51 |
Energikartläggning och energieffektivisering av flerbostadshus : Utredning av möjliga energibesparande åtgärdsplaner i området Oxhagen, Örebro.Gunnarsson, John, Wallberg, Ida January 2022 (has links)
The purpose of this report is to investigate how Örebrobostäder (ÖBO) can decrease their energy use in the residential area of Oxhagen. Oxhagen is as mentioned a residential area located west from Örebro center and have about 690 apartments in different sizes. ÖBO needs to do this survey because they obey from the law of energy mapping in large companies, this law is produced from the EU directive, energy efficiency directive with its purpose to reduce the energy using in the country so the imported energy decreases. Energy statistics have been handed from ÖBO, this energy data has been analyzed and the data have been put in respective calculations, using Excel. Also, a model of a real estate has been made in the simulation program IDA ICE, in this simulation program energy calculations are made. There has also been a technical inspection of the reference real estate. The result shows that the biggest decrease in energy will happen with a decrease in the heating of the building. It also shows that a change of windows can reduce energy use significantly. Therefor the conclusion is that a combination of heat decrease, and window change can make an enormous difference in energy using for the reference real estate and the combination can also apply on other real estate in the area Oxhagen.
|
52 |
Val av värmesystem vid nybyggnation av ett flerbostadshus i mellersta Sverige : En simuleringsstudieOlmats, Oscar January 2023 (has links)
The choice of heating system in new residential buildings has a significant effect onthe total life cycle-cost. Rising energy prices and tougher energy demands for newbuildings creates incentive for energy- and cost-efficient solutions. The purpose ofthis project is therefore to investigate how the choice and sizing of a heating systemin a building can be performed with focus on cost-efficiency. The project is conducted as a case study on a residential building during the buildingphase on behalf of INTEC Dalarna AB, a technical engineering company. The project aim is to answer the following questions: – What heating system of district heating, ground source heat pumps or air towater heat pumps is the most cost-effective for a new residential building inthe middle of Sweden? – Is there a specific combination of a heat pump of arbitrary size and peak heating system that is particularly advantageous for the building? – Is IDA ICE suitable for simulation of energy use in buildings with heatpumps? – Does high energy-efficiency also mean high cost-efficiency for the building? The questions will be answered with building simulation software IDA Indoor Climate and Energy along with capital budgeting. The capital budgeting will be performed with net present value and payoff period for the heat pumps over choosingdistrict heating. The results of the project show that a system with ground source heat pumps with acapacity of 50 percent of the annual peak heat demand and electricity for peak loadsis the most cost-efficient option for the building. However, the most energy efficient option is a ground source heat pump with a capacity of 50 percent of the annual peak heat demand with district heating for peak loads. The project also shows that IDA ICE is suitable for simulating the performance of heat pumps in buildings.The conclusion is that a smaller system of ground source is more cost-efficient forthe building, and that the most energy efficient option is not always equal to themost cost-efficient over time.
|
53 |
Val av solavskärmning : Simuleringar för att identifiera lämplig solavskärmning för kontorshuset VråkenBerglund, Max January 2023 (has links)
