Spelling suggestions: "subject:"role mobility"" "subject:"hole mobility""
1 |
MOSFET Channel Engineering using Strained Si, SiGe, and Ge ChannelsFitzgerald, Eugene A., Lee, Minjoo L., Leitz, Christopher W., Antoniadis, Dimitri A. 01 1900 (has links)
Biaxial tensile strained Si grown on SiGe virtual substrates will be incorporated into future generations of CMOS technology due to the lack of performance increase with scaling. Compressively strained Ge-rich alloys with high hole mobilities can also be grown on relaxed SiGe. We review progress in strained Si and dual channel heterostructures, and also introduce high hole mobility digital alloy heterostructures. By optimizing growth conditions and understanding the physics of hole and electron transport in these devices, we have fabricated nearly symmetric mobility p- and n-MOSFETs on a common Si₀.₅Ge₀.₅ virtual substrate. / Singapore-MIT Alliance (SMA)
|
2 |
Nanoengineering of organic light-emitting diodesLupton, John Mark January 2000 (has links)
No description available.
|
3 |
Current transport in hydrogenated amorphous silicon nitrideMorgan, B. A. January 2000 (has links)
A defect band is formed in hydrogenated amorphous silicon nitride (a-SiNx:H) due to current stressing of the material. This gives rise to an increase in conductivity, referred to as current induced conductivity. This thesis investigates the current transport mechanisms that occur in the induced defect band, by comparing the temperature dependence of the conductivity of several sets of a-SiNx:H thin film diodes. These sets were systematically current stressed to different levels with one set remaining unstressed. Samples with energy gaps of 2.06 eV and 2.28 eV were considered. We show that around room temperature a modified Poole-Frenkel description of conduction (i.e. field enhanced hopping of carriers via charged defect states) provides a good fit to the data. Using this model the activation energy of current transport was calculated and shown to depend on the material band gap. Data fitting to the Poole-Frenkel model provided further support for the field-assisted hopping mechanism. Previous investigations had suggested that the defect band resides in the lower half of the band gap, so that current transport through the defect band was then expected to be due to the movement of holes, in a manner consistent with Poole-Frenkel conduction. By considering samples grown on p-type and n-type substrates, we demonstrated that transport was indeed the result of the movement of holes through the defect states within the induced defect band. At lower temperatures the experimental data is poorly described by a modified Poole-Frenkel type process, so further mechanisms were considered, including variable-range hopping and nearest-neighbour hopping. Due to the similar nature and slight temperature dependence of each process, differentiating between the two mechanisms proved difficult. However, other factors such as the temperature range and defect density favoured variable-range hopping transport. By assuming this form of low temperature hopping transport, conduction through the defect-band of the a-SiNx:H, could then be convincingly explained over the entire temperature range from 320 K to 20 K in terms of two dominant transport mechanisms, Poole-Frenkel conduction and variable-range hopping.
|
4 |
A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type SemiconductorBianchi Granato, Danilo 05 1900 (has links)
In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.
|
5 |
Hole Mobility in Strained Ge and III-V P-channel Inversion Layers with Self-consistent Valence Subband Structure and High-k InsulatorsZhang, Yan 01 September 2010 (has links)
We present a comprehensive investigation of the low-¯eld hole mobility in strained Ge and III-V (GaAs, GaSb, InSb and In1¡xGaxAs) p-channel inversion layers with both SiO2 and high-· insulators. The valence (sub)band structure of Ge and III-V channels, relaxed and under strain (tensile and compressive) is calculated using an effcient self-consistent method based on the six-band k ¢ p perturbation theory. The hole mobility is then computed using the Kubo-Greenwood formalism accounting for non-polar hole-phonon scattering (acoustic and optical), surface roughness scatter- ing, polar phonon scattering (III-Vs only), alloy scattering (alloys only) and remote phonon scattering, accounting for multi-subband dielectric screening. As expected, we find that Ge and III-V semiconductors exhibit a mobility significantly larger than the \universal" Si mobility. This is true for MOS systems with either SiO2 or high-k insulators, although the latter ones are found to degrade the hole mobility compared to SiO2 due to scattering with interfacial optical phonons. In addition, III-Vs are more sensitive to the interfacial optical phonons than Ge due to the existence of the substrate polar phonons. Strain { especially biaxial tensile stress for Ge and biaxial compressive stress for III-Vs (except for GaAs) { is found to have a significant beneficial effect with both SiO2 and HfO2. Among strained p-channels, we find a large enhancement (up to a factor of 10 with respect to Si) of the mobility in the case of uniaxial compressive stress added on a Ge p-channel similarly to the well-known case of Si. InSb exhibits the largest mobility enhancement. In0:7Ga0:3As also exhibits an increased hole mobility compared to Si, although the enhancement is not as large. Finally, our theoretical results are favorably compared with available experimental data for a relaxed Ge p-channel with a HfO2 insulator.
|
6 |
Controlling charge carrier injection in organic electroluminescent devices via ITO substrate modificationDay, Stephen January 2001 (has links)
No description available.
|
7 |
Electrical characterization and modeling of low dimensional nanostructure FET / Electrical characterization and modeling of low-dimensional nanostructure FETLee, Jae Woo 05 December 2011 (has links)
At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper. / At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper.
|
8 |
Electron and hole transport in GaN and InGaNEshghi, Hosein January 2000 (has links)
No description available.
|
9 |
Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen HalbleiternWidmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
|
10 |
Charge transport and energy levels in organic semiconductorsWidmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers
|
Page generated in 0.0794 seconds