• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 126
  • 20
  • Tagged with
  • 326
  • 326
  • 191
  • 178
  • 96
  • 83
  • 71
  • 70
  • 69
  • 64
  • 60
  • 58
  • 54
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Modélisation de l’ablation radiofréquence pour la planification de la résection de tumeurs abdominales / Computational modeling of radiofrequency ablation for the planning and guidance of abdominal tumor treatment

Audigier, Chloé 14 October 2015 (has links)
L'ablation par radiofréquence (ARF) de tumeurs abdominales est rendue difficile par l’influence des vaisseaux sanguins et les variations de la conductivité thermique, compliquant la planification spécifique à un patient donné. En fournissant des outils prédictifs, les modèles biophysiques pourraient aider les cliniciens à planifier et guider efficacement la procédure. Nous introduisons un modèle mathématique détaillé des mécanismes impliqués dans l’ARF des tumeurs du foie comme la diffusion de la chaleur et la nécrose cellulaire. Il simule l’étendue de l’ablation à partir d’images médicales, d’après lesquelles des modèles personnalisés du foie, des vaisseaux visibles et des tumeurs sont segmentés. Dans cette thèse, une nouvelle approche pour résoudre ces équations basée sur la méthode de Lattice Boltzmann est introduite. Le modèle est d’abord évalué sur des données de patients qui ont subi une ARF de tumeurs du foie. Ensuite, un protocole expérimental combinant des images multi-modales, anatomiques et fonctionnelles pré- et post-opératoires, ainsi que le suivi de la température et de la puissance délivrée pendant l'intervention est présenté. Il permet une validation totale du modèle qui considère des données les plus complètes possibles. Enfin, nous estimons automatiquement des paramètres personnalisés pour mieux prédire l'étendu de l’ablation. Cette stratégie a été validée sur 7 ablations dans 3 cas cliniques. A partir de l'étude préclinique, la personnalisation est améliorée en comparant les simulations avec les mesures faites durant la procédure. Ces contributions ont abouti à des résultats prometteurs, et ouvrent de nouvelles perspectives pour planifier et guider l’ARF. / The outcome of radiofrequency ablation (RFA) of abdominal tumors is challenged by the presence of blood vessels and time-varying thermal conductivity, which make patient-specific planning extremely difficult. By providing predictive tools, biophysical models may help clinicians to plan and guide the procedure for an effective treatment. We introduce a detailed computational model of the biophysical mechanisms involved in RFA of hepatic tumors such as heat diffusion and cellular necrosis. It simulates the extent of ablated tissue based on medical images, from which patient-specific models of the liver, visible vessels and tumors are segmented. In this thesis, a new approach for solving these partial differential equations based on the Lattice Boltzmann Method is introduced. The model is first evaluated against clinical data of patients who underwent RFA of liver tumors. Then, a comprehensive pre-clinical experiment that combines multi-modal, pre- and post-operative anatomical and functional images, as well as the interventional monitoring of the temperature and delivered power is presented. This enables an end-to-end validation framework that considers the most comprehensive data set for model validation. Then, we automatically estimate patient-specific parameters to better predict the ablated tissue. This personalization strategy has been validated on 7 ablations from 3 clinical cases. From the pre-clinical study, we can go further in the personalization by comparing the simulated temperature and delivered power with the actual measurements during the procedure. These contributions have led to promising results, and open new perspectives in RFA guidance and planning.
292

Surgical tools localization in 3D ultrasound images / Localisation d'outils thérapeutiques de forme linéaire par imagerie ultrasonore 3D

Uhercik, Marian 20 April 2011 (has links)
Cette thèse traite de la détection automatique d’outils chirurgicaux de géométrie linéaire tels que des aiguilles ou des électrodes en imagerie ultrasonore 3D. Une localisation précise et fiable est nécessaire pour des interventions telles que des biopsies ou l’insertion d’électrode dans les tissus afin d’enregistrer leur activité électrique (par exemple dans le cortex cérébral). Le lecteur est introduit aux bases de l’imagerie ultrasonore (US) médicale. L’état de l’art des méthodes de localisation est rapporté. Un grand nombre de méthodes sont basées sur la projection comme la transformation de Hough ou la Projection Intégrale Parallèle (PIP). Afin d’améliorer l’implantation des méthodes PIP connues pour être assez lentes, nous décrivons une possible accélération par approche multirésolution. Nous proposons d’utiliser une méthode d’ajustement de modèle utilisant une approche RANSAC et une optimization locale. C’est une méthode rapide permettant un traitement temps réel et qui a l’avantage d’être très robuste en présence d’autres structures fortement échogènes dans le milieu environnant. Nous proposons deux nouveaux modèles d’apparence et de forme de l’outil dans les images US 3D. La localisation de l’outil peut être améliorée en exploitant son aspect tubulaire. Nous proposons un modèle d’outil utilisant un filtrage rehausseur de ligne que nous avons incorporé dans le schéma de recherche de modèle. La robustesse de cet algorithme de localisation est améliorée au prix d’un temps additionnel de pré-traitement. La localisation temps-réel utilisant le modèle de forme est démontrée par une implantation sur l’échographe Ultrasonix RP. Toutes les méthodes proposées on été testée sur des données de simulation US, des données de fantômes (qui sont des tissus synthétiques imitant les tissus biologiques) ainsi que sur des données réelles de biopsie du sein. Les méthodes proposées ont montré leur capacité à produire des résultats similaires en terme de précision mais en limitant d’avantage le nombre d’échecs de détection par rapport aux méthodes de l’état de l’art basées sur les projections. / This thesis deals with automatic localization of thin surgical tools such as needles or electrodes in 3D ultrasound images. The precise and reliable localization is important for medical interventions such as needle biopsy or electrode insertion into tissue. The reader is introduced to basics of medical ultrasound (US) imaging. The state of the art localization methods are reviewed in the work. Many methods such as Hough transform (HT) or Parallel Integral Projection (PIP) are based on projections. As the existing PIP implementations are relatively slow, we suggest an acceleration by using a multiresolution approach. We propose to use model fitting approach which uses randomized sample consensus (RANSAC) and local optimization. It is a fast method suitable for real-time use and it is robust with respect to the presence of other high-intensity structures in the background. We propose two new shape and appearance models of tool in 3D US images. Tool localization can be improved by exploiting its tubularity. We propose a tool model which uses line filtering and we incorporated it into the model fitting scheme. The robustness of such localization algorithm is improved at the expense of additional time for pre-processing. The real-time localization using the shape model is demonstrated by implementation on the 3D US scanner Ultrasonix RP. All proposed methods were tested on simulated data, phantom US data (a replacement for a tissue) and real tissue US data of breast with biopsy needle. The proposed methods had comparable accuracy and the lower number of failures than the state of the art projection based methods.
293

