trefferwahrscheinlichkeiten von gaußschen Zufallsfeldern und wenden diese auf einen Gauß-Prozess aus der Schätzmethode für Lévy-Modelle an. Wir beweisen gemeinsame asymptotische Normalität für die Schätzer von Volatilität, Drift und Intensität und für die punktweisen Schätzer der Sprungdichte. Basierend auf diesen Ergebnissen konstruieren wir Konfidenzintervalle und -mengen für die Schätzer. Wir zeigen, dass sich die Konfidenzintervalle in Simulationen gut verhalten, und wenden sie auf Optionsdaten des DAX an. Im Dekonvolutionsmodell beobachten wir unabhängige, identisch verteilte Zufallsvariablen mit additiven Fehlern und schätzen lineare Funktionale der Dichte der Zufallsvariablen. Wir betrachten Dekonvolutionsmodelle mit gewöhnlich glatten Fehlern. Bei diesen ist die Schlechtgestelltheit des Problems durch die polynomielle Abfallrate der charakteristischen Funktion der Fehler gegeben. Wir beweisen einen gleichmäßigen zentralen Grenzwertsatz für Schätzer von Translationsklassen linearer Funktionale, der die Schätzung der Verteilungsfunktion als Spezialfall enthält. Unsere Ergebnisse gelten in Situationen, in denen eine Wurzel-n-Rate erreicht werden kann, genauer gesagt gelten sie, wenn die Sobolev-Glattheit der Funktionale größer als die Schlechtgestelltheit des Problems ist. / Central limit theorems and confidence sets are studied in two different but related nonparametric inverse problems, namely in the calibration of an exponential Lévy model and in the deconvolution model. In the first set-up, an asset is modeled by an exponential of a Lévy process, option prices are observed and the characteristic triplet of the Lévy process is estimated. We show that the estimators are almost surely well-defined. To this end, we prove an upper bound for hitting probabilities of Gaussian random fields and apply this to a Gaussian process related to the estimation method for Lévy models. We prove joint asymptotic normality for estimators of the volatility, the drift, the intensity and for pointwise estimators of the jump density. Based on these results, we construct confidence intervals and sets for the estimators. We show that the confidence intervals perform well in simulations and apply them to option data of the German DAX index. In the deconvolution model, we observe independent, identically distributed random variables with additive errors and we estimate linear functionals of the density of the random variables. We consider deconvolution models with ordinary smooth errors. Then the ill-posedness of the problem is given by the polynomial decay rate with which the characteristic function of the errors decays. We prove a uniform central limit theorem for the estimators of translation classes of linear functionals, which includes the estimation of the distribution function as a special case. Our results hold in situations, for which a square-root-n-rate can be obtained, more precisely, if the Sobolev smoothness of the functionals is larger than the ill-posedness of the problem.
|
84 |
Beiträge zur expliziten Fehlerabschätzung im zentralen GrenzwertsatzPaditz, Ludwig 04 June 2013 (has links) (PDF)
In der Arbeit wird das asymptotische Verhalten von geeignet normierten und zentrierten Summen von Zufallsgrößen untersucht, die entweder unabhängig sind oder im Falle der Abhängigkeit als Martingaldifferenzfolge oder stark multiplikatives System auftreten.
Neben der klassischen Summationstheorie werden die Limitierungsverfahren mit einer unendlichen Summationsmatrix oder einer angepaßten Folge von Gewichtsfunktionen betrachtet.
Es werden die Methode der charakteristischen Funktionen und besonders die direkte Methode der konjugierten Verteilungsfunktionen weiterentwickelt, um quantitative Aussagen über gleichmäßige und ungleichmäßige Restgliedabschätzungen in zentralen Grenzwertsatz zu beweisen.
Die Untersuchungen werden dabei in der Lp-Metrik, 1<p<oo oder p=1 bzw. p=oo, durchgeführt, wobei der Fall p=oo der üblichen sup-Norm entspricht.
Darüber hinaus wird im Fall unabhängiger Zufallsgrößen der lokale Grenzwertsatz für Dichten betrachtet.
Mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten.
Die Arbeit wird abgerundet durch verschiedene Hinweise auf praktische Anwendungen. / In the work the asymptotic behavior of suitably centered and normalized sums of random variables is investigated, which are either independent or occur in the case of dependence as a sequence of martingale differences or a strongly multiplicative system.
In addition to the classical theory of summation limiting processes are considered with an infinite summation matrix or an adapted sequence of weighting functions.
It will be further developed the method of characteristic functions, and especially the direct method of the conjugate distribution functions to prove quantitative statements about uniform and non-uniform error estimates of the remainder term in central limit theorem.
The investigations are realized in the Lp metric, 1 <p <oo or p = 1 or p = oo, where in the case p = oo it is the usual sup-norm.
In addition, in the case of independent random variables the local limit theorem for densities is considered.
By means of electronic data processing new numerical results are obtained.
The work is finished by various references to practical applications.
|
85 |
Beiträge zur expliziten Fehlerabschätzung im zentralen GrenzwertsatzPaditz, Ludwig 27 April 1989 (has links)
In der Arbeit wird das asymptotische Verhalten von geeignet normierten und zentrierten Summen von Zufallsgrößen untersucht, die entweder unabhängig sind oder im Falle der Abhängigkeit als Martingaldifferenzfolge oder stark multiplikatives System auftreten.
Neben der klassischen Summationstheorie werden die Limitierungsverfahren mit einer unendlichen Summationsmatrix oder einer angepaßten Folge von Gewichtsfunktionen betrachtet.
Es werden die Methode der charakteristischen Funktionen und besonders die direkte Methode der konjugierten Verteilungsfunktionen weiterentwickelt, um quantitative Aussagen über gleichmäßige und ungleichmäßige Restgliedabschätzungen in zentralen Grenzwertsatz zu beweisen.
Die Untersuchungen werden dabei in der Lp-Metrik, 1<p<oo oder p=1 bzw. p=oo, durchgeführt, wobei der Fall p=oo der üblichen sup-Norm entspricht.
Darüber hinaus wird im Fall unabhängiger Zufallsgrößen der lokale Grenzwertsatz für Dichten betrachtet.
Mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten.
Die Arbeit wird abgerundet durch verschiedene Hinweise auf praktische Anwendungen. / In the work the asymptotic behavior of suitably centered and normalized sums of random variables is investigated, which are either independent or occur in the case of dependence as a sequence of martingale differences or a strongly multiplicative system.
In addition to the classical theory of summation limiting processes are considered with an infinite summation matrix or an adapted sequence of weighting functions.
It will be further developed the method of characteristic functions, and especially the direct method of the conjugate distribution functions to prove quantitative statements about uniform and non-uniform error estimates of the remainder term in central limit theorem.
The investigations are realized in the Lp metric, 1 <p <oo or p = 1 or p = oo, where in the case p = oo it is the usual sup-norm.
In addition, in the case of independent random variables the local limit theorem for densities is considered.
By means of electronic data processing new numerical results are obtained.
The work is finished by various references to practical applications.
|
86 |
Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten NormalverteilungPaditz, Ludwig 28 May 2013 (has links) (PDF)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt.
Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden.
International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert:
Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß.
Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert.
Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten.
Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen.
Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet.
Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend.
Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given.
Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest.
International two main directions have emerged in the theory of limit theorems:
Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process.
First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution.
As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants.
Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically.
Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time.
In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly.
The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
|
87 |
Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten NormalverteilungPaditz, Ludwig 25 August 1977 (has links)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt.
Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden.
International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert:
Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß.
Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert.
Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten.
Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen.
Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet.
Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend.
Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given.
Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest.
International two main directions have emerged in the theory of limit theorems:
Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process.
First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution.
As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants.
Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically.
Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time.
In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly.