The office building Vråken located in Västerås, Sweden, is soon to be renovated and improved solar shading is considered. In this project, five types of solar shading (zip screens, awnings, window film, built-in venetian blinds and roller blinds) were studied to find out their impact on the building's solar gain, cooling load and thermal comfort. The results were analysed to propose sufficient solar shading. In the early stages of the project a questionnaire was distributed to workers in Vråken with the purpose of finding out their opinions about the thermal comfort in the building. A model of 24 selected rooms in the building was also created in IDA ICE to simulate the five different types of solar shading and compare them to a scenario without any solar shading. The questionnaire was used to calculate PPD, showing that 39,3% of the workers were dissatisfied with the thermal comfort during the summer. The simulations in IDA ICE revealed that, overall, zip screens produced the best results. This was followed by awnings, built-in venetian blinds, window film and roller blinds in that order. Awnings resulted in the smallest solar gain, 62% smaller than without solar shading, while roller blinds resulted in the biggest solar gain, 31% smaller than without solar shading. The cooling load was reduced the most with zip screens (-43%) and the least with roller blinds (-14%) compared to the scenario without solar shading. Operative temperatures were also simulated. Once again zip screens produced the best results and roller blinds the worst. By analysing the results from the questionnaire and the simulations, different solar shading applications were proposed for different parts of the building. For the façade facing south, zip screens combined with a new window film was suggested. For the façade facing north the recommendation was built-in venetian blinds, and facing east and west, zip screens combined with either roller blinds or built-in venetian blinds was suggested. / Energieffektivisering av byggnader är ett tidsenligt och angeläget område. Solen utgör här en viktig roll som naturlig energikälla genom instrålning i byggnader. Under eldningssäsongen är detta välkommet, men under sommaren kan inverkan vara kontraproduktiv med övertemperaturer och ökade kylbehov som resultat. I ett försök att minimera de oönskade konsekvenserna sommartid har i detta arbete fem solavskärmningar (markis, zip screen, persienner, rullgardin och solfilm) undersökts för kontorshuset Vråken i Västerås. Fokusområdet omfattar parametrarna solvärmelast, kyleffektbehov och termisk komfort och har legat till grund för förslag på tillämpning av förbättrad solavskärmning för byggnaden. Arbetet inleddes med en enkätundersökning som delades ut till arbetare i Vråken. Denna syftade till att undersöka den aktuella upplevelsen av inomhusklimatet relaterat till solstrålning och solavskärmning i byggnaden. Huvudmetoden i arbetet var annars modellering och simulering av byggnaden i IDA ICE. 24 utvalda kontorsrum i Vråken byggdes upp med programvaran och utrustades med de beaktade solavskärmningarna i olika fall. Fallen simulerades därpå för att erhålla resultat för de studerade parametrarna. Enkätundersökningen användes för beräkningar av verkligt PPD, ett mått på missnöje beträffande inomhusklimatet. Resultatet visade att 39,3% av arbetarna var missnöjda sommartid. Enkätsvaren indikerade problem med övertemperaturer och värme från solstrålningen, i synnerhet i byggnadens söderläge. Simuleringsresultaten visade att solavskärmning i hög grad minskar såväl solvärmelasten och kyleffektbehovet som den operativa temperaturen i Vråken. Av de beaktade solavskärmningarna var solvärmelasten för byggnaden lägst med markiser (62% lägre än utan solavskärmning) och högst med rullgardiner (- 31%). Solvärmelasten jämfördes mot Miljöbyggnads betygssystem Brons, Silver och Guld. Kyleffekten minskade mest med zip screens (-43%) och minst med rullgardiner (-14%) i jämförelse med fallet utan solavskärmning. För den operativa temperaturen undersöktes både den maximala operativa temperaturen under året och antalet timmar då den överstiger 24°C. Återigen visades på bäst resultat för zip screens och sämst för rullgardiner. Överlag presterade zip screens bäst, följt av markiser, persienner, solfilm och rullgardiner i den ordningen. Vissa variationer fanns mellan byggnadens olika delar (syd-, öst-, väst- och norrläge). Utifrån arbetets simuleringsresultat och enkätundersökning gavs förslag på ny tillämpning av solavskärmning för Vråken. För sydsidan föreslogs zip screens och ny solfilm. På norrsidan var behovet av solavskärmning inte lika stort, men persienner är här en bra lösning. Öst-och västsidan skulle precis som sydsidan nå fördelar genom utvändig solavskärmning. Även här föreslogs zip screens och antingen rullgardiner eller persienner. Alternativa ekonomialternativ presenterades också där det var relevant.