Estimation du mouvement bi-dimensionnel de la paroi artérielle en imagerie ultrasonore par une approche conjointe de segmentation et de speckle tracking / Estimation of the bi-dimensional motion of the arterial wall in ultrasound imaging with a combined approach of segmentation and speckle tracking

Zahnd, Guillaume 10 December 2012 (has links)
Ce travail de thèse est axé sur le domaine du traitement d'images biomédicales. L'objectif de notre étude est l'estimation des paramètres traduisant les propriétés mécaniques de l'artère carotide in vivo en imagerie échographique, dans une optique de détection précoce de la pathologie cardiovasculaire. L'analyse du mouvement longitudinal des tissus de la paroi artérielle, i.e. dans la même direction que le flux sanguin, représente la motivation majeure de ce travail. Les trois contributions principales proposées dans ce travail sont i) le développement d'un cadre méthodologique original et semi-automatique, dédié à la segmentation et à l'estimation du mouvement de la paroi artérielle dans des séquences in vivo d'images ultrasonores mode-B, ii) la description d'un protocole de génération d'une référence, faisant intervenir les opérations manuelles de plusieurs experts, dans le but de quantifier la précision des résultats de notre méthode malgré l'absence de vérité terrain inhérente à la modalité échographique, et iii) l'évaluation clinique de l'association entre les paramètres mécaniques et dynamiques de la paroi carotidienne et les facteurs de risque cardiovasculaire dans le cadre de la détection précoce de l'athérosclérose. Nous proposons une méthode semi-automatique, basée sur une approche conjointe de segmentation des contours de la paroi et d'estimation du mouvement des tissus. L'extraction de la position des interfaces est réalisée via une approche spécifique à la structure morphologique de la carotide, basée sur une stratégie de programmation dynamique exploitant un filtrage adapté. L'estimation du mouvement est réalisée via une méthode robuste de mise en correspondance de blocs (block matching), basée sur la connaissance du déplacement a priori ainsi que sur la mise à jour temporelle du bloc de référence par un filtre de Kalman spécifique. La précision de notre méthode, évaluée in vivo, correspond au même ordre de grandeur que celle résultant des opérations manuelles réalisées par des experts, et reste sensiblement meilleure que celle obtenue avec deux autres méthodes traditionnelles (i.e. une implémentation classique de la technique de block matching et le logiciel commercial Velocity Vector Imaging). Nous présentons également quatre études cliniques réalisées en milieu hospitalier, où nous évaluons l'association entre le mouvement longitudinal et les facteurs de risque cardiovasculaire. Nous suggérons que le mouvement longitudinal, qui représente un marqueur de risque émergent et encore peu étudié, constitue un indice pertinent et complémentaire aux marqueurs traditionnels dans la caractérisation de la physiopathologie artérielle, reflète le niveau de risque cardiovasculaire global, et pourrait être bien adapté à la détection précoce de l'athérosclérose. / This thesis is focused on the domain of bio-medical image processing. The aim of our study is to assess in vivo the parameters traducing the mechanical properties of the carotid artery in ultrasound imaging, for early detection of cardiovascular diseases. The analysis of the longitudinal motion of the arterial wall tissues, i.e. in the same direction as the blood flow, represents the principal motivation of this work. The three main contributions proposed in this work are i) the development of an original and semi-automatic methodological framework, dedicated to the segmentation and motion estimation of the arterial wall in in vivo ultrasound B-mode image sequences, ii) the description of a protocol aiming to generate a reference, involving the manual tracings of several experts, in the objective to quantify the accuracy of the results of our method despite the absence of ground truth inherent to ultrasound imaging, and iii) the clinical evaluation of the association between the mechanical and dynamical parameters of the arterial wall and the cardiovascular risk factors, for early detection of atherosclerosis. We propose a semi-automatic method, based on a combined approach of wall segmentation and tissues motion estimation. The extraction on the interfaces position is realized via an approach specific to the morphological structure of the carotid artery, based on a strategy of dynamic programming using a matched filter. The motion estimation is performed via a robust block matching method, based on the a priori knowledge of the displacement as well as the temporal update of the reference block with a specific Kalman filter. The accuracy of our method, evaluated in vivo, corresponds to the same order of magnitude as the one resulting from the manual operations performed by experts, and is significantly higher than the one obtained from two other classical methods (i.e. a classical implementation of the block matching technique, and the VVI commercial software). We also present four clinical studies, and we evaluate the association between longitudinal motion and cardiovascular risk factors. We suggest that the longitudinal motion, which represents an emerging cardiovascular risk marker that has been only few studied yet, constitutes a pertinent and complementary marker aiming at the characterization of arterial physio-pathology, traduces the overall cardiovascular risk level, and could be well suited to the early detection of the atherosclerosis.
294

