• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 201
  • 75
  • 38
  • 29
  • 12
  • 9
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 747
  • 328
  • 325
  • 304
  • 256
  • 243
  • 153
  • 150
  • 118
  • 104
  • 102
  • 94
  • 92
  • 87
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

The Environmental Effects of Water Damages : Assessing the CO2e footprint of water damage resolution methods from a life cycle perspective / Vattenskador och dess effekter på miljön : En undersökning av koldioxidavtrycket från vattenskadehanteringsmetoder utifrån ett livscykelsperspektiv

Orre, Adam, Pers, Axel January 2019 (has links)
This study assesses the primary drivers of CO2e footprint for three types of water damage resolution methods and identifies relevant focus areas to support a reduced environmental footprint from water damage restoration. To face the global challenge of climate change, mitigation actions need to be taken on a broad level, with the reduction of greenhouse gas emissions from buildings being a key part. Although the number of environmental assessments of buildings is increasing, there is a lack of scientific literature quantifying the CO2e footprint of water damages, which makes it difficult for stakeholders in the industry to make sound decisions in order to combat climate change. In particular, this relates to the various methods that can be applied to resolve water damages. Therefore, this study conducts an attributional life cycle assessment of the CO2e footprint of three actual water damages, resolved using different methods requiring various degrees of material replacement. The study finds that both the total CO2e footprint and its main drivers vary significantly depending on the selected method. It further finds that the choice of method is crucial in order to reduce the CO2e footprint from water damage restoration, more specifically that a higher degree of material reuse, enabled by drying of damaged materials, appears to be preferred where applicable. / Denna studie undersöker de huvudsakliga faktorerna som påverkar det koldioxidavtryck som kan kopplas till tre typer av hanteringsmetoder av vattenskador, samt identifierar relevanta områden att fokusera på för att minska den miljömässiga effekten från vattenskadehantering. Flertalet åtgärder behöver genomföras för att möta utmaningen med klimatförändringar, och att minska växthusgaser kopplade till byggnader är att anse som en viktig del av detta. Trots att antalet miljöstudier relaterade till byggnader ökar är antalet vetenskapliga studier kopplade till CO2e från vattenskador begränsat, vilket gör det svårt för intressenter i industrin att fatta välgrundade beslut. I synnerhet är detta relaterat till de olika metoder som kan användas för att hantera skadorna. Av den anledningen genomför denna studie en livscykelanalys med bokföringsmetodik för att undersöka koldioxidavtrycket från tre faktiska vattenskador. Dessa har åtgärdats med olika hanteringssmetoder vilket medför en variation i den mängd material som behöver bytas ut. Studien konstaterar att både det totala avtrycket samt de huvudsakliga drivarna varierar betydligt beroende på vilken metod som använts. Vidare konstateras att valet av metod är avgörande för att kunna minska mängden CO2e från vattenskadehantering, mer specifikt att en högre grad av materialåteranvädning, möjliggjort av torkning av skadade delar, förefaller vara att föredra när det är tillämpbart.
212

Livscykelanalys av slitsmurskonstruktion : En jämförelse av klimatpåverkan mellan en slitsmur och en kombination av spont och platsgjuten betongmur / Life cycle assessment of a diaphragm wall : A climate impact comparison between a diaphragm wall and a combination of a sheet pile wall and a cast -in-place concrete wall