|
54 |
Komfort- och energianalys vid installation av markiser på Högskolans i Gävle glasfasader : Mätningar och IDA ICE-simuleringarHöglund, Marcus, Stenås, Anton January 2021 (has links)
Högskolan i Gävle planerar att installera solavskärmande markiser på entréhallarnas sydliga glasade fasader. Sedan uppbyggnad har entrébyggnaden som inkluderar ”Rävhallen” och ”Fårhallen” lidit av bristfällig termisk inomhuskomfort på grund av värmeläckage och överhettning orsakade av fasadernas fönsterpartier. Detta examensarbete gjordes i syfte att via mätningar undersöka den termiska inomhuskomforten i Högskolans i Gävle entréhallar. Arbetet syftade också till att årssimulera och analysera årlig energiförbrukning och termisk inomhuskomfort innan och efter installationen av solavskärmande markiser på byggnadens glasfasader, i simuleringsprogrammet IDA ICE. En komfortundersökning gjordes genom att mäta termisk komfort och inomhustemperaruter under två tillfällen i april månad. Mätningarna gjordes under en molnig dag och en solig dag vid samma utomhustemperatur, för att undersöka solinstrålningens inverkan på byggnadens termiska komfort och inomhustemperaturer. Komfortundersökningen visade att den termiska komforten i Rävhallen och Fårhallen var undermålig då överhettning uppstår vid hög solinstrålning. Nödvändiga data inför modellering och simulering insamlades genom observationer, uppskattning, beräkningar och samtal med drifttekniker vid Akademiska hus. Efter datainsamlingen konstruerades en modell i simuleringsprogrammet IDA ICE. Innan simulering validerades modellen med hjälp av tidigare uppmätta temperaturer under april månad. Sedan simulerades byggnadens energiförbrukning och termiska inomhuskomfort över ett helt år, utan markiser, och därefter med markiser. Resultatet visade att den termiska komforten förbättrades markant vid installation av markiser. Höga topptemperaturer som tidigare förekom i byggnaden minskade eftersom markiserna reducerade solinstrålningen genom fasadens fönsterpartier. Det totala årliga energibehovet ökade dock från 605 MWh till 635 MWh. Det årliga energibehovet för kyla minskade något från 3,4 MWh till 3,2 MWh. Att energiförbrukningen ökade berodde på att markiserna reducerade nyttig gratisvärme från solinstrålningen, särskilt under uppvärmningssäsong. För vidare forskning föreslås en mer effektiv styrteknik av markiserna och en mer detaljrik simuleringsmodell för att få tillförlitligare resultat. Vid tillämpning av bättre anpassad styrning av markiserna bedöms energibesparingspotentialen bli större. Slutsatsen drogs att markiser kan förbättra den termiska inomhuskomforten avsevärt, men att energiförbrukningen kan komma att öka beroende på styrteknik. / The University of Gävle plans to install solar shading awnings on the southern glass facades of the main entrances. Since construction, the main entrances Rävhallen and Fårhallen have suffered from poor thermal indoor comfort due to heat leakage and overheating due to the windows on the facades. This thesis was done in order to map and investigate the thermal indoor comfort in the University of Gävle's main entrances. The work also aimed to simulate and analyze annual energy consumption and thermal indoor comfort before and after the installation of solar shading awnings on the building's glass facades, in the simulation program IDA ICE. A comfort survey was conducted by measuring thermal comfort and indoor temperature ranges on two occasions in April. The measurements were made during a cloudy day and a sunny day at the same outdoor temperature, to investigate the effect of solar radiation on the building's thermal comfort and indoor temperatures. The comfort survey showed that the thermal comfort in Rävhallen and Fårhallen was insufficient as overheating occurs at high solar radiation. Data necessary for modeling and simulation was collected through observations, estimates, and dialogs with operating technicians from Akademiska hus. After data collection, a model was constructed in the simulation program IDA ICE. Before simulation, the model was validated using previously measured temperatures during the month of April. Then the building's energy consumption and thermal indoor comfort were simulated over a whole year, without awnings, and with awnings. The results showed that the thermal comfort was significantly improved by the awnings installations. High peak temperatures that previously occurred in the building decreased because of the reduced solar radiation through the glass facade. The total annual energy demand increased from 605 MWh to 635 MWh. However, the annual energy demand for cooling decreased from 3,4 MWh to 3,2 MWh. The increase in energy consumption was due to the awnings reducing useful heat from solar radiation, especially during the heating season. Prior to further research, a more efficient control technique of the awnings and a more detailed model to improve the simulation results are proposed. When applying better adapted control of the awnings, the energy saving potential is considered to be greater. It was concluded that awnings can significantly improve indoor thermal comfort, but that energy consumption may increase depending on control technology.
