• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 118
  • 66
  • 42
  • 39
  • 27
  • 24
  • 20
  • 19
  • 18
  • 18
  • 18
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

A fundamental approximation in MATLAB of the efficiency of an automotive differential in transmitting rotational kinetic energy

Vaughn, James Roy 30 July 2012 (has links)
The VCOST budgeting tool uses a drive cycle simulator to improve fuel economy predictions for vehicle fleets. This drive cycle simulator needs to predict the efficiency of various components of the vehicle's powertrain including any differentials. Existing differential efficiency models either lack accuracy over the operating conditions considered or require too great an investment. A fundamental model for differential efficiency is a cost-effective solution for predicting the odd behaviors unique to a differential. The differential efficiency model itself combines the torque balance equation and the Navier-Stokes equations with models for gear pair, bearing, and seal efficiencies under a set of appropriate assumptions. Comparison of the model with existing data has shown that observable trends in differential efficiency are reproducible in some cases to within 10% of the accepted efficiency value over a range of torques and speeds that represents the operating conditions of the differential. Though the model is generally an improvement over existing curve fits, the potential exists for further improvement to the accuracy of the model. When the model performs correctly, it represents an immense savings over collecting data with comparable accuracy. / text
112

Exploration And Assessment of HCCI Strategies for a Multi-Cylinder Heavy-Duty Diesel Engine

Pandey, Sunil Kumar January 2016 (has links) (PDF)
Homogeneous Charge Compression Ignition (HCCI) combustion is an alternative combustion mode in which the fuel is homogeneously mixed with air and is auto-ignited by compression. Due to charge homogeneity, this mode is characterized by low equivalence ratios and temperatures giving simultaneously low nitric oxide (NOx) and soot in diesel engines. The conventional problem of NOx-soot trade-off is avoided in this mode due to absence of diffusion combustion. This mode can be employed at part load conditions while maintaining conventional combustion at high load thus minimizing regulatory cycle emissions and reducing cost of after-treatment systems. The present study focuses on achieving this mode in a turbocharged, common rail, direct injection, four-cylinder, heavy duty diesel engine. Specifically, the work involves a combination of three-dimensional CFD simulations and experiments on this engine to assess both traditional and novel strategies related to fuel injection. The first phase of the work involved a quasi-dimensional simulation of the engine to assess potential of achieving HCCI. This was done using a zero-dimensional, single-zone HCCI combustion model with n-heptane skeletal chemistry along with a one-dimensional model of intake and exhaust systems. The feasibility of operation with realistic knock values with high EGR rate of 60% was observed. The second aspect of the work involved three-dimensional CFD simulations of the in-cylinder process with wall film prediction to evaluate injection strategies associated with Early Direct Injection (EDI). The extended Coherent Flame Model-3Zone (ECFM-3Z) was employed for combustion simulation of conventional CI and EDI, and was validated with experimental in-cylinder pressure data from the engine. A new Uniformity Index (UI) parameter was defined to assess charge homogeneity. Results showed significant in-homogeneity and presence of wall film for EDI. Simulations were conducted to assess improvement of charge homogeneity by several strategies; narrow spray cone angle, injection timing, multiple injections, intake air heating, Port Fuel Injection (PFI) as well as combination of PFI and EDI. The maximum UI achieved by EDI was 0.78. The PFI strategy could achieve UI of 0.95; however, up to 50% of fuel remained trapped in the port after valve closure. This indicated that except EDI, none of the above-mentioned strategies could help achieve the benefits of the HCCI mode. The third part of the work involved engine experimentation to assess the EDI strategy. This strategy produced lower soot than that of conventional CI combustion with very short combustion duration, but led to high knock and NOx which is attributed to pool fire burning phenomenon of the wall film, as confirmed by CFD. An Optimized EDI (OptimEDI) strategy was then developed based on results of CFD and Design of Experiments. The Optim EDI consisted of triple injections with split ratio of 41%-45%-14% and advancing the first injection. This strategy gave 20% NOx and soot reduction over the conventional CI mode. Although this strategy gave encouraging results, there was a need for more substantial reduction in emissions without sacrificing efficiency. Hence, a novel concept of utilizing air-assisted Injection (AAI) into the EGR stream was employed, as this implied injecting very small droplets of fuel into the intake which would have sufficient residence time to evaporate before reaching the cylinder, thereby enabling HCCI. The fourth and final part of the work involved engine experimentation with AAI, and combination of OptimEDI with AAI. Results with 20% EGR showed that 5 to 10% of AAI gave further reduction in NOx but not in soot. With experiments involving 48% EGR rate, there was soot reduction of 75% due to combined AAI-EDI. NOx was negligible due to the high EGR rate. Thus, the significant contribution of this work is in proving that combining AAI with EDI as a novel injection strategy leads to substantial NOx and soot reduction.
113