Biopsy needles localization and tracking methods in 3d medical ultrasound with ROI-RANSAC-KALMAN / Méthodes de localisation et de suivi d’aiguille de biopsie en échographie 3D avec ROI-RANSAC-Kalman

Zhao, Yue 05 February 2014 (has links)
Dans les examens médicaux et les actes de thérapie, les techniques minimalement invasives sont de plus en plus utilisées. Des instruments comme des aiguilles de biopsie, ou des électrodes sont utilisés pour extraire des échantillons de cellules ou pour effectuer des traitements. Afin de réduire les traumatismes et de faciliter le suivi visuelle de ces interventions, des systèmes d’assistance par imagerie médicale, comme par exemple, par l’échographie 2D, sont utilisés dans la procédure chirurgicale. Nous proposons d’utiliser l’échographie 3D pour faciliter la visualisation de l’aiguille, mais en raison de l’aspect bruité de l’image ultrasonore (US) et la grande quantité de données d’un volume 3D, il est difficile de trouver l’aiguille de biopsie avec précision et de suivre sa position en temps réel. Afin de résoudre les deux principaux problèmes ci-dessus, nous avons proposé une méthode basée sur un algorithme RANSAC et un filtre de Kalman. De même l’étude est limitée à une région d’intérêt (ROI) pour obtenir une localisation robuste et le suivi de la position de l’aiguille de biopsie en temps réel. La méthode ROI-RK se compose de deux étapes: l’étape d’initialisation et l’étape de suivi. Dans la première étape, une stratégie d’initialisation d’une ROI en utilisant le filtrage de ligne à base de matrice de Hesse est mise en œuvre. Cette étape permet de réduire efficacement le bruit de granularité du volume US, et de renforcer les structures linéaires telles que des aiguilles de biopsie. Dans la deuxième étape, après l’initialisation de la ROI, un cycle de suivi commence. L’algorithme RK localise et suit l’aiguille de biopsie dans une situation dynamique. L’algorithme RANSAC est utilisé pour estimer la position des micro-outils et le filtrage de Kalman permet de mettre à jour la région d’intérêt et de corriger la localisation de l’aiguille. Une stratégie d’estimation de mouvement est également appliquée pour estimer la vitesse d’insertion de l’aiguille de biopsie. Des volumes 3D US avec un fond inhomogène ont été simulés pour vérifier les performances de la méthode ROI-RK. La méthode a été testée dans des conditions variables, telles que l’orientation d’insertion de l’aiguille par rapport à l’axe de la sonde et le niveau de contraste (CR). La précision de la localisation est de moins de 1 mm, quelle que soit la direction d’insertion de l’aiguille. Ce n’est que lorsque le CR est très faible que la méthode proposée peut échouer dans le suivi d’une structure incomplète de l’aiguille. Une autre méthode, utilisant l’algorithme RANSAC avec apprentissage automatique a été proposée. Cette méthode vise à classer les voxels en se basant non seulement sur l’intensité, mais aussi sur les caractéristiques de la structure de l’aiguille de biopsie. Les résultats des simulations montrent que l’algorithme RANSAC avec apprentissage automatique peut séparer les voxels de l’aiguille et les voxels de tissu de fond avec un CR faible. / In medical examinations and surgeries, minimally invasive technologies are getting used more and more often. Some specially designed surgical instruments, like biopsy needles, or electrodes are operated by radiologists or robotic systems and inserted in human’s body for extracting cell samples or delivering radiation therapy. To reduce the risk of tissue injury and facilitate the visual tracking, some medical vision assistance systems, as for example, ultrasound (US) systems can be used during the surgical procedure. We have proposed to use the 3D US to facilitate the visualization of the biopsy needle, however, due to the strong speckle noise of US images and the large calculation load involved as soon as 3D data are involved, it is a challenge to locate the biopsy needle accurately and to track its position in real time in 3D US. In order to solve the two main problems above, we propose a method based on the RANSAC algorithm and Kalman filter. In this method, a region of interest (ROI) has been limited to robustly localize and track the position of the biopsy needle in real time. The ROI-RK method consists of two steps: the initialization step and the tracking step. In the first step, a ROI initialization strategy using Hessian based line filter measurement is implemented. This step can efficiently reduce the speckle noise of the ultrasound volume, and enhance line-like structures as biopsy needles. In the second step, after the ROI is initialized, a tracking loop begins. The RK algorithm can robustly localize and track the biopsy needles in a dynamic situation. The RANSAC algorithm is used to estimate the position of the micro-tools and the Kalman filter helps to update the ROI and auto-correct the needle localization result. Because the ROI-RK method is involved in a dynamic situation, a motion estimation strategy is also implemented to estimate the insertion speed of the biopsy needle. 3D US volumes with inhomogeneous background have been simulated to evaluate the performance of the ROI-RK method. The method has been tested under different conditions, such as insertion orientations angles, and contrast ratio (CR). The localization accuracy is within 1 mm no matter what the insertion direction is. Only when the CR is very low, the proposed method could fail to track because of an incomplete ultrasound imaging of the needle. Another methodology, i.e. RANSAC with machine learning (ML) algorithm has been presented. This method aims at classifying the voxels not only depending on their intensities, but also using some structure features of the biopsy needle. The simulation results show that the RANSAC with ML algorithm can separate the needle voxels and background tissue voxels with low CR.
295