|
55 |
The Effect of Global Warming on the Indoor Environment : A Simulation Study on Single – Family Houses in the Stockholm RegionAndersson, Julia, Larsson, Fredrik January 2021 (has links)
In this thesis, the main objective has been to simulate and evaluate the change between the indoor climate today and 2070, due to climate change. The model created was built by parts chosen based on solutions and material commonly used when building single-family houses in the Stockholm region in 2020. This has been done by evaluating statistics, literature, common practices, and building requirements. To simulate a representative house, a model was built in the software IDA ICE where present and future climates were inserted and the resulting indoor environment evaluated. The future outdoor climate has been constructed through predictions based on scenarios determined by the Intergovernmental Panel on Climate Change (IPCC). The hypothesis was that single-family houses built in 2020 will not be habitable in 2070 due to the increased indoor temperatures in summer, and that changes can be done to combat this potential warming.The result of the simulations shows that the indoor environment was strongly dependent on the outdoor climate, building design, and technique. Meaning that changes to the building, regarding design, structure, material, and building services will result in a change in the indoor environment. Furthermore, the indoor temperatures of the model increased above acceptable levels regardless of future scenario. Several changes and additions to the model have, therefore, been tested to examine whether they reduce the maximum temperatures below the threshold sustainably.None of the individual changes reduced the temperatures below the acceptable levels for every single scenario and was considered a sustainable option at the same time. Some more sustainable modifications reduced the indoor temperatures below the threshold for the cooler scenarios, and some less sustainable modifications reduced the indoor temperatures below the threshold for all scenarios. A combination of more sustainable modifications was also tested, yielding a reduction in temperature beneath the threshold for all scenarios except for the two most extreme.The changed outdoor climate has a large effect on the simulated indoor environment. This could be considered as a strong indication that the actual indoor environment and thermal comfort of single-family houses will be affected as well. It is difficult to predict whether single-family houses in 2070 will be considered unhabitable since it is determined by a wide range of variables. The simulated indoor environment can, however, be improved by changing or adding parts to the model. / Denna uppsats huvudsakliga mål har varit att simulera och utvärdera förändringen mellan inomhusklimatet idag och år 2070 på grund av klimatförändringarna. Den skapade modellen var uppbyggd av delar valda utifrån lösningar och material som vanligtvis används vid byggandet av småhus i Stockholmsregionen 2020. Detta har gjorts genom att utvärdera statistik, litteratur, vanliga metoder och byggregler. För att simulera ett representativt hus byggdes en modell i mjukvaran IDA ICE. Modellen testades mot ett nuvarande och framtida utomhusklimat och därefter utvärderades den resulterande inomhusmiljön Det framtida utomhusklimatet har konstruerats genom prognoser baserade på scenarier som bestäms av FN:s klimatpanel (IPCC). Hypotesen var att småhus som byggts runt 2020 inte kommer att vara beboeliga år 2070 på grund av de ökade inomhustemperaturerna på sommaren, och att förändringar kan göras för att bekämpa denna potentiella uppvärmning av inomhustemperatur.Resultaten av simuleringarna visar att inomhusmiljön var starkt beroende av utomhusklimatet, byggtekniken och designen. Vilket betyder att förändringar i byggnaden avseende design, stomme, material och installationsteknik kommer att resultera i en förändring av inomhusmiljön. Fortsatt steg inomhustemperaturerna i modellen över acceptabla nivåer, oavsett framtida scenario. Flera ändringar och tillägg till modellen har därför testats, för att undersöka om det kan leda till en sänkning av den maximala temperaturen under riktvärdet, på ett hållbart sätt.Ingen av de individuella förändringarna minskade temperaturerna under de acceptabla nivåerna för alla scenarier samt ansågs vara ett hållbart alternativ. Några mer hållbara ändringar minskade inomhustemperaturerna under riktvärdet för de svalare scenarierna. Medan vissa mindre hållbara modifieringar minskade temperaturerna under kravet för alla scenarier. En kombination av de mer hållbara modifieringar testades också, vilket sänkte temperaturerna under tröskelvärdet för alla scenarier, utom de två mest extrema.Det förändrade utomhusklimatet har stor inverkan på den simulerade inomhusmiljön. Detta kan ses som en stark indikation på att den verkliga inomhusmiljön och termiska komforten för småhus också kommer att påverkas i framtiden. Det är svårt att förutsäga huruvida småhus år 2070 kommer att betraktas som obeboeliga då det påverkas av många variabler. Den simulerade inomhusmiljön kan dock förbättras genom att ändra eller lägga till delar i modellen.