Linearization Based Model Predictive Control of a Diesel Engine with Exhaust Gas Recirculation and Variable-Geometry Turbocharger

Gustafsson, Jonatan January 2021 (has links)
Engine control systems aim to ensure satisfactory output performance whilst adhering to requirements on emissions, drivability and fuel efficiency. Model predictive control (MPC) has shown promising results when applied to multivariable and nonlinear systems with operational constraints, such as diesel engines. This report studies the torque generation from a mean-value heavy duty diesel engine with exhaust gas recirculation and variable-geometry turbocharger using state feedback linearization based MPC (LMPC). This is accomplished by first introducing a fuel optimal reference generator that converts demands on torque and engine speed to references on states and control signals for the MPC controller to follow. Three different MPC controllers are considered: a single linearization point LMPC controller and two different successive LMPC (SLMPC) controllers, where the controllers are implemented using the optimization tool CasADi. The MPC controllers are evaluated with the World Harmonized Transient Cycle and the results show promising torque tracking using a SLMPC controller with linearization about reference values.
114

Entwicklung eines variablen Turbolader-Verdichters für schwere Nutzfahrzeugmotoren

Wöhr, Michael 20 October 2016 (has links)
Die Entwicklung schwerer Nutzfahrzeugmotoren unterliegt dem Zielkonflikt zwischen möglichst geringen Betriebskosten, hoher Leistung und der Einhaltung von Emissionsvorschriften. Bezüglich der Auslegung der Verdichterstufe des Abgasturboladers resultiert dies in einem Kompromiss zwischen Kennfeldbreite und den Wirkungsgraden im Nennpunkt sowie im Hauptfahrbereich. In der vorliegenden wissenschaftlichen Publikation wird untersucht, ob mit Hilfe einer geometrischen Verstellbarkeit des Verdichters eine bessere Lösung für das anspruchsvolle Anforderungsprofil gefunden werden kann. Das Ziel ist eine Reduktion des Kraftstoffverbrauchs eines 12,8l NFZ-Dieselmotors im schweren Fernverkehr, ohne dass hierbei Abstriche bezüglich weiterer Leistungsmerkmale der Verdichterstufe in Kauf genommen werden müssen. In einem ersten Schritt wird hierzu mit Hilfe der Auswertung von Lastkollektivdaten der für den Kraftstoffverbrauch relevante Betriebsbereich der Basis-Verdichterstufe identifiziert. Dieser befindet sich bei vergleichsweise geringen Massenströmen und hohen Totaldruckverhältnissen in der Nähe der Volllast-Schlucklinie im Verdichterkennfeld. Die Auswertung von ein- und dreidimensionalen Strömungssimulationen führt zur Erkenntnis, dass die hohen Tangentialgeschwindigkeiten im unbeschaufelten Diffusor ausschlagge- bend sind für die Strömungsverluste innerhalb der Verdichterstufe im Hauptfahrbereich. Eine Möglichkeit die Geschwindigkeitskomponente in Umfangsrichtung zu reduzieren, ist die Verwendung eines beschaufelten Diffusors. Zur Überprüfung des Potentials werden im Rahmen einer Parameterstudie 47 unterschiedliche Nachleitgitter im Diffusor der Basis-Verdichterstufe am Heißgasprüfstand untersucht. Es stellt sich heraus, dass durch den Einsatz einer Nachleitbeschaufelung der Verdichterwirkungsgrad um bis zu 8 Prozentpunkte verbessert werden kann, die Kennfeldbreite jedoch nicht ausreicht, um die motorischen Anforderungen bezüglich der Pumpstabilität oder der Bremsleistung zu erfüllen. Resultierend aus diesen Erkenntnissen werden drei variable Verdichter entwickelt, mit dem Ziel, den Wirkungsgradvorteil beschaufelter Diffusoren mittels einer geometrischen Verstellbarkeit für den schweren Nutzfahrzeugmotor nutzbar zu machen. Die Bewertung hinsichtlich der Ziele und Anforderungen erfolgt anhand von Versuchen am Heißgas- sowie Vollmotorenprüfstand. Die Variabilität mit der geringsten Komplexität ist die Kombination aus starrem Nachleitgitter und Schubumluftventil. Das System zeichnet sich dadurch aus, dass Strömungsabrisse im Bereich des Nachleitgitters durch Aktivieren des Schubumluftventils und somit Öffnen eines Rezirkulationskanals im Verdichtergehäuse in pumpkritischen Situationen vermieden werden können. Der Verzicht auf bewegliche Teile im Diffusor resultiert in der höchsten Reduktion des