• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 15
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 22
  • 22
  • 20
  • 12
  • 11
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Equações diofantinas lineares : uma proposta para o Ensino Médio

Capilheira, Bianca Herreira January 2012 (has links)
Este trabalho, cuja metodologia foi inspirada na Engenharia Didática, discute e investiga a viabilidade de inserir o ensino/estudo das equações diofantinas lineares no ensino médio. Foi desenvolvida e aplicada uma sequência didática em uma turma do 1º semestre do ensino médio integrado de química do Instituto Federal Sul-Rio-Grandense, Campus Pelotas. Através das atividades executadas pelos alunos, das anotações feitas pela mestranda e da filmagem de todas as aulas, foi possível coletar os dados sobre toda a experiência. Esta foi iniciada e baseada em um jogo nomeado “escova diofantina”, derivado do jogo “escova”, seguido de atividades estruturadas com exercícios, questionamentos e debates que encaminharam os alunos, de forma natural, para a construção e estudo do conteúdo desejado. Elaboramos a sequência didática com objetivos bem definidos em cada atividade. Após o término das aulas, analisamo-las e reformulamo-las. Assim, no Apêndice B, apresentamos uma proposta de sequência didática renovada e pronta para ser aplicada por qualquer professor interessado em lecionar equações diofantinas no ensino médio. Os resultados das análises dos dados indicaram que os alunos do primeiro ano do ensino médio apresentam plenas condições matemáticas para a compreensão e construção dos conceitos e propriedades básicas relacionadas às equações diofantinas lineares. / This work, whose methodology is inspired by didactical engineering, discusses and investigates the viability of introducing linear diophantine equations at High School level study and teaching. We developed and applied a didactical sequence to a first semester chemistry oriented high school at the Pelotas campus of the Sul-Rio-Grandense Federal Institute. We collected the data of this whole experience, starting with all the activities performed by the students and continuing with notes taken by the author as well as the whole class footage. We started the seminars with a card game that we called “diophantine escova”, derived from the usual “escova” card game. We followed it by structured activities with exercises and several debates that led the students, in a natural way, to understand the definitions, concepts and results about Diophantine Equations. The didactical sequence we have created had very clear and specific goals in each activity. When the seminars ended, we analyzed and reformulated the sequence and therefore, in Appendix C, we present a totally improved and ready to use sequence for any teacher interested in developing linear diophantine equations in high school. The data analysis indicated that fist year high school students have the necessary mathematical skills to understand all concepts and results of basic linear diofantine equations.
32

Heronovské trojúhelníky / Heronian triangles

DOHNALOVÁ, Alice January 2010 (has links)
Work includes choosen properties and problems pair with Heronian triangles. It's available like mathematical utility for work in special-interest mathematics on secondary school.
33

EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat / Diophantine equations and the method of secants and tangents of Fermat