Estimation du mouvement de la paroi carotidienne en imagerie ultrasonore par une approche de marquage ultrasonore / Motion estimation of the carotid wall in ultrasound imaging using transverses oscillations

Salles, Sébastien 02 October 2015 (has links)
Ce travail de thèse est axé sur le domaine du traitement d’images biomédicales. L’objectif de notre étude est l’estimation des paramètres traduisant les propriétés mécaniques de l’artère carotide in vivo en imagerie échographique, dans une optique de détection précoce des pathologies cardiovasculaires. L’étude des comportements dynamiques de l’artère pour le dépistage précoce de l’athérosclérose constitue à ce jour une piste privilégiée. Cependant, malgré les avancées récentes, l’estimation du mouvement de la paroi carotidienne reste toujours difficile, notamment dans la direction longitudinale (direction parallèle au vaisseau). L’élaboration d’une méthode innovante permettant d’étudier le mouvement de la paroi carotidienne constitue la principale motivation de ce travail de thèse. Les trois contributions principales proposées dans ce travail sont i) le développement, la validation, et l’évaluation clinique d’une méthode originale d’estimation de mouvement 2D adaptée au mouvement de la paroi carotidienne, ii) la validation en simulation, et expérimentale de l’extension à la 3D de la méthode d’estimation proposée, et iii) l’évaluation expérimentale de la méthode proposée, en imagerie ultrasonore ultra-rapide, dans le cadre de l’estimation locale de la vitesse de l’onde de pouls. Nous proposons une méthode d’estimation de mouvement combinant un marquage ultrasonore dans la direction latérale, et un estimateur de mouvement basé sur la phase des images ultrasonores. Le marquage ultrasonore est réalisé par l’intermédiaire d’oscillations transverses. Nous proposons deux approches différentes pour introduire ces oscillations transverses, une approche classique utilisant une fonction de pondération spécifique, et une approche originale par filtrage permettant de contrôler de manière optimale leurs formations. L’estimateur de mouvement proposé utilise les phases analytiques des images radiofréquences, extraites par l’approche de Hahn. Ce travail de thèse montre que la méthode proposée permet une estimation de mouvement plus précise dans la direction longitudinale, et plus généralement dans les directions perpendiculaires au faisceau ultrasonore, que celle obtenue avec d’autres méthodes plus traditionnelles. De plus, l’évaluation expérimentale de la méthode sur des séquences d’images ultrasonores ultra-rapides issues de fantômes de carotide, a permis l’estimation locale de la vitesse de propagation de l’onde de pouls, la mise en évidence de la propagation d’un mouvement longitudinal et enfin l’estimation du module de Young des vaisseaux. / This work focuses on the processing of biomedical images. The aim of our study is to estimate the mechanical properties of the carotid artery in vivo using ultrasound imaging, in order to detect cardiovascular diseases at an early stage. Over the last decade, researchers have shown interest in studying artery wall motion, especially the motion of the carotid intima-media complex in order to demonstrate its significance as a marker of Atherosclerosis. However, despite recent progress, motion estimation of the carotid wall is still difficult, particularly in the longitudinal direction (direction parallel to the probe). The development of an innovative method for studying the movement of the carotid artery wall is the main motivation of this thesis. The three main contributions proposed in this work are i) the development, the validation, and the clinical evaluation of a novel method for 2D motion estimation of the carotid wall, ii) the development, the simulation and the experimental validation of the 3D extension of the estimation method proposed, and iii) the experimental evaluation of the 2D proposed method in ultra-fast imaging, for the estimation of the local pulse wave velocity. We propose a motion estimation method combining tagging of the ultrasound images, and a motion estimator based on the phase of the ultrasound images. The ultrasonic tagging is produced by means of transverse oscillations. We present two different approaches to introduce these transverses oscillations, a classic approach using a specific apodization function and a new approach based on filtering. The proposed motion estimator uses the 2D analytical phase of RF images using the Hahn approach. This thesis work shows that, compared with conventional methods, the proposed approach provides more accurate motion estimation in the longitudinal direction, and more generally in directions perpendicular to the beam axis. Also, the experimental evaluation of our method on ultra-fast images sequences from carotid phantom was used to validate our method regarding the estimation of the pulse wave velocity, the Young’s modulus of the vessels wall, and the propagation of a longitudinal movement.
296

Feature selection based segmentation of multi-source images : application to brain tumor segmentation in multi-sequence MRI / Segmentation des images multi-sources basée sur la sélection des attributs : application à la segmentation des tumeurs cérébrales en IRM