Kraftstoffverbrauchs um 0,6 − 1,4% im Hauptfahrbereich. Der Doppeldiffusor besitzt zwei separate Strömungskanäle unterschiedlicher Geometrie, die im Betrieb durch eine axiale Verschiebung mit Druckluft aktiviert werden können. Dieses völlig neuartige Konzept ermöglicht es, die Auslegungsziele auf zwei Diffusoren aufzuteilen und somit für jede Kennfeldhälfte die jeweils optimale Schaufelgeometrie auszuwählen. Mit dieser Variabilität kann die Einspritzmenge im Hauptfahrbereich um 0,5 − 0,8 Prozent gesenkt werden. Das System mit der höchsten Komplexität ist der Verdichter mit rotierbarer Nachleitbeschaufelung. Über einen elektronischen Steller können die Anstellwinkel und Halsquerschnitte in jedem Betriebspunkt den Anströmbedingungen angepasst werden, um den jeweils bestmöglichen Wirkungsgrad zu erhalten. Aufgrund der anspruchsvollen geometrischen Zwangsbedingungen bei der Auswahl der Schaufelgeometrie besitzt der Dreh- schaufler mit 0,3−0,6% das geringste Potential zur Verbesserung der Kraftstoffsparsamkeit, erzielt jedoch das beste Ergebnis bezüglich der Bremsleistung und der Pumpstabilität.:1 Einleitung 1.1 Einführung 1.2 Stand der Technik 1.3 Zielsetzung 2 Grundlagen 2.1 Der schwere Nutzfahrzeugmotor 2.1.1 Aufbau 2.1.2 Kenngrößen 2.1.3 Motorbremse 2.2 Der Turbolader-Radialverdichter 2.2.1 Systembeschreibung 2.2.2 Definition von Kenngrößen 2.2.3 ThermodynamischeBeschreibung 2.3 Thermodynamik des Aufladesystems 2.3.1 Stationäre Lastkurven im Verdichterkennfeld 2.3.2 Grenzwerte im Stationärbetrieb 2.3.3 Transientverhalten 3 Methodik 3.1 Lösungsweg 3.2 Lastkollektivauswertung 3.3 Parametrisiertes Diffusormodell 3.3.1 Geometrischer Aufbau 3.3.2 Auslegungsgrößen 3.3.3 Parameterstudie 3.4 Simulation 3.4.1 1D-Strömungssimulation in Diffusor und Volute 3.4.2 3D-Strömungssimulation der Verdichterstufe 3.4.3 Motorprozesssimulation 3.5 Heißgasprüfstand 3.5.1 Kennfeldvermessung 3.5.2 Aerodynamikmessung 3.5.3 Verkokungsanfälligkeit 3.6 Motorprüfstand 3.6.1 Aufbau 3.6.2 Randbedingungen 3.6.3 Akustikmessung 4 Ergebnisse 4.1 Validierung 4.1.1 Strömungszustand am Verdichterradaustritt 4.1.2 Simulation der Verdichterstufe mit unbeschaufeltem Diffusor 4.1.3 Simulation der Verdichterstufe mit beschaufeltem Diffusor 4.2 Verlustanalyse Basisverdichter 4.2.1 Auswertung der Lastkollektive 4.2.2 Aerodynamische Verlustanalyse 4.2.3 Strömungsmechanik im Diffusor 4.3 Parameterstudie beschaufelter Diffusoren 4.3.1 Einfluss von Nachleitgittern auf das Verdichterkennfeld 4.3.2 Anforderungen des schweren Nutzfahrzeugmotors 4.4 Aerodynamik beschaufelter Diffusoren 4.4.1 Auslegungskriterien 4.5 Verkokung beschaufelter Diffusoren 5 Variable Verdichter 5.1 VRVC - Starres Nachleitgitter mit Schubumluftventil 5.1.1 Auslegung und Konstruktion 5.1.2 Heißgasprüfstand 5.2 VSVC-Doppeldiffusor 5.2.1 Auslegung und Konstruktion 5.2.2 Heißgasprüfstand 5.3 VPVC-RotierbareSchaufeln 5.3.1 Auslegung und Konstruktion 5.3.2 Heißgasprüfstand 5.4 Verhalten variabler Verdichter am schweren NFZ-Motor 5.4.1 Volllast 5.4.2 Lastvariation 5.4.3 DynamischesAnsprechverhalten 5.4.4 Low-End Torque 5.4.5 Dynamische Pumpstabilität 5.4.6 Bremsbetrieb 5.4.7 Ansteuerung 5.4.8 Akustik 5.5 Übersicht 6 Zusammenfassung und Ausblick 7 Anhang Literaturverzeichnis / Reducing the total costs of ownership, achieving the rated engine power and compliance with exhaust-emission legislation are competing goals regarding the development of heavy duty engines. This leads to demanding requirements for the aerodynamic design of the turbocharger compressor stage such as high efficiencies at various operating points and a broad map width. The aim of the present doctoral thesis is to investigate the potential of a compressor with variable geometry in order to obtain a better compromise between efficiency and compressor map width for the purpose of increasing fuel economy without sacrifices concerning the rated power, engine brake performance or surge stability. In a first step, the evaluation of load cycles yields operating points on which the fuel consumption is heavily dependent. Results of 1D- and 3D fluid flow simulations show that the high tangential velocity in the vaneless diffusor is the main cause for the reduction of compressor efficiency in the main driving range. A parameter