Malmström, Jacob, Nyström, Erik January 2019 (has links)
Västlänken i Göteborg är ett tunnelprojekt för järnväg som skall byggas under centrala Göteborg. Tunneln byggs genom både berg och lera, projektet kommer att använda sig av ett flertal tekniker och konstruktionslösningar. Västlänken är ett av de första stora infrastrukturprojekt i Sverige där slitsmurar används som permanenta konstruktioner. På uppdrag av Trafikverket har två olika typer av stödmurskonstruktioner undersökts med avseende på deras klimatpåverkan. Konstruktionslösningarna är en temporär spont med tillhörande tunnelvägg och en slitsmur. Slitsmuren används både som en temporär konstruktion under byggskedet och en del i den permanenta tunnelväggen. Slitsmurar har först nyligen blivit godkända att användas som delar av permanenta konstruktioner av Trafikverket. Av denna anledning finns det inte mycket information om konstruktionens klimatpåverkan. Syftet med rapporten är att undersöka klimatpåverkan från de två olika konstruktionslösningarna. Jämförelsen har gjorts med hjälp av livscykelanalyser för att få den mest övergripande analysen. En livscykelanalys (LCA) är ett verktyg för att synliggöra en produkts totala miljöpåverkan under dess livstid. Detta åstadkoms genom att alla de olika delprocesser som krävs för att skapa produkten inventeras och analyseras. LCA har utförts med datorprogrammet SimaPro och databasen Ecoinvent. I SimaPro har båda konstruktionslösningarna modellerats och deras miljöpåverkan sedan beräknats med ReCiPe 2016. Indata till LCA har samlats in från ritningar och diskussioner med experter på området. Resultatet från livscykelanalysen visar att slitsmurarna i detta projekt har större klimatpåverkan än konstruktionslösningen med spont och en platsgjuten betongmur. För slitsmuren står armering samt betong för den största delen av klimatpåverkan och för sponten är det den stora mängden stål som krävs vid de kraftiga dimensionerna. Då en del av konstruktionerna inom projektet ej var färdigprojekterad när denna rapport författades rekommenderas ytterligare studier på ämnet för att validera resultaten / The West Link Project is as tunnel project for the railroad that will be constructed below central Gothenburg. The project is built through clay and solid rock thus making use of several techniques and structural solutions. The West Link Project (Västlänken) is the first major infrastructure project in Sweden where diaphragm walls are used as a part of the permanent structure. Two different structures have been examined on behalf of the Swedish Transport Administration, with regards to their climatic impact. The two structures examined are a temporary sheet pile with a cast-in-place concrete wall that is used as a part of the tunnel wall, and a diaphragm wall. The diaphragm wall is used as an earth retaining wall during the construction stage and as a part of the permanent tunnel wall. Diaphragm walls have just recently been approved as parts of permanent structures by the Swedish Transport Administration. Due to this there isn’t a lot of information available on their climatic impact. The purpose of this paper is to examine the climatic impact of these two different structures. The comparison has been performed by the use of a lifecycle analysis to get the most comprehensive analysis. A lifecycle analysis (LCA) is a tool that helps to get a perspective on a product’s total environmental impact over the course of its lifetime. This is accomplished by doing an inventory of all the different processes involved in its production. For the LCA the computer program SimaPro, and the database Ecoinvent were used. In SimaPro both of the structure have been modelled and their environmental impact has been calculated with ReCiPe 2016.Input for the LCA have been gathered from drawings and communication with experts. The result of the LCA shows that in this project the diaphragm walls have a higher climatic impact than the sheet pile and concrete wall. With regards to the diaphragm wall the majority of its climatic impact is from the large amounts of reinforcement and concrete used. For the sheet pile the steel used to manufacture sheets of the dimensions used in the project is the largest contributing factor. Due to the fact that some of the structures in the project are still being at the design stage at the time of writing further studies are recommended to validate the results.
213

Automatisering av LCA - och LCC - beräkningar för anläggningskonstruktioner : Ett verktyg för hänsynstagande av miljö och kostnad i tidigt projekteringsskede / Automation of LCA and LCC calculations for civil works

Linder, Andreas, Lundberg, Emil January 2019 (has links)
Vid projektering av ett byggnadsverk är det viktigt att ta hänsyn till miljöpåverkan och kostnader under hela konstruktionens livslängd. Detta görs genom så kallade livscykelanalyser (LCA) och livscykelkostnadsanalyser (LCC-analys). En LCA berör miljöaspekter och potentiell miljöpåverkan genom en produkts hela livscykel d.v.s. ”från vaggan till graven”. I en LCC-analys summeras investeringskostnad samt kostnader för drift och underhåll under produktens livslängd. BIM 3D-modelleringsverktyg används för att modellera flertal olika byggkonstruktioner. Det optimala vore om det gick att utnyttja de kraftfulla BIM-verktygen tillfullo och kunna använda den information som redan finns i modellerna för att utföra LCA och LCC-analyser. Önskvärt vore om det även gick att koppla till företagsinterna moduler, t.ex. i detta projekt Trafikverkets Klimatkalkyl (ett verktyg som baseras på den vedertagna metoden för LCA). Syftet med examensarbetet är att integrera kostnad och miljöpåverkan i tidigt projekteringsskede genom automatisering av koppling mellan BIM-program och LCA-/LCC-verktyg. Genom automatisering av denna process kan optimering av konstruktioner effektiviseras. Ett Excelark har skapats genom programmering i Visual Basic for Applications (VBA) som hämtar materialmängder från antingen Tekla Structures, Excel eller genom manuell inmatning och sedan generar LCA- och LCC-rapporter. Dessa har sedan jämförts med tidigare genomförda LCA och LCCanalyser för att säkerställa utfallets reliabilitet. Resultatet av arbetet visar att framtagna LCA- och LCC-rapporter kan bidra till en effektivare projekteringsprocess för optimering av konstruktioner med hänsyn till miljö och kostnad. Excelarkets användarvänliga uppbyggnad gör det möjligt för personer med begränsad kunskap inom LCA och LCC att göra mer hållbara val vid projektering av en konstruktion. Detta bidrar till att främja hållbarhetstänk i företag och uppmuntrar anställda att arbeta mot ett gemensamt mål om en koldioxidneutral infrastruktursektor. / While carrying out structural design work, it is important to take into consideration the environmental impacts and costs throughout the life time of the structure. This is done through life cycle assessment (LCA) and life cycle cost analysis (LCC analysis), respectively. LCA addresses the environmental aspects and potential environmental impacts throughout a product’s life cycle i.e. from cradle to grave. An LCC analysis summarizes the investment cost and costs for operation and maintenance during the life time of the product. BIM 3D modeling tool are used for modeling several different types of buildings and civil works. Ideally, digital information readily available through these powerful BIM tools, should be reused to perform LCA and LCC analyses. It would also be beneficial if it was possible to connect it to a company’s internal systems for instance in this study, the Swedish Transport Administration's “Klimatkalkyl” (a tool based on the method for LCA). The purpose of the thesis project is to integrate cost and environmental impact into the early design phase through an automated connection between BIM programs and LCA / LCC tools. By automating this process, optimization of structures can be made more efficient. An Excel sheet has been created through programming in Visual Basic for Applications (VBA) which retrieves quantities from either Tekla Structures, Excel or manual input and then generates LCA and LCC reports. These have then been compared with existing LCA and LCC analyses to ensure the program's quality. The result of the work shows that produced LCA and LCC reports can contribute to a more efficient structural design process for optimizing structures regarding environmental impacts and investment cost. The Excel sheet's user-friendly structure also enables people with limited knowledge in LCA and LCC to make more sustainable choices when undertaking structural design tasks. This helps to promote sustainable thinking in companies and encourages employees to work towards a common goal of a carbon-neutral infrastructure sector.
214