Zhang, Nan 12 September 2011 (has links)
Les images multi-spectrales présentent l’avantage de fournir des informations complémentaires permettant de lever des ambigüités. Le défi est cependant comment exploiter ces informations multi-spectrales efficacement. Dans cette thèse, nous nous focalisons sur la fusion des images multi-spectrales en extrayant des attributs les plus pertinents en vue d’obtenir la meilleure segmentation possible avec le moindre coût de calcul possible. La classification par le Support Vector Machine (SVM), combinée avec une méthode de sélection d’attributs, est proposée. Le critère de sélection est défini par la séparabilité des noyaux de classe. S’appuyant sur cette classification SVM, un cadre pour suivre l’évolution est proposé. Il comprend les étapes suivantes : apprentissage des tumeurs cérébrales et sélection des attributs à partir du premier examen IRM (imagerie par résonance magnétique) ; segmentation automatique des tumeurs dans de nouvelles images en utilisant une classification basée sur le SVM multi-noyaux ; affiner le contour des tumeurs par une technique de croissance de région ; effectuer un éventuel apprentissage adaptatif. L’approche proposée a été évaluée sur 13 patients avec 24 examens, y compris 72 séquences IRM et 1728 images. En comparant avec le SVM traditionnel, Fuzzy C-means, le réseau de neurones, et une méthode d’ensemble de niveaux, les résultats de segmentation et l’analyse quantitative de ces résultats démontrent l’efficacité de l’approche proposée. / Multi-spectral images have the advantage of providing complementary information to resolve some ambiguities. But, the challenge is how to make use of the multi-spectral images effectively. In this thesis, our study focuses on the fusion of multi-spectral images by extracting the most useful features to obtain the best segmentation with the least cost in time. The Support Vector Machine (SVM) classification integrated with a selection of the features in a kernel space is proposed. The selection criterion is defined by the kernel class separability. Based on this SVM classification, a framework to follow up brain tumor evolution is proposed, which consists of the following steps: to learn the brain tumors and select the features from the first magnetic resonance imaging (MRI) examination of the patients; to automatically segment the tumor in new data using a multi-kernel SVM based classification; to refine the tumor contour by a region growing technique; and to possibly carry out an adaptive training. The proposed system was tested on 13 patients with 24 examinations, including 72 MRI sequences and 1728 images. Compared with the manual traces of the doctors as the ground truth, the average classification accuracy reaches 98.9%. The system utilizes several novel feature selection methods to test the integration of feature selection and SVM classifiers. Also compared with the traditional SVM, Fuzzy C-means, the neural network and an improved level set method, the segmentation results and quantitative data analysis demonstrate the effectiveness of our proposed system.
297

Imaging the bone cell network with nanoscale synchrotron computed tomography / Imagerie du réseau cellulaire osseux par nano-tomographie synchrotron

Joita Pacureanu, Alexandra 19 January 2012 (has links)
Les ostéocytes sont les plus nombreuses cellules du tissu osseux, enterrées dans la matrice osseuse. Elles sont interconnectées par des dendrites, situées dans des canaux appelés canalicules. Les lacunes ostéocytaires, les cavités dans lesquelles les cellules sont logées, avec les canalicules forment un réseau de communication à travers la matrice osseuse, permettant le transport des nutriments et des signaux. Ces cellules, considérées d’abord passives, ont révélé dernièrement leur rôle en tant que cellules mécanosensitives et orchestratrices du remodelage osseux. Malgré les progrès récents des techniques d'imagerie, aucune méthode disponible ne fournit une évaluation 3D adéquate du réseau lacuno-canaliculaire (LCN). Les objectifs de cette thèse ont porté sur l’imagerie 3D du LCN par tomographie synchrotron à rayons X (SR-CT), et le développement d’outils de détection et segmentation 3D de ce réseau cellulaire, afin de le quantifier et analyser. Nous démontrons la faisabilité de la SR-CT en géométrie parallèle pour imager le LCN dans le tissu osseux (voxel~300nm). Cette technique fournit des données 3D sur la morphologie du réseau cellulaire et aussi sur la composition de la matrice osseuse. Comparée aux méthodes d'imagerie 3D existantes, la SR-CT permet l'imagerie d’un volume de tissu beaucoup plus important, d'une manière plus simple et rapide. Cela rend possible l'étude de séries de spécimens afin d'obtenir des conclusions biomédicales. Nous proposons aussi l'utilisation de l’holotomographie divergente synchrotron, pour imager l'ultrastructure du tissu osseux (voxel~60nm). La reconstruction d'image fournit des cartes de phase, obtenues après application d'un algorithme d’inversion de phase adéquat. Cette technique a permis l'évaluation du réseau cellulaire avec une précision plus élevée et de visualiser, pour la première fois en 3D, l'organisation des fibres de collagène. Afin d'obtenir des résultats quantitatifs sur la géométrie du réseau cellulaire, celui doit être segmenté. À cause des limitations de la résolution spatiale, les canalicules apparaissent comme de structures tubulaires très fines (diamètre 1-3 voxels). Ceci, combiné avec le bruit, le faible contraste et la grande taille des images (8Go), rendent la segmentation difficile. Nous proposons une méthode de filtrage non-linéaire 3D, basée sur le rehaussement des structures linéaires, combiné avec un filtrage bilatéral. Cela permet une amélioration de la détection des canalicules, la réduction du bruit de fond et de la préservation des lacunes cellulaires. Pour la segmentation d'images, nous avons développé une méthode basée sur la croissance de région variationnelle. Nous proposons deux expressions de fonctionnelles d'énergie à minimiser, afin de détecter la structure souhaitée. Des résultats quantitatifs préliminaires sont obtenus à partir d’une analyse en composantes connexes sur des échantillons humaines et des observations relatives au réseau ostéocytaire sont présentés. / The osteocytes are the most abundant and longest living bone cells, embedded in the bone matrix. They are interconnected with each other through dendrites, located in slender canals called canaliculi. The osteocyte lacunae, cavities in which the cells are located, together with the canaliculi form a communication network throughout the bone matrix, permitting transport of nutrients, waste and signals. These cells were firstly considered passive, but lately it has become increasingly clear their role as mechanosensory cells and orchestrators of bone remodeling. Despite recent advances in imaging techniques, none of the available methods can provide an adequate 3D assessment of the lacuno-canalicular network (LCN). The aims of this thesis were to achieve 3D imaging of the LCN with synchrotron radiation X-ray computed tomography (SR-CT) and to develop tools for 3D detection and segmentation of this cell network, leading towards automatic quantification of this structure. We demonstrate the feasibility of parallel beam SR-CT to image in 3D the LCN (voxel~300 nm). This technique can provide data on both the morphology of the cell network and the composition of the bone matrix. Compared to the other 3D imaging methods, this enables imaging of tissue covering a number of cell lacunae three orders of magnitude greater, in a simpler and faster way. This makes possible the study of sets of specimens in order to reach biomedical conclusions. Furthermore, we propose the use of divergent holotomography, to image the ultrastructure of bone tissue (voxel~60 nm). The image reconstruction provides phase maps, obtained after the application of a suitable phase retrieval algorithm. This technique permits assessment of the cell network with higher accuracy and it enables the 3D organization of collagen fibres organization in the bone matrix, to be visualized for the first time. In order to obtain quantitative parameters on the geometry of the cell network, this has to be segmented. Due to the limitations in spatial resolution, canaliculi appear as 3D tube-like structures measuring only 1-3 voxels in diameter. This, combined with the noise, the low contrast and the large size of each image (8 GB), makes the segmentation a difficult task. We propose an image enhancement method, based on a 3D line filter combined with bilateral filtering. This enables improvement in canaliculi detection, reduction of the background noise and cell lacunae preservation. For the image segmentation we developed a method based on variational region growing. We propose two expressions for energy functionals to minimize in order to detect the desired structure, based on the 3D line filter map and the original image. Preliminary quantitative results on human femoral samples are obtained based on connected components analysis and a few observations related to the bone cell network and its relation with the bone matrix are presented.
298