study containing 47 different geometries is conducted at a hot gas test rig in order to examine the potential of vaned diffusers regarding the reduction of the tangential velocity component. It can be seen that by introducing diffuser vanes compressor efficiency can be increased by up to 8 percent. The narrow map width however prevents the use of a fixed geometry for heavy duty engines. Based on those results three variable geometry compressors are developed with the goal of maintaining the efficiency benefit of vaned diffusers while increasing the map width by adjustable geometric features. The evaluation of the variable compressor systems is based on hot gas and engine test bench measurements. The variable compressor system with the lowest complexity utilizes a recirculation valve in the compressor housing in combination with a fixed geometry vaned diffuser in order to improve the surge margin for a short period of time at a sudden load drop. The abandonment of functional gaps in the diffuser leads to the highest improvement of fuel economy of 0,6 − 1,4% in the main driving range. The compressor with stacked diffuser vanes has two separate flow channels in the diffuser. During engine operation only one vaned diffuser geometry is active. The axial movement is performed via pressure chambers in the compressor and bearing housing. The two diffuser geometries are either optimized for high or low mass flows. This way the fuel consumption in the main driving range can be reduced by 0,5 − 0,8%. The compressor with pivoting vanes in the diffuser has the highest complexity of all systems. With the aid of an electronic actuator the vane inlet angle and throat area can be adjusted to the impeller outlet flow conditions at each operating point. As a consequence the pivoting vanes compressor achieves the best results regarding engine brake performance and surge stability. The fuel economy in the main driving range can be improved by 0,3 − 0,6%. Higher benefits are prevented by demanding geometric constraints in order to ensure the rotatability of the vanes and to prevent vibrations of the impeller blades.:1 Einleitung 1.1 Einführung 1.2 Stand der Technik 1.3 Zielsetzung 2 Grundlagen 2.1 Der schwere Nutzfahrzeugmotor 2.1.1 Aufbau 2.1.2 Kenngrößen 2.1.3 Motorbremse 2.2 Der Turbolader-Radialverdichter 2.2.1 Systembeschreibung 2.2.2 Definition von Kenngrößen 2.2.3 ThermodynamischeBeschreibung 2.3 Thermodynamik des Aufladesystems 2.3.1 Stationäre Lastkurven im Verdichterkennfeld 2.3.2 Grenzwerte im Stationärbetrieb 2.3.3 Transientverhalten 3 Methodik 3.1 Lösungsweg 3.2 Lastkollektivauswertung 3.3 Parametrisiertes Diffusormodell 3.3.1 Geometrischer Aufbau 3.3.2 Auslegungsgrößen 3.3.3 Parameterstudie 3.4 Simulation 3.4.1 1D-Strömungssimulation in Diffusor und Volute 3.4.2 3D-Strömungssimulation der Verdichterstufe 3.4.3 Motorprozesssimulation 3.5 Heißgasprüfstand 3.5.1 Kennfeldvermessung 3.5.2 Aerodynamikmessung 3.5.3 Verkokungsanfälligkeit 3.6 Motorprüfstand 3.6.1 Aufbau 3.6.2 Randbedingungen 3.6.3 Akustikmessung 4 Ergebnisse 4.1 Validierung 4.1.1 Strömungszustand am Verdichterradaustritt 4.1.2 Simulation der Verdichterstufe mit unbeschaufeltem Diffusor 4.1.3 Simulation der Verdichterstufe mit beschaufeltem Diffusor 4.2 Verlustanalyse Basisverdichter 4.2.1 Auswertung der Lastkollektive 4.2.2 Aerodynamische Verlustanalyse 4.2.3 Strömungsmechanik im Diffusor 4.3 Parameterstudie beschaufelter Diffusoren 4.3.1 Einfluss von Nachleitgittern auf das Verdichterkennfeld 4.3.2 Anforderungen des schweren Nutzfahrzeugmotors 4.4 Aerodynamik beschaufelter Diffusoren 4.4.1 Auslegungskriterien 4.5 Verkokung beschaufelter Diffusoren 5 Variable Verdichter 5.1 VRVC - Starres Nachleitgitter mit Schubumluftventil 5.1.1 Auslegung und Konstruktion 5.1.2 Heißgasprüfstand 5.2 VSVC-Doppeldiffusor 5.2.1 Auslegung und Konstruktion 5.2.2 Heißgasprüfstand 5.3 VPVC-RotierbareSchaufeln 5.3.1 Auslegung und Konstruktion 5.3.2 Heißgasprüfstand 5.4 Verhalten variabler Verdichter am schweren NFZ-Motor 5.4.1 Volllast 5.4.2 Lastvariation 5.4.3 DynamischesAnsprechverhalten 5.4.4 Low-End Torque 5.4.5 Dynamische Pumpstabilität 5.4.6 Bremsbetrieb 5.4.7 Ansteuerung 5.4.8 Akustik 5.5 Übersicht 6 Zusammenfassung und Ausblick 7 Anhang Literaturverzeichnis
115