The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
|
88 |
Estiamation et fluctuations de fonctionnelles de grandes matrices aléatoiresYao, Jianfeng 09 December 2013 (has links) (PDF)
L'objectif principal de la thèse est : l'étude des fluctuations de fonctionnelles du spectre de grandes matrices aléatoires, la construction d'estimateurs consistants et l'étude de leurs performances, dans la situation où la dimension des observations est du même ordre que le nombre des observations disponibles. Il y aura deux grandes parties dans cette thèse. La première concerne la contribution méthodologique. Nous ferons l'étude des fluctuations pour les statistiques linéaires des valeurs propres du modèle 'information-plus-bruit' pour des fonctionnelles analytiques, et étendrons ces résultats au cas des fonctionnelles non analytiques. Le procédé d'extension est fondé sur des méthodes d'interpolation avec des quantités gaussiennes. Ce procédé est appliqué aux grandes matrices de covariance empirique. L'autre grande partie sera consacrée à l'estimation des valeurs propres de la vraie covariance à partir d'une matrice de covariance empirique en grande dimension et l'étude de son comportement. Nous proposons un nouvel estimateur consistant et étudions ces fluctuations. En communications sans fil, cette procédure permet à un réseau secondaire d'établir la présence de ressources spectrales disponibles.
|
89 |
Autour de quelques statistiques sur les arbres binaires de recherche et sur les automates déterministes / Around a few statistics on binary search trees and on accessible deterministic automataAmri, Anis 19 December 2018 (has links)
Cette thèse comporte deux parties indépendantes. Dans la première partie, nous nous intéressons à l’analyse asymptotique de quelques statistiques sur les arbres binaires de recherche (ABR). Dans la deuxième partie, nous nous intéressons à l’étude du problème du collectionneur de coupons impatient. Dans la première partie, en suivant le modèle introduit par Aguech, Lasmar et Mahmoud [Probab. Engrg. Inform. Sci. 21 (2007) 133—141], on définit la profondeur pondérée d’un nœud dans un arbre binaire enraciné étiqueté comme la somme de toutes les clés sur le chemin qui relie ce nœud à la racine. Nous analysons alors dans ABR, les profondeurs pondérées des nœuds avec des clés données, le dernier nœud inséré, les nœuds ordonnés selon le processus de recherche en profondeur, la profondeur pondérée des trajets, l’indice de Wiener pondéré et les profondeurs pondérées des nœuds avec au plus un enfant. Dans la deuxième partie, nous étudions la forme asymptotique de la courbe de la complétion de la collection conditionnée à T_n≤ (1+Λ), Λ>0, où T_n≃n lnn désigne le temps nécessaire pour compléter la collection. Puis, en tant qu’application, nous étudions les automates déterministes et accessibles et nous fournissons une nouvelle dérivation d’une formule due à Korsunov [Kor78, Kor86] / This Phd thesis is divided into two independent parts. In the first part, we provide an asymptotic analysis of some statistics on the binary search tree. In the second part, we study the coupon collector problem with a constraint. In the first part, following the model introduced by Aguech, Lasmar and Mahmoud [Probab. Engrg. Inform. Sci. 21 (2007) 133—141], the weighted depth of a node in a labelled rooted tree is the sum of all labels on the path connecting the node to the root. We analyze the following statistics : the weighted depths of nodes with given labels, the last inserted node, nodes ordered as visited by the depth first search procees, the weighted path length, the weighted Wiener index and the weighted depths of nodes with at most one child in a random binary search tree. In the second part, we study the asymptotic shape of the completion curve of the collection conditioned to T_n≤ (1+Λ), Λ>0, where T_n≃n lnn is the time needed to complete accessible automata, we provide a new derivation of a formula due to Korsunov [Kor78, Kor86]
|
90 |
Applications of Generating FunctionsTseng, Chieh-Mei 26 June 2007 (has links)
Generating functions express a sequence as coefficients arising from a power series in variables. They have many applications in combinatorics and probability. In this paper, we will investigate the important properties of four kinds of generating functions in one variables: ordinary generating unction, exponential generating function, probability generating function and moment generating function. Many examples with applications in combinatorics and probability, will be discussed. Finally, some
well-known contest problems related to generating functions will be addressed.
|
Page generated in 0.0678 seconds