|
56 |
Improved building energy simulations and verifications by regressionVesterberg, Jimmy January 2016 (has links)
It is common with significant differences between calculated and actual energy use in the building sector. These calculations are often performed with whole building energy simulation (BES) programs. In this process the analyst must make several assumptions about the studied building and its users. These calculations are often verified with measured data through the EUI benchmark indicator which is calculated by normalizing the annual energy use (from the grid) with the floor area. Due to the highly aggregated nature of the EUI indicator it is problematic to use this indicator to deduce erroneous assumptions in the calculations. Consequently, the learning process is often troublesome. Against this background, the main aim of this thesis has been to develop methods that can provide feedback (key building performance parameters) from measured data which can be used to increase simulation accuracy and verify building performance. For the latter, regression models have been widely used in the past for verifying energy use. This thesis has the focus on the use of regression analysis for accurate parameter identification to be used to increase the agreement between BES predictions and actual outcome. For this, a BES calibration method based on input from regressed parameters has been developed which has shown promising features in terms of accurate predictions and user friendliness. The calibration method is based on input from regressed estimations of air-to-air-transmission losses, including air leakage (heat loss factor) and ground heat loss. Since it is known that bias models still can give accurate predictions, these parameters have been evaluated in terms of robustness and agreement with independent calculations. In addition, a method has been developed to suppress the bias introduced in the regression due to solar gain. Finally, the importance of calibrated simulations was investigated. The regressed parameters were found to be robust with yearly variations in the heat loss factor of less than 2%. The regressed estimates of ground heat loss were also in good agreement with independent calculations. The robustness of the heat loss factor based on data from periods of substantial solar gain was also found to be high, with an average absolute deviation of 4.0%. The benefit with calibrated models was mainly found to be increased accuracy in predictions and parameters in absolute terms. With increased access to measured data and the promising results in this thesis it is believed that the presented regression models will have their place in future energy quantification methods for accessing energy performance of buildings. / Det är vanligt med betydande skillnader mellan beräknad och verklig energi användning inom byggnadssektorn. Dessa beräkningar utförs ofta med hjälp av byggnads energi simulerings (BES) program där användaren måste göra ett flertal antaganden om den aktuella byggnaden och dess brukare. Det beräknade resultatet kontrolleras ofta i ett senare skede mot byggnadens faktiska behov av energi från nätet. I denna kontroll är det dock svårt att särskilja den energimängd som byggnaden behöver och den del som är kopplad till brukaren. Detta gör att lärdomarna som kan dras i denna verifieringsprocess ofta blir begränsade. Mot denna bakgrund, har det huvudsakliga syftet med denna avhandling varit att utveckla metoder som kan användas för att extrahera information om byggnadens prestanda från mätdata. De extraherade parametrarna skall kunna användas för att öka noggrannheten i prediktioner från BES modeller och för att verifiera byggnaders prestanda. Regression analys har ofta använts i det senare fallet i avseendet att verifiera energi användning. Denna avhandling fokuserar på att utveckla regressionsmodeller som ger en hög noggrannhet i modellens parametrar som möjliggör att de bl.a. kan användas för att kalibrera BES modeller och på så sätt minska den vanligt förekommande diskrepans mellan simulerat och faktiskt utfall. En BES kalibrerings metodik har utvecklats baserat på skattning av transmissions förluster ovan mark, inklusive luftläckage (värmeförlust koefficient) samt värmeförlust till mark (G) med hjälp av regressionsanalys. Denna kalibrerings metodik uppvisar lovande egenskaper i form av noggranna prediktioner och användarvänlighet. Goda prediktioner är dock ingen garanti för att modellens ingående parametrar är fysikaliskt rimliga. Därför har regressionsmodellernas parametrar utvärderats i termer av robusthet och överensstämmelse med oberoende beräkningar. Dessutom har en metod utvecklats för att minimerar solens inverkan på regressionsskattningarna. Slutligen har vikten av kalibrerade simuleringar undersökts. Parametrarna i de framtagna regressionsmodellerna visade sig vara robusta, med årliga variationer i värmeförlust koefficient mindre än 2%. Ytterligare visade sig G var i god överensstämmelse med oberoende beräkningar. Robustheten i värmeförlustfaktorn baserad på data från perioder av betydande solstrålning konstaterades också att vara hög, med en genomsnittlig absolut avvikelse på 4.0%. Fördelen med kalibrerade modeller visade sig främst vara en ökad noggrannhet i prediktioner och modell parametrar i absoluta tal. Med ökad tillgång till mätdata och lovande resultat i denna avhandling är det författarens övertygelse att de presenterade regressionsmodellerna kommer att ha sin plats i framtida bedömnings metoder av byggnaders energiprestanda.