Evaluation of model-based fault diagnosis combining physical insights and neural networks applied to an exhaust gas treatment system case study

Kleman, Björn, Lindgren, Henrik January 2021 (has links)
Fault diagnosis can be used to early detect faults in a technical system, which means that workshop service can be planned before a component is fully degraded. Fault diagnosis helps with avoiding downtime, accidents and can be used to reduce emissions for certain applications. Traditionally, however, diagnosis systems have been designed using ad hoc methods and a lot of system knowledge. Model-based diagnosis is a systematic way of designing diagnosis systems that is modular and offers high performance. A model-based diagnosis system can be designed by making use of mathematical models that are otherwise used for simulation and control applications. A downside of model-based diagnosis is the modeling effort needed when no accurate models are available, which can take a large amount of time. This has motivated the use of data-driven diagnosis. Data-driven methods do not require as much system knowledge and modeling effort though they require large amounts of data and data from faults that can be hard to gather. Hybrid fault diagnosis methods combining models and training data can take advantage of both approaches decreasing the amount of time needed for modeling and does not require data from faults. In this thesis work a combined data-driven and model-based fault diagnosis system has been developed and evaluated for the exhaust treatment system in a heavy-duty diesel engine truck. The diagnosis system combines physical insights and neural networks to detect and isolate faults for the exhaust treatment system. This diagnosis system is compared with another system developed during this thesis using only model-based methods. Experiments have been done by using data from a heavy-duty truck from Scania. The results show the effectiveness of both methods in an industrial setting. It is shown how model-based approaches can be used to improve diagnostic performance. The hybrid method is showed to be an efficient way of developing a diagnosis system. Some downsides are highlighted such as the performance of the system developed using data-driven and model-based methods depending on the quality of the training data. Future work regarding the modularity and transferability of the hybrid method can be done for further evaluation.
116