Évaluation de la correction du mouvement respiratoire sur la détection des lésions en oncologie TEP / Motion correction evaluation on the detectability of lesions in PET oncology

Marache-Francisco, Simon 14 February 2012 (has links)
La tomographie par émission de positons (TEP) est une méthode d’imagerie clinique en forte expansion dans le domaine de l’oncologie. De nombreuses études cliniques montrent que la TEP permet, d’une part de diagnostiquer et caractériser les lésions cancéreuses à des stades plus précoces que l’imagerie anatomique conventionnelle, et d’autre part d’évaluer plus rapidement la réponse au traitement. Le raccourcissement du cycle comprenant le diagnostic, la thérapie, le suivi et la réorientation thérapeutiques contribue à augmenter le pronostic vital du patient et maîtriser les coûts de santé. La durée d’un examen TEP ne permet pas de réaliser une acquisition sous apnée. La qualité des images TEP est par conséquent affectée par les mouvements respiratoires du patient qui induisent un flou dans les images. Les effets du mouvement respiratoire sont particulièrement marqués au niveau du thorax et de l’abdomen. Plusieurs types de méthode ont été proposés pour corriger les données de ce phénomène, mais elles demeurent lourdes à mettre en place en routine clinique. Des travaux récemment publiés proposent une évaluation de ces méthodes basée sur des critères de qualité tels que le rapport signal sur bruit ou le biais. Aucune étude à ce jour n’a évalué l’impact de ces corrections sur la qualité du diagnostic clinique. Nous nous sommes focalisés sur la problématique de la détection des lésions du thorax et de l'abdomen de petit diamètre et faible contraste, qui sont les plus susceptibles de bénéficier de la correction du mouvement respiratoire en routine clinique. Nos travaux ont consisté dans un premier temps à construire une base d’images TEP qui modélisent un mouvement respiratoire non-uniforme, une variabilité inter-individuelle et contiennent un échantillonnage de lésions de taille et de contraste variable. Ce cahier des charges nous a orientés vers les méthodes de simulation Monte Carlo qui permettent de contrôler l’ensemble des paramètres influençant la formation et la qualité de l’image. Une base de 15 modèles de patient a été créée en adaptant le modèle anthropomorphique XCAT sur des images tomodensitométriques (TDM) de patients. Nous avons en parallèle développé une stratégie originale d’évaluation des performances de détection. Cette méthode comprend un système de détection des lésions automatisé basé sur l'utilisation de machines à vecteurs de support. Les performances sont mesurées par l’analyse des courbes free-receiver operating characteristics (FROC) que nous avons adaptée aux spécificités de l’imagerie TEP. L’évaluation des performances est réalisée sur deux techniques de correction du mouvement respiratoire, en les comparant avec les performances obtenues sur des images non corrigées ainsi que sur des images sans mouvement respiratoire. Les résultats obtenus sont prometteurs et montrent une réelle amélioration de la détection des lésions après correction, qui approche les performances obtenues sur les images statiques. / Positron emission tomography (PET) is nuclear medicine imaging technique that produces a three-dimensional image of functional processes in the body. The system detects pairs of gamma rays emitted by a tracer, which is introduced into the body. Three-dimensional images of tracer concentration within the body are then constructed by computer analysis. Respiratory motion in emission tomography leads to image blurring especially in the lower thorax and the upper abdomen, influencing this way the quantitative accuracy of PET measurements as well a leading to a loss of sensitivity in lesion detection. Although PET exams are getting shorter thanks to the improvement of scanner sensitivity, the current 2-3 minutes acquisitions per bed position are not yet compatible with patient breath-holding. Performing accurate respiratory motion correction without impairing the standard clinical protocol, ie without increasing the acquisition time, thus remains challenging. Different types of respiratory motion correction approaches have been proposed, mostly based on the use of non-rigid deformation fields either applied to the gated PET images or integrated during an iterative reconstruction algorithm. Evaluation of theses methods has been mainly focusing on the quantification and localization accuracy of small lesions, but their impact on the clinician detection performance during the diagnostic task has not been fully investigated yet. The purpose of this study is to address this question based on a computer assisted detection study. We evaluate the influence of two motion correction methods on the detection of small lesions in human oncology FDG PET images. This study is based on a series of realistic simulated whole-body FDG images based on the XCAT model. Detection performance is evaluated with a computer-aided detection system that we are developing for whole-body PET/CT images. Detection performances achieved with these two correction methods are compared with those achieved without correction, ie. with respiration average PET images as well as with reference images that do not model respiration effects. The use of simulated data makes possible the creation of theses perfectly corrected images and the definition of known lesions locations that serve as a reference.
299