NatÃlia Medeiros do Nascimento 26 April 2014 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Ao longo das Ãltimas dÃcadas, a transmissÃo do conhecimento matemÃtico na EducaÃÃo BÃsica sofreu diversas mudanÃas. âO Ensino Tradicionalâ da matemÃtica era baseado na memorizaÃÃo de fÃrmulas, havendo assim uma mecanizaÃÃo no processo de resoluÃÃo de problemas, onde o discente era visto como um ser passivo. A nova visÃo de ensino, que busca significar o que conteÃdo exposto em sala, motivou a escolha desse tema, visto que situaÃÃes problemas envolvendo equaÃÃes diofantinas podem ser facilmente percebidas em nosso cotidiano. O objetivo deste trabalho à oportunizar a realizaÃÃo de uma leitura consultiva para o professor do Ensino BÃsico, e asseverar que essas equaÃÃes podem ser aplicadas na EducaÃÃo BÃsica como uma ferramenta que instiga o pensamento lÃgico, o raciocÃnio, a compreensÃo e a interpretaÃÃo matemÃtica. A formulaÃÃo desse material que està dividido em cinco capÃtulos se deu atravÃs de levantamento bibliogrÃfico por meio de pesquisas descritivas. A introduÃÃo compÃe o primeiro capÃtulo. O segundo capÃtulo versa sobre o Legado de Diofanto: vida e obras, ressaltando sua obra titulada âArithmeticaâ que contribuiu significativamente para o desenvolvimento da teoria dos nÃmeros. O terceiro capÃtulo trata das equaÃÃes diofantinas lineares de n variÃveis. O quarto capÃtulo aborda as ternas itagÃricas, o MÃtodo das Secantes e Tangentes de Fermat na busca de soluÃÃes racionais para quaÃÃes, com coeficientes racionais, da forma ax2+by2 = c, e um caso particular do Ãltimo Teorema de Fermat. O quinto capÃtulo à composto de problemas sobre equaÃÃes diofantinas lineares. / Over the past decades, the transmission of mathematical knowledge in basic education has undergone several changes. The âTeaching Traditionalâ math was based on memorizing formulas, so there mechanization in problem solving where the student was seen as a liability to be process. The new vision of education that seeks to signify exposed to room content, motivated the choice of this theme, as diophantine equations involving situations problems can be easily noticed in our daily lives. The objective of this work is an opportunity for a realization of an advisory reading for the teacher of basic education, and assert that these equations can be applied in basic education as a tool that encourages the logical thinking, reasoning, understanding and mathematical interpretation. The formulation of this material which is divided into five chapters was through literature review through descriptive research. The introduction comprises the first chapter. The second chapter deals with the Legacy of Diophantus: life and works, emphasizing his work entitled âArithmeticaâ which contributed significantly to the development of number theory. The third chapter deals with linear Diophantine equations in n variables. The fourth chapter discusses the Pythagorean tender, Fermatâs of secants and Tangents method, in finding rational solutions to equations with rational coefficients, of the form ax2 + by2 = c and a particular case Fermatâs Last Theorem. The fifth chapter is composed of problems on linear diophantine equations.
34

Equações diofantinas lineares : uma proposta para o Ensino Médio

Capilheira, Bianca Herreira January 2012 (has links)
Este trabalho, cuja metodologia foi inspirada na Engenharia Didática, discute e investiga a viabilidade de inserir o ensino/estudo das equações diofantinas lineares no ensino médio. Foi desenvolvida e aplicada uma sequência didática em uma turma do 1º semestre do ensino médio integrado de química do Instituto Federal Sul-Rio-Grandense, Campus Pelotas. Através das atividades executadas pelos alunos, das anotações feitas pela mestranda e da filmagem de todas as aulas, foi possível coletar os dados sobre toda a experiência. Esta foi iniciada e baseada em um jogo nomeado “escova diofantina”, derivado do jogo “escova”, seguido de atividades estruturadas com exercícios, questionamentos e debates que encaminharam os alunos, de forma natural, para a construção e estudo do conteúdo desejado. Elaboramos a sequência didática com objetivos bem definidos em cada atividade. Após o término das aulas, analisamo-las e reformulamo-las. Assim, no Apêndice B, apresentamos uma proposta de sequência didática renovada e pronta para ser aplicada por qualquer professor interessado em lecionar equações diofantinas no ensino médio. Os resultados das análises dos dados indicaram que os alunos do primeiro ano do ensino médio apresentam plenas condições matemáticas para a compreensão e construção dos conceitos e propriedades básicas relacionadas às equações diofantinas lineares. / This work, whose methodology is inspired by didactical engineering, discusses and investigates the viability of introducing linear diophantine equations at High School level study and teaching. We developed and applied a didactical sequence to a first semester chemistry oriented high school at the Pelotas campus of the Sul-Rio-Grandense Federal Institute. We collected the data of this whole experience, starting with all the activities performed by the students and continuing with notes taken by the author as well as the whole class footage. We started the seminars with a card game that we called “diophantine escova”, derived from the usual “escova” card game. We followed it by structured activities with exercises and several debates that led the students, in a natural way, to understand the definitions, concepts and results about Diophantine Equations. The didactical sequence we have created had very clear and specific goals in each activity. When the seminars ended, we analyzed and reformulated the sequence and therefore, in Appendix C, we present a totally improved and ready to use sequence for any teacher interested in developing linear diophantine equations in high school. The data analysis indicated that fist year high school students have the necessary mathematical skills to understand all concepts and results of basic linear diofantine equations.
35

Equações diofantinas classicas e aplicações / Classical diopantine equations and applications