Potentiell miljöpåverkan från kontorsstol 6110 : En livscykelanalys samt rekommendationer för Kinnarps AB

Elmertoft, Emelie, Johansson, Victoria January 2014 (has links)
Livscykelanalys (LCA) är ett verktyg för att analysera potentiell miljöpåverkan från en produkts livscykel. I studien undersöks vilka som är de mest betydande processerna och de mest utmär- kande potentiella miljöpåverkanskategorierna i livscykeln för Kinnarps kontorsstol 6110, samt vilka potentiella förbättringsåtgärder som kan utföras för förbättrad miljöprestanda. Analysen syftar även till att ge rekommendationer hur verktyget LCA kan implementeras i Kinnarps håll- barhetsarbete. Programvaran SimaPro från PRé, data från Ecoinvent och företagsspecifika uppgifter används i analysen. De huvudsakliga resultaten visar att störst miljöpåverkan åter- finns inom kategorierna ekotoxicitet, övergödning och naturlig landtransformation. Stolsmekanismen är den komponent på kontorsstolen som får störst genomslag i analysen till följd av sin stora massa och sitt höga stålinnehåll. Även ullklädseln får stort genomslag, vilket beror på produktionen av råull. I verkligheten bör denna påverkan vara större eftersom pro- duktionen av tyg från råull inte varit möjlig att inkludera. Vilket material som väljs för olika komponenter visar sig ha stor betydelse för livscykeln och LCA kan användas redan i konstrukt- ionsfasen för att rådgöra vilka val som ger lägst påverkan. En fördel med att bygga upp kompetens internt inom Kinnarps är att ökad kunskap om såväl metodiken LCA som produkt- sortimentet erhålls. Om Kinnarps väljer att implementera verktyget inom företaget har det även fördelar ur ett marknadsföringsperspektiv eftersom de då kan uppvisa detaljkännedom om sina produkters miljöprestanda. / Life Cycle Assessment (LCA) is a tool to analyze potential environmental impacts of a product's lifecycle. The aim of the study is to determine the most important processes and the most signif- icant potential environmental impact categories in the lifecycle of Kinnarps’ office chair 6110, and what potential improvements that can be made. The analysis also gives advice whether the tool LCA can be implemented in Kinnarps’ work with sustainability issues. The software SimaPro from PRé, data from Ecoinvent and company-specific data were used in the analysis. The main results show that the greatest impact can be found in the categories of ecotoxicity, eutrophica- tion and natural land transformation. As a result of its large mass and its high steel content the chair mechanism is the component in the office chair with the greatest impact. The wool uphol- stery fabric also has a major impact, which solely depends on the production of greasy wool. The impact is most likely larger in reality, since there is a lack of data regarding wool fabrics. What type of material that is chosen for different components turns out to be of great importance. LCA can be used as early as in the design phase to consult what material that gives the lowest impact. One advantage of establishing expertise in LCA within the company is that competence about LCA, as well as the product system, remains within Kinnarps. If Kinnarps choose to implement the tool within the company, there are also marketing benefits since they may present detailed knowledge of the environmental performance of their products.
215