Intégration de connaissances a priori dans la reconstruction des signaux parcimonieux : Cas particulier de la spectroscopie RMN multidimensionnelle / Embedding prior knowledge in the reconstruction of sparse signals : Special case of the multidimensional NMR spectroscopy

Merhej, Dany 10 February 2012 (has links)
Les travaux de cette thèse concernent la conception d’outils algorithmiques permettant l’intégration de connaissances a priori dans la reconstruction de signaux parcimonieux. Le but étant principalement d’améliorer la reconstruction de ces signaux à partir d’un ensemble de mesures largement inférieur à ce que prédit le célèbre théorème de Shannon-Nyquist. Dans une première partie nous proposons, dans le contexte de la nouvelle théorie du « compressed sensing » (CS), l’algorithme NNOMP (Neural Network Orthogonal Matching Pursuit), qui est une version modifiée de l’algorithme OMP dans laquelle nous avons remplacé l'étape de corrélation par un réseau de neurones avec un entraînement adapté. Le but est de mieux reconstruire les signaux parcimonieux possédant des structures supplémentaires, i.e. appartenant à un modèle de signaux parcimonieux particulier. Pour la validation expérimentale de NNOMP, trois modèles simulés de signaux parcimonieux à structures supplémentaires ont été considérés, ainsi qu’une application pratique dans un arrangement similaire au « single pixel imaging ». Dans une deuxième partie, nous proposons une nouvelle méthode de sous-échantillonnage en spectroscopie RMN multidimensionnelle (y compris l’imagerie spectroscopique RMN), lorsque les spectres des acquisitions correspondantes de dimension inférieure, e.g. monodimensionnelle, sont intrinsèquement parcimonieux. Dans cette méthode, on modélise le processus d’acquisition des données et de reconstruction des spectres multidimensionnels, par un système d’équations linéaires. On utilise ensuite des connaissances a priori, sur les emplacements non nuls dans les spectres multidimensionnels, pour enlever la sous-détermination induite par le sous échantillonnage des données. Ces connaissances a priori sont obtenues à partir des spectres des acquisitions de dimension inférieure, e.g. monodimensionnelle. La possibilité de sous-échantillonnage est d’autant plus importante que ces spectres monodimensionnels sont parcimonieux. La méthode proposée est évaluée sur des données synthétiques et expérimentales in vitro et in vivo. / The work of this thesis concerns the proposal of algorithms for the integration of prior knowledge in the reconstruction of sparse signals. The purpose is mainly to improve the reconstruction of these signals from a set of measurements well below what is requested by the famous theorem of Shannon-Nyquist. In the first part we propose, in the context of the new theory of "compressed sensing" (CS), the algorithm NNOMP (Neural Network Orthogonal Matching Pursuit), which is a modified version of the algorithm OMP in which we replaced the correlation step by a properly trained neural network. The goal is to better reconstruct sparse signals with additional structures, i.e. belonging to a particular model of sparse signals. For the experimental validation of NNOMP three simulated models of sparse signals with additional structures were considered and a practical application in an arrangement similar to the “single pixel imaging”. In the second part, we propose a new method for under sampling in multidimensional NMR spectroscopy (including NMR spectroscopic imaging), when the corresponding spectra of lower dimensional acquisitions, e.g. one-dimensional, are intrinsically sparse. In this method, we model the whole process of data acquisition and reconstruction of multidimensional spectra, by a system of linear equations. We then use a priori knowledge about the non-zero locations in multidimensional spectra, to remove the under-determinacy induced by data under sampling. This a priori knowledge is obtained from the lower dimensional acquisition spectra, e.g. one-dimensional. The possibility of under sampling increases proportionally with the sparsity of these one dimensional spectra. The proposed method is evaluated on synthetic, experimental in vitro and in vivo data.
300