Silva, Filardes de Jesus Freitas da 13 August 2018 (has links)
Orientador: Emerson Alexandre de Oliveira Lima / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T21:19:45Z (GMT). No. of bitstreams: 1 Silva_FilardesdeJesusFreitasda_M.pdf: 678989 bytes, checksum: 49b0b13ce88d8aa64141c17e237d85fe (MD5) Previous issue date: 2009 / Resumo: Neste trabalho focalizamos os principais conceitos da teoria elementar dos números objetivando uma melhor compreensão das Equações Diofantinas Clássicas e suas aplicações e para isto explicitamos os conceitos de Números primos, Algoritmo de Euclides, Máximo divisor comum e Mínimo múltiplo comum, assim como a teoria das Congruências, uma abordagem sobre a Criptografica RSA e Soma de Inteiros. Palavras-Chave: Congruências Lineares, Soma de Inteiros, Equação de Fermat, Soma de Quadrados / Abstract: In this work we focus the main concepts of the elementary theory of numbers seeking a better understanding of Classical diophantine equations and their applications for this and explained the concepts of prime numbers, algorithms of Euclid, maximum common divisor and least common multiple and the theory of congruence , an approach on the RSA encryption and Sum of Integers. Keywords: Linear congruence, Sum of Integers, equation of Fermat, Sum of Squares / Mestrado / Teoria dos Numeros / Mestre em Matemática
36

Convite às equações diofantinas: uma abordagem para a educação básica

Altino da Silva Neto 24 August 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação, apresentamos os resultados de uma ampla pesquisa bibliográfica sobre as equações diofantinas e seus métodos de solução mais utilizados. A mais simples desta classe de equações é a da forma ax + by = c, com a, b e c números inteiros e ab 6= 0, chamada equação diofantina linear nas duas incógnitas x e y. No trabalho, expomos diversos métodos de resolução destas equações, em duas e três incógnitas. Para tanto, utilizamos conceitos de divisibilidade, divisão euclidiana, máximo divisor comum, números primos, dentre outros, que formam parte do currículo do Ensino Fundamental. No Brasil, as equações diofantinas não são comumente exploradas na Educação Básica, embora sejam perfeitamente compreensíveis nesse nível, como se mostra no texto do professor A. Guelfond, consultado na redação do trabalho. Na dissertação, incluímos, também, um capítulo sobre as contribuições de Diofanto para a Aritmética, que pode ser uma fonte de motivação para o estudo das equações diofantinas; e outro capítulo, ampliando as perspectivas sobre equações diofantinas não lineares. Esperamos que o trabalho seja uma fonte bibliográfica facilmente acessível aos professores da Educação Básica, e estimule seu interesse e criatividade para a introdução elementar desses conteúdos na prática docente e na preparação dos alunos para as Olimpíadas de Matemática. / In this dissertation, the results of a wide bibliographic research about Diophantine equations and their most used solution methods are exposed. The simplest equation of these class is the one in the form ax + by = c, with a, b and c integers numbers and ab 6= 0, called Diophantine linear equation in the unknowns x and y. Divers solutions methods for these equations, in two or three unknowns are discussed. Therefore, concepts like divisibility, Euclidean division, grated common divisor, prime numbers, among others, that are included in the Elementary Schools curriculum. In Brazil, Diophantine equations are not commonly exploited in Basic Education, even though they are perfectly understandable at this educational level, like Professor A. Guelfond shows in his book consulted in the redaction of the dissertation. There are also a chapter about Diophantuss contributions to Arithmetic, which can be a source of motivation to study the Diophantine equations; and another chapter, extending perspectives, about nonlinear Diophantine equations. We hope that the dissertation becomes a suitable easy accessible bibliographic font for Basic Education teachers and stimulates their interest and creativity for an elemental introducing of these contents in their teaching and in the students training for Math Olympiads.
37