Energy Prediction in Heavy Duty Long Haul Trucks

Khuntia, Satvik 22 December 2022 (has links)
No description available.
117

Evaluating the potential of truck electrification and its implementation from user and agency perspectives

Theodora Konstantinou (5930705) 27 July 2022 (has links)
<p>  </p> <p>The trucking industry seems to be resistant to electrification, even though truck electrification can lead to large societal as well as user benefits. This dissertation develops a framework to inform policy making and enhance electric vehicle (EV) preparedness in the trucking industry through the study of two interrelated elements: (a) the adoption of electric trucks and (b) the appropriate implementation of electric truck technology. These two elements cover the user perspective, which is not adequately studied, and the agency perspective, which is pivotal in the decision-making process. Specifically, this study addressed the following research questions: (i) which factors affect the purchase decisions of truck fleet managers or owners for electric trucks? (ii) what is the ranking of and interrelationships between the barriers to the adoption of electric trucks? (iii) which location criteria should be considered for the strategic implementation of dynamic wireless charging (DWC) in a freight transportation network and where should this technology be located based on these criteria, and (iv) what is the impact of electric truck adoption on highway revenue and potential of alternative funding mechanisms to recover the revenue loss?</p> <p>For the adoption of electric trucks, a stated preference survey was designed and distributed online to truck fleet managers/owners in the U.S., gathering 200 completed responses. Statistical and multi-criteria decision-making approaches were employed to identify the factors that affect the purchase intentions of truck fleet managers and explore the barriers to electric truck adoption. The results showed that the purchase intentions of truck fleet managers are affected by trucking firm and truck fleet characteristics, behavioral factors/opinions regarding electric trucks, and awareness of innovative charging technologies. Furthermore, electric truck adoption would be accelerated if stakeholders focused on the barriers related to the business model, product availability, and charging time. Additionally, electric truck adopters and non-adopters may not be viewed as one homogenous group, since differences were found in the ranking and interrelationships of barriers to electric truck adoption between these two groups. </p> <p>The implementation of electric truck technology was examined based on the truck fleet managers’ survey, secondary data sources and the case of Indiana, U.S. A multi-criteria decision-making spatial approach was proposed to identify the candidate locations for the deployment of DWC. It was concluded that the most suitable locations for DWC lanes were on interstates, near airports and ports and away from EV charging stations. A data-driven framework was also developed to quantify the impact of electric truck adoption and estimate the optimal fee for each truck to recover the revenue loss. Using the market penetration levels estimated based on the survey data collected, the average annual fuel tax revenue loss for Indiana was approximately $349M. To maintain the same tax revenue per vehicle, annual fees ranging from $969 (in 2021) to $1,243 (in 2035) for single-unit trucks and $6,192 to $7,321 for combination trucks would be needed. To address public relations problems of EV fee implementation, this study also discussed alternative mitigation measures: a vehicle-miles-traveled fee and a pay-as-you-charge fee.</p> <p>In summary, this dissertation contributes to the body of literature by providing significant insights regarding the perspectives of truck fleet managers for electric trucks as well as a comprehensive list of all the location criteria for DWC. The proposed frameworks and study findings can be used by policymakers and other major stakeholders of the EV ecosystem to frame certain strategies to accelerate electric truck adoption, identify the most suitable locations for charging infrastructure, better understand the impact of electric trucks on the highway revenue, and provide the groundwork for developing EV roadmaps.</p>
118