|
57 |
En extra fasadskivas effekt på energiprestandan hos ett flerbostadshus : En kontroll av Boverkets krav för nära-nollenergibyggnader till 2021 / An additional facade board's effect on the energy performance of an apartment building : A verification of the requirements for nearly zero-energy buildings for 2021Byström, Johan January 2017 (has links)
Increasing the energy efficiency of buildings and the introduction of more strict regulations are small but important steps towards a better climate. Today the housing and services sector stands for nearly 40 % of Sweden’s energy use. To push the development towards more energy efficient buildings in Europe, all the new buildings are required to be nearly zero-energy buildings by 2021. The purpose of this project was to evaluate whether the use of an additional facade board on an apartment building results in putting the energy performance within the current energy performance requirements, and also within the future requirements for nearly zero-energy buildings (NZEBs). The facade boards that were tested in this project are manufactured by Kingspan and Isover. The different boards were tested in thicknesses of 30 and 50 mm. The aim of the project was to calculate the building’s average heat transfer coefficient, specific energy use and primary energy number (PET) using COMSOL Multiphysics (CM) and IDA Indoor Climate and Energy (IDA ICE). The results were then about to be controlled against the current energy performance requirements together with the future requirements for NZEBs. The approach of this project consisted of the use of the softwares CM and IDA ICE. Because IDA ICE requires input of the thermal bridges of the building, CM was used to simulate these. This was done in order to achieve more reliable values than if an assumption was made or a standard value was used. A model of the building was then created in IDA ICE where its energy performance and average heat transfer coefficient were obtained from simulations over a normal year. The results obtained from the simulations in CM seemed credible as the use of the best facade board caused the values of the thermal bridges to end up at ”Good” according to IDA ICE’s built in scale. The simulations in IDA ICE showed that the specific energy use of the bulding without an additional facade board was 55,9 kWh/m2,year compared to Boverket’s current requirements at 80 kWh/m2,year. With the 50 mm Kingspan facade board, the board with the best result, the specific energy use was reduced to 53 kWh/m2,year, an improvement of 5,2 %. For the case without an additional facade board, the PET was 66,6 kWh/m2,year compared to the NZEBs requirements for 2018 at 85 kWh/m2,year together with the requirements for year 2021 at 65 kWh/m2,year. By using the 50 mm Kingspan facade board the PET was reduced to 63,3 kWh/m2,year, an improvement of 5,0 %. This resulted in putting the PET below the NZEB requirements for 2021. The facade board that resulted in the least energy savings, Isover P31 30 mm, had an improvement of 2,5 and 2,7 % for the specific energy use and the PET respectively. This facade board also resulted in putting the PET below the NZEB requirements for 2021. The most obvious conclusions that could be drawn from the simulations was that the specific energy use was below the current energy performance requirements with a great margin, both with and without an additional facadeboard. The PET was well below theNZEB requirements for 2018 and was also belowthe NZEB requirements for 2021 using any of the tested facade boards. The building’s average heat transfer coefficient was also well below both today’s energy performance requirements and the NZEB requirements for 2018 and 2021. A use of an additional facade board resulted in an energy saving of around 2,5 and 5 % in the worst and the best case, respectively. Due to the neglect of the ring wall under the bulding, the energy performance is most probably slightly high. However, this is not of utmost relevance since the company normally does not use this kind of solution for their standard buildings. Other uncertainties about the choice of airflows in property spaces may have influenced the results in the other direction. If there are any other obvious energy saving measures than using an additional facade board, these should be taken into account primarily as a facade board can only reduce the energy use marginally.
|
58 |
Rutiner för insamling av indata för energisimuleringsmodeller av skolbyggnader i Norra Sverige (Gävle) : En studie baserad på litteraturundersökning och analys av simuleringsmodellen av Stigslundsskolan i GävleMalysheva, Alexandra January 2016 (has links)
Energianvändning i befintlig byggnadsstock utgör en stor del av den totala energianvändningen i Sverige. I dagens läge är minskning av energianvändning av hög prioritet. Moderna simuleringsteknologier ger möjlighet till uppskattning av energianvändning i befintliga hus och utveckling av effektiviseringsåtgärder samt till beräkning av energiprestanda av byggnader i projekteringsfas. Korrekta indata och indatakällor avgör osäkerhetsnivå hos modellen. I detta sammanhang är det viktigt att utveckla rutiner för insamling av indata och specificera osäkerhetskällor. Arbetet fokuseras på utveckling av förslag till rutiner för insamling av indata för energisimuleringsmodeller av skolbyggnader i Norra Sverige, identifiering av termograferings roll vid renovering och ombyggnation samt känslighetsanalys vid byggnadssimulering och framställning av källhierarki. Projektet baserades på litteraturanalys och intervjuning av beträdande konstruktörer. Dessutom utreddes mätdata samlade i samband med renovering av Stigslundsskolan i Gävle och utarbetade simuleringsmodellen av den här skolan. Resultatet av denna studie beskriver rutiner för insamling av indata som omfattar byggnadens lokalisering och klimatdata; specifik konstruktionsdata för simulerad byggnad/del av byggnad; inomhustemperatur, luftflöde vid ventilation och infiltration samt interna värmekällor och data om innevånare och HVAC-system. Dessutom identifierades möjliga osäkerhetskällor och åtgärder för att höja noggrannhet hos modell. Källhierarki för indatakällor bestämdes vilket är angeläget vid modellkalibrering. Termografin av Stiglundsskolan visade att det finns ett antal bristfälliga delar i klimatskallet som ger upphov till värmeförluster, framför allt fönstren, entrépartierna och sockeln. Fönstren och dörrarna behöver bytas och bristande delar av stommen isoleras. Slutsatserna som kan göras utifrån detta projekt är att det bör väljas indata från källor som står överst i källhierarki för att få fram en modell med låg osäkerhetsnivå. I verkigheten vid simulering av skolbyggnader är hög precision sällan ett krav. I regel prioriteras det tid och bekostnad så länge osäkerheten ligger inom bestämda gränser.