Equações diofantinas / Diofantine equations

Silva, Yuri Faleiros da 16 April 2019 (has links)
Este trabalho descreve as soluções de algumas equações diofantinas em duas e três variáveis. O objetivo é apresentar a análise de alguns casos simples e de outros mais difíceis relativos ao Último Teorema de Fermat. Primeiramente são apresentados os pré-requisitos necessários dentre os quais incluímos a noção de número primo, máximo divisor comum, congruência, o Algoritmo de Euclides e o Teorema Fundamental da Aritmética. Este material é desenvolvido primeiramente no anel dos inteiros racionais e posteriormente em duas extensões algébricas conhecidas como os inteiros de Gauss e de Eisenstein. A estrutura dos últimos é indispensável na resolução do primeiro caso não trivial do Último Teorema de Fermat, a saber, da equação diofantina x3 + y3 = z3. O último capítulo apresenta algumas aplicações de problemas diofantinos e do Algoritmo de Euclides que podem ser desenvolvidos em sala de aula com alunos do sexto e do oitavo ano. / This work describes the solutions to some diophantine equations in two and three variables. The objective is to present the analysis of some simple and other more difficult cases related to Fermats Last Theorem. First, we present the necessary prerequisites which include the notion of a prime number, the maximum common divisor, congruences, Euclids Algorithm and the Fundamental Theorem of Arithmetic. This material is first developed by using the rational integers and then presented for two algebraic extensions known as Gauss and Eisenstein integers. The structure of the latter is indispensable for the first non-trivial case of Fermats Last Theorem, namely, the diophantine equation x3 + y3 = z3. The last chapter presents some applications of simple diophantine equations and Euclids algorithm which can be developed in the classroom with sixth and eight grade students.
38

Equações diofantinas lineares em duas incógnitas e suas aplicações / Elementary theory of numbers, linear diophantine equations, high school, entire solutions, problem resolution.

Borges, Fábio Vieira de Andrade 01 March 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-22T13:41:10Z No. of bitstreams: 2 Borges, Fábio Vieira de Andrade.pdf: 831817 bytes, checksum: dc7f36aa0aef4a7fb90ba2008b7da2cf (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-23T11:19:19Z (GMT) No. of bitstreams: 2 Borges, Fábio Vieira de Andrade.pdf: 831817 bytes, checksum: dc7f36aa0aef4a7fb90ba2008b7da2cf (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-23T11:19:20Z (GMT). No. of bitstreams: 2 Borges, Fábio Vieira de Andrade.pdf: 831817 bytes, checksum: dc7f36aa0aef4a7fb90ba2008b7da2cf (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main objective of this assignment is to help students and also teachers with the resolution and understanding of problems involving the Linear Diophantine Equations with Two Incognits through the elaboration and application of didactic activities in order to contribute to the study of this kind of equations. Through the tasks it was aimed to dothe integration of Arithmetic with Algebra and Geometry by using some computational programs which worked as support to the graphical visualization of the entire solutions. In the first chapters the essence of the Elementary Theory of Numbers will be better known, since the mathematical tools which will be used to solve linear Diophantine equations will be displayed and demonstrated, some of them already known, like the greatest common divisor (g.d.c). Then the Diophantine equations and theirapplication methods for the solution of daily problems will be introduced. The Conclusion of this study highlights the importance of algebraic and geometric interpretation of Linear Diophantine Equations, and also emphasizes that the contact with problems of this area contributes to the students reasoning abilities development in a creative way. It is important to emphasize that this issue can be introduced in high school. / O presente trabalho tem como objetivo principal auxiliar os alunos e professores na resolução e compreensão de problemas envolvendo as Equações Diofantinas Lineares com Duas Incógnitas através da elaboração e aplicação de atividades didáticas destinadas a contribuir para o estudo desse tipo de equações. Procurou-se nas tarefas fazer a integração da Aritmética com a Álgebra e a Geometria, utilizando-se de alguns programas computacionais que serviram de suporte para as visualizações gráficas das soluções inteiras. Nos primeiros capítulos vamos conhecer melhor a essência da Teoria Elementar dos Números, pois apresentaremos e demonstraremos as ferramentas matemáticas que serão utilizadas na resolução das Equações Diofantinas Lineares, algumas delas já conhecidas, que é o caso do máximo divisor comum (m.d.c). Em seguida serão introduzidas as equações diofantinas e os métodos de determinação de soluções da mesma para aplicação em resolução de problemas do cotidiano. A conclusão desse trabalho ressalta a importância da interpretação algébrica e geométrica das Equações Diofantinas Lineares, e que o contato com problemas desta área contribui para que o aluno desenvolva, de forma criativa suas habilidades de raciocínio. É importante enfatizar que esse tema pode ser abordado no Ensino Médio.
39

De solutione problematum diophanteorum per n?meros integros : o primeiro trabalho de Euler sobre equa??es diofantinas