Jämförande livscykelanalys av motsvarande tegel- och träkonstruktioner / Comparative Life Cycle Assessment of standard houses in corresponding brick- and timber structures

Viborg, Tomas, Lidström, Gabriel January 2014 (has links)
Sedan 1900-talets mitt har användandet av tegelkonstruktioner i bostadsbyggandet minskat kraftigt; materialet har under modernismen upplevts otidsenligt och byggnadssättet har ansetts ineffektivt. Trots att kanalmurstekniken, som är en byggteknik med bärande tegelkonstruktion och högt isoleringsvärde, togs fram på 1930-talet för att följa hårdare energihushållningskrav, har ändå lätta träregelkonstruktioner dominerat det svenska småhusbyggandet. Kraven på energihushållning har under åren ökat successivt och livscykelanalysen (LCA) har utvecklats. LCA är en metodik som analyserar produkters eller tjänsters klimatbelastning ur livscykelperspektiv. Svårigheter har dock funnits i att omsätta metodiken på större komponenter än enskilda material. Därför har europastandarder tagits fram som enkom tjänar till att systematisera livscykelanalyser av hela byggnader och de kommer att följas i denna studie. Syftet med examensarbetet är att jämföra hur ett typhus med tegel som stommaterial belastar miljön under produktion och drift i en livscykel satt till 100 år, jämfört med ett motsvarande trätyphus. Till tegelhusets nackdel talar den höga energiåtgången vid materialframställningen. Trä å sin sida löper stor risk för förkortad livscykel i och med riskerna för fuktskador. För att undersöka skillnaderna i trä- och tegelkonstruktioner har en typhusritning i kanalmurskonstruktion analyserats mot en motsvarande träkonstruktion, där byggnadstyperna har samma boarea och väggkonstruktionerna samma värmemotstånd. För att få fram husens skillnad energiåtgång under driftskedet har energibehovsberäkningar utförts för byggnaderna. Livscykelanalysen har utförts i programvaran Anavitor utifrån 3D-modeller med byggnadsinformation som matchas mot en materialdatabas med livscykeldata. Ur jämförelsen har resultat kunnat hämtas på vilken av konstruktionerna som belastar miljön minst över livscykeln, med avseende på klimatbelastning räknat i koldioxidekvivalenter. Resultat visar att ett tegelhus belastar miljön dubbelt så mycket som ett trähus i produktionsfasen medan tegelhuset är miljövänligare avseende underhåll och drift. Efter 100 år är skillnaden 7,3 ton koldioxidekvivalenter, till trähusets fördel. Enligt livscykelanalysen har byggnaderna, enligt de antaganden som gjorts, belastat miljön lika efter 168 år. Till tegelhusets fördel talar dess säkerhet gällande livslängd, beständighet, fuktsäkerhet och goda möjlighet till återbruk av stommaterialet. / Since the mid-1900s has brick building marginalized; the material has in the modernist era been experienced as dated and the construction method considered inefficient. In the 1930s the canal wall technique were developed to meet the coming stringent energy requirements. Despite opportunities to meet modern building norms have yet lightweight timber structures dominated the Swedish construction sector concerning single-family houses since then. The requirements for energy conservation have increased over the years to an even greater degree, and Life Cycle Assessment (LCA) has been developed; a methodology that analyzes products from a life cycle perspective. There have been difficulties to put the methodology on larger components than individual materials. Therefore, European Standards have been developed that specifically serve to systematize Life Cycle Assessments of entire buildings, which will be followed in this study. The purpose of this study is to compare which impact a standard house with brick structure has a on the environment in a lifecycle set to 100 years, compared with a corresponding timber structure. To the disadvantage for a brick house speaks the high energy consumption in material production. Timber structures at their part are at high risk for shortened life cycle due to risk of moisture damage. To examine the differences in wood and brick structures has a standard house drawing in canal wall technique been analyzed against a corresponding wooden construction. The building types have the same floor area and the wall constructions have the same heat resistance. To receive the differences in energy use during the operational phase between the buildings has energy calculations been made. The life cycle analysis has been performed in the software Anavitor based on 3D models with building information that is matched against a database of materials life cycle data. The results from the comparison are measured in terms of carbon dioxide equivalents, and will show which construction type will make least impact on the environment. Results show that a brick house has doubled environmental impact compared to a wooden house in the production phase. The brick house is a better alternative concerning environmental impact during operational phase and maintenance. After 100 years, the difference is 7,3 tons of carbon dioxide equivalents to the advantage of the wooden house. According to the LCA and the assumptions made, the buildings have charged the environment equally after 168 years. To the advantage of