Towards sustainable urban transportation : Test, demonstration and development of fuel cell and hybrid-electric buses

Folkesson, Anders January 2008 (has links)
Several aspects make today’s transport system non-sustainable: • Production, transport and combustion of fossil fuels lead to global and local environmental problems. • Oil dependency in the transport sector may lead to economical and political instability. • Air pollution, noise, congestion and land-use may jeopardise public health and quality of life, especially in urban areas. In a sustainable urban transport system most trips are made with public transport because high convenience and comfort makes travelling with public transport attractive. In terms of emissions, including noise, the vehicles are environmentally sustainable, locally as well as globally. Vehicles are energy-efficient and the primary energy stems from renewable sources. Costs are reasonable for all involved, from passengers, bus operators and transport authorities to vehicle manufacturers. The system is thus commercially viable on its own merits. This thesis presents the results from three projects involving different concept buses, all with different powertrains. The first two projects included technical evaluations, including tests, of two different fuel cell buses. The third project focussed on development of a series hybrid-bus with internal combustion engine intended for production around 2010. The research on the fuel cell buses included evaluations of the energy efficiency improvement potential using energy mapping and vehicle simulations. Attitudes to hydrogen fuel cell buses among passengers, bus drivers and bus operators were investigated. Safety aspects of hydrogen as a vehicle fuel were analysed and the use of hydrogen compared to electrical energy storage were also investigated. One main conclusion is that a city bus should be considered as one energy system, because auxiliaries contribute largely to the energy use. Focussing only on the powertrain is not sufficient. The importance of mitigating losses far down an energy conversion chain is emphasised. The Scania hybrid fuel cell bus showed the long-term potential of fuel cells, advanced auxiliaries and hybrid-electric powertrains, but technologies applied in that bus are not yet viable in terms of cost or robustness over the service life of a bus. Results from the EU-project CUTE show that hydrogen fuelled fuel cell buses are viable for real-life operation. Successful operation and public acceptance show that focus on robustness and cost in vehicle design were key success factors, despite the resulting poor fuel economy. Hybrid-electric powertrains are feasible in stop-and-go city operation. Fuel consumption can be reduced, comfort improved, noise lowered and the main power source downsized and operated less dynamically. The potential for design improvements due to flexible component packaging is implemented in the Scania hybrid concept bus. This bus and the framework for its hybrid management system are discussed in this thesis. The development of buses for a more sustainable urban transport should be made in small steps to secure technical and economical realism, which both are needed to guarantee commercialisation and volume of production. This is needed for alternative products to have a significant influence. Hybrid buses with internal combustion engines running on renewable fuel is tomorrow’s technology, which paves the way for plug-in hybrid, battery electric and fuel cell hybrid vehicles the day after tomorrow. / QC 20100722

Page generated in 0.0462 seconds