|
59 |
Energikartläggning och förbättringsförslag för lättbetonghus i MellansverigeLindqvist, Simon January 2019 (has links)
Energieffektivisering inom bostäder är viktigt för att nå bestämda mål inom den Europeiska unionen, däremot kommer inte en bostadsägare att investera i energieffektiva åtgärder om de inte är lönsamma. Detta arbete kommer att undersöka energibesparingen och lönsamheten av att införa olika förbättringsåtgärder på ett lättbetonghus i Söderhamn vilket är studieobjektet i arbetet. Syftet är att undersöka byggnadens energibalans och hur olika åtgärder påverkar energianvändningen, upplevelsen av inomhusklimatet och driftkostnaden. Studieobjektet genomgick en energikartläggning för att sedan undersöka olika förbättringsåtgärder. Kartläggningen var utförd med simuleringsverktyget IDA Indoor Climate and Energy för att konstruera en referensmodell som inkluderade alla insamlade data från studieobjektet. Tidigare forskningsstudier inom området användes som vägledning till val av förbättringsåtgärder på studieobjektet. Energiförändring utav åtgärderna användes sedan i en kostnadskalkyl som var utförd med annuitetsmetoden för att åstadkomma den årliga kostnadsbesparingen vid installation för var och en av åtgärderna. Koldioxidhalten mättes i början av projektet för att undersöka luftkvalitén i byggnaden och om den behöver åtgärdas. Studieobjektets primärenergital blev 148 kWh/(m2·år) vilket var 43 % högre än Boverkets byggreglers energikrav för småhus. Byggnadens värmebehov var 18 209 kWh/år och kunde minskas med 42,7 % vid installation av ett åtgärdspaket och då var primärenergitalet 109 kWh/(m2·år). De tre mest energieffektiva åtgärder var att tilläggsisolera ytterväggar, isolera taket och minskning av inomhustemperaturen. Den mest kostnadseffektiva av enskilda åtgärder var att isolera taket ifall övervåningsutrymmet utnyttjades och att isolera källaren var den minst lönsamma av besparingsåtgärderna. Ventilationsproblemet i byggnaden kunde åtgärdas med installation av ett FTX-system som använder luftflödet 0,35 l/(s·m2) och 0,1 l/(s·m2) när inga personer är i byggnaden. Att komplettera uppvärmningen med en värmepump var en lönsam investering men ökade primärenergianvändningen och gör byggnadens energisystem mer komplext. Det rekommenderas att isolera klart taket ifall boende har intresse av att utnyttja övervåningsutrymmet. / Energy efficiency in dwellings is crucial in reaching goals set within the European Union, but homeowners won’t invest in energy-efficient measures unless it is cost-effective. This study is going to investigate the energy savings and cost-effectiveness of different renovating measurements for a light-concreate house in Söderhamn. The aim is to investigate the building’s energy balance and how renovating measurements affect the energy use, the indoor climate and the operating cost. An energy audit was performed on the building for the purpose of investigating the various measurements. The audit was achieved with IDA Indoor Climate and Energy simulation tool, which was used to construct a reference model that included data from the studied building. Previous research in the field were used for selecting the renovating measurements used in this study. The results of the simulations were then used to carry out a cost analysis with the equivalent annual cost method to evaluate the annual cost saving for each measurement. The carbon dioxide level was measured in the beginning of the project to investigate the indoor air quality in the building and if it needed to be addressed. The primary energy use of the building was 148 kWh/(m2·year), which was 43 % more than Building regulations energy requirements for single-family households. The heat demand was 18 209 kWh/year and could be reduced by 42,7 % when installing a created renovation package and resulting in the primary energy use of 109 kWh/(m2·year). The three most energy efficient measures were adding extra insulation on external walls, insulating the roof and decreasing the indoor temperature level. The most cost-effective measure was to insulate the roof if the upstairs area were heated and insulate the basement walls was the least cost-effective of the energy efficient measures. The ventilation problem was fixed with installation of an FTX system that switched to an air flow of 0,35 l/(s·m2) to 0,1 l/(s·m2) during unoccupancy. Complementing the heat demand with a heat pump was a cost-effective measure but did increase the primary energy use. It is recommended to finish isolating the roof if the family is interested in using the unoccupied space.