Dantas, Joice de Andrade 07 November 2011 (has links)
Made available in DSpace on 2014-12-17T14:36:38Z (GMT). No. of bitstreams: 1 JoiceAD_DISSERT.pdf: 4224825 bytes, checksum: d7ade3189d2bc3a42ecfc46d7a810c45 (MD5) Previous issue date: 2011-11-07 / The present dissertation analyses Leonhard Euler?s early mathematical work as Diophantine Equations, De solutione problematum diophanteorum per n?meros ?ntegros (On the solution of Diophantine problems in integers). It was published in 1738, although it had been presented to the St Petersburg Academy of Science five years earlier. Euler solves the problem of making the general second degree expression a perfect square, i.e., he seeks the whole number solutions to the equation ax2+bx+c = y2. For this purpose, he shows how to generate new solutions from those already obtained. Accordingly, he makes a succession of substitutions equating terms and eliminating variables until the problem reduces to finding the solution of the Pell Equation. Euler erroneously assigns this type of equation to Pell. He also makes a number of restrictions to the equation ax2+bx+c = y and works on several subthemes, from incomplete equations to polygonal numbers / Nesta pesquisa analisamos historicamente e matematicamente o primeiro trabalho de Leonhard Euler sobre Equa??es Diofantinas o De solutione problematum diophanteorum per n?meros integros ( Sobre a solu??o de problemas diofantinos por n?meros inteiros ). Foi publicado em 1738, embora apresentado ? Academia de S?o Petersburgo cinco anos antes. No texto, Euler trata do problema de fazer com que a express?o generalizada do segundo grau seja igual a um quadrado perfeito, isto ?, procura solu??es no conjunto dos n?meros inteiros para equa??o ax2+bx+c = y2. Para tanto, Euler mostra como descobrir mais solu??es depois que uma primeira ? encontrada, fazendo uma s?rie de substitui??es combinando termos e eliminando vari?veis, at? que o trabalho se resume a encontrar a solu??o para ,q=ⱱap?+1 uma equa??o de Pell. Este trabalho ? o primeiro tamb?m em que Euler atribui erroneamente esse tipo de equa??o a Pell. Euler faz tamb?m, uma s?rie de restri??es para a equa??o ax2+bx+c = y2 e trabalha com diversos subcasos, que v?o desde equa??es incompletas at? o trabalho com n?meros poligonais
40

O Teorema chinês dos restos e a partilha de senhas

PRAZERES, Sidmar Bezerra dos 16 June 2014 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-29T14:30:56Z No. of bitstreams: 1 Sidmar Bezerra dos Prazeres.pdf: 511759 bytes, checksum: cf327985c0961f16751448a107717241 (MD5) / Made available in DSpace on 2017-03-29T14:30:56Z (GMT). No. of bitstreams: 1 Sidmar Bezerra dos Prazeres.pdf: 511759 bytes, checksum: cf327985c0961f16751448a107717241 (MD5) Previous issue date: 2014-06-16 / This paper aims to show the reader the importance of some topics of Number Theory. Work here, and prerequisites (Euclid Algorithms, Divisibility, Maxim Common Divisor), content with Linear Diophantine equations, congruences, and the main theme, which is the mighty Chinese Remainder Theorem of presenting their theories, importance, applicability on the day and its usefulness in the Theory of Numbers. The main applicability of Chinese Remainder Theorem of this work is Sharing Passwords. Sharing of passwords is a security mechanism, where a certain amount of people take possession of a key to access the secret without the possibility of obtaining the secret with his own key. / Este trabalho tem como objetivo mostrar ao leitor a importância de alguns t ópicos da Teoria dos N úmeros. Trabalharemos aqui, al ém de pré-requisitos (Algoritmo de Euclides, Divisibilidade, M áximo Divisor Comum), conte údos como Equa ções Diofantinas Lineares, Congruências e o principal tema, que e o poderoso Teorema Chinês dos Restos, apresentando suas teorias, importâncias, aplicabilidade no dia a dia e sua a utilidade na Teoria dos N úmeros. A principal aplicabilidade do Teorema Chinês apresentada neste trabalho e a Partilha de Senhas. Esta partilha de senhas é um mecanismo de seguran ça, onde uma certa quantidade de pessoas tomam posse de uma chave de acesso sem a possibilidade de obter a senha principal com a sua pr ópria chave.

Page generated in 0.0972 seconds