Contributions to Mean Shift filtering and segmentation : Application to MRI ischemic data / Contributions au filtrage Mean Shift à la segmentation : Application à l’ischémie cérébrale en imagerie IRM

Li, Thing 04 April 2012 (has links)
De plus en plus souvent, les études médicales utilisent simultanément de multiples modalités d'acquisition d'image, produisant ainsi des données multidimensionnelles comportant beaucoup d'information supplémentaire dont l'interprétation et le traitement deviennent délicat. Par exemple, les études sur l'ischémie cérébrale se basant sur la combinaison de plusieurs images IRM, provenant de différentes séquences d'acquisition, pour prédire l'évolution de la zone nécrosée, donnent de bien meilleurs résultats que celles basées sur une seule image. Ces approches nécessitent cependant l'utilisation d'algorithmes plus complexes pour réaliser les opérations de filtrage, segmentation et de clustering. Une approche robuste pour répondre à ces problèmes de traitements de données multidimensionnelles est le Mean Shift qui est basé sur l'analyse de l'espace des caractéristiques et l'estimation non-paramétrique par noyau de la densité de probabilité. Dans cette thèse, nous étudions les paramètres qui influencent les résultats du Mean Shift et nous cherchons à optimiser leur choix. Nous examinons notamment l'effet du bruit et du flou dans l'espace des caractéristiques et comment le Mean Shift doit être paramétrés pour être optimal pour le débruitage et la réduction du flou. Le grand succès du Mean Shift est principalement du au réglage intuitif de ces paramètres de la méthode. Ils représentent l'échelle à laquelle le Mean Shift analyse chacune des caractéristiques. En se basant sur la méthode du Plug In (PI) monodimensionnel, fréquemment utilisé pour le filtrage Mean Shift et permettant, dans le cadre de l'estimation non-paramétrique par noyau, d'approximer le paramètre d'échelle optimal, nous proposons l'utilisation du PI multidimensionnel pour le filtrage Mean Shift. Nous évaluons l'intérêt des matrices d'échelle diagonales et pleines calculées à partir des règles du PI sur des images de synthèses et naturelles. Enfin, nous proposons une méthode de segmentation automatique et volumique combinant le filtrage Mean Shift et la croissance de région ainsi qu'une optimisation basée sur les cartes de probabilité. Cette approche est d'abord étudiée sur des images IRM synthétisées. Des tests sur des données réelles issues d'études sur l'ischémie cérébrale chez le rats et l'humain sont aussi conduits pour déterminer l'efficacité de l'approche à prédire l'évolution de la zone de pénombre plusieurs jours après l'accident vasculaire et ce, à partir des IRM réalisées peu de temps après la survenue de cet accident. Par rapport aux segmentations manuelles réalisées des experts médicaux plusieurs jours après l'accident, les résultats obtenus par notre approche sont mitigés. Alors qu'une segmentation parfaite conduirait à un coefficient DICE de 1, le coefficient est de 0.8 pour l'étude chez le rat et de 0.53 pour l'étude sur l'homme. Toujours en utilisant le coefficient DICE, nous déterminons la combinaison de d'images IRM conduisant à la meilleure prédiction. / Medical studies increasingly use multi-modality imaging, producing multidimensional data that bring additional information that are also challenging to process and interpret. As an example, for predicting salvageable tissue, ischemic studies in which combinations of different multiple MRI imaging modalities (DWI, PWI) are used produced more conclusive results than studies made using a single modality. However, the multi-modality approach necessitates the use of more advanced algorithms to perform otherwise regular image processing tasks such as filtering, segmentation and clustering. A robust method for addressing the problems associated with processing data obtained from multi-modality imaging is Mean Shift which is based on feature space analysis and on non-parametric kernel density estimation and can be used for multi-dimensional filtering, segmentation and clustering. In this thesis, we sought to optimize the mean shift process by analyzing the factors that influence it and optimizing its parameters. We examine the effect of noise in processing the feature space and how Mean Shift can be tuned for optimal de-noising and also to reduce blurring. The large success of Mean Shift is mainly due to the intuitive tuning of bandwidth parameters which describe the scale at which features are analyzed. Based on univariate Plug-In (PI) bandwidth selectors of kernel density estimation, we propose the bandwidth matrix estimation method based on multi-variate PI for Mean Shift filtering. We study the interest of using diagonal and full bandwidth matrix with experiment on synthesized and natural images. We propose a new and automatic volume-based segmentation framework which combines Mean Shift filtering and Region Growing segmentation as well as Probability Map optimization. The framework is developed using synthesized MRI images as test data and yielded a perfect segmentation with DICE similarity measurement values reaching the highest value of 1. Testing is then extended to real MRI data obtained from animals and patients with the aim of predicting the evolution of the ischemic penumbra several days following the onset of ischemia using only information obtained from the very first scan. The results obtained are an average DICE of 0.8 for the animal MRI image scans and 0.53 for the patients MRI image scans; the reference images for both cases are manually segmented by a team of expert medical staff. In addition, the most relevant combination of parameters for the MRI modalities is determined.

Page generated in 0.0365 seconds