|
60 |
Språkförskolan : En jämförelse mellan CAV- och VAV-system / Språkförskolan : A comparison between CAV and VAV systemsLundberg, Mattias January 2019 (has links)
I denna rapport undersöks lönsamheten och energibesparingen av att byta ut befintligt CAV-system mot ett VAV-system i Språkförskolan som är belägen i Umeå på Marielund/Olofsdal området. Projektet utförs i samarbete med Tyréns i Umeå som är ett konsultföretag och ett av de ledande företagen inom samhällsbyggnad i Sverige. Med hjälp av IDA ICE, som är ett energiberäkningsprogram, kunde en modell av förskolan byggas i 3D utifrån ritningar och inställningar såsom, antal personer, belysning, ventilationssystem och luftflöden, inomhustemperatur och så vidare, justeras för att vara så lik den verkliga byggnaden som möjligt. När alla värden var satta gjordes en energisimulering i programmet som ger mängder av värden som till exempel årlig energiförbrukning för olika system i byggnaden och värmeförluster genom byggnadens klimatskal. Filen duplicerades och CAV-systemet byttes ut mot ett VAV-system och ytterligare en simulering gjordes. Utifrån simuleringsresultaten jämfördes energiförbrukning för värmesystemet och fläktarna i de båda fallen. I AutoCAD ritades en ventilationslösning med VAV-systemet i en avdelning av förskolan, med tillhörande VAV-spjäll som automatiskt justerar luftflödet efter den uppmätta belastningen i rummet. CAV-systemet justerar inte luftflödet utan går på max dimensionerat flöde hela tiden vilket inte är energieffektivt i rum med varierande belastning (människor). Resultaten från simuleringarna visade att med styrd ventilation sjönk den totala årliga energiförbrukningen med 20 953 kWh vilket är en procentuell sänkning på 26%. Av denna energibesparingen stod värmesystemet för 67% och fläktarna för 33%. Investeringskostnaden för att installera VAV-spjäll i byggnaden är 192 000 SEK och utifrån den årliga besparingen hamnar återbetalningstiden på 19,7 år. Med en livslängd på 25–30 år anses en investering av VAV-systemet vara lönsam. / This report examines the profitability and energy-saving potential of replacing the existing CAV system with a VAV system in Språkförskolan, which is located in Umeå in the Marielund/Olofsdal area. The project is carried out in collaboration with Tyréns in Umeå, which is a consulting company and one of the leading companies in urban management in Sweden. With the help of IDA ICE, which is an energy calculation program, a model of the preschool could be built in 3D based on floor plan drawings and settings such as the number of people, lighting, ventilation systems and air flows, indoor temperature and so on adjusted so as to be as similar to the actual building as possible. When all values were set, an energy simulation was made in the program, which gave a lot of values such as annual energy consumption for different systems in the building and heat losses through the building envelope. The file was duplicated, and the CAV system was replaced by a VAV system and another simulation was started. Based on the simulation results, energy consumption for the heating system and the fans was compared in both cases. In AutoCAD, a ventilation solution was designed with the VAV system in one department of the preschool, with associated VAV dampers that automatically adjust the airflow according to the measured load in the room. The CAV system does not adjust the airflow but goes to the maximum dimensioned flow all the time which is not energy efficient in rooms with varying loads (people). The results from the simulations showed that with variable ventilation, the total annual energy consumption decreased by 20 953 kWh, which is a reduction of 26%. Of this energy saving, the heating system accounted for 67% and the fans for 33%. The investment cost for installing VAV dampers in the building is SEK 192,000, and based on the annual savings the payback time was calculated to 19,7 years. With a lifetime of 25-30 years, an investment of the VAV system is considered to be profitable.
|
Page generated in 0.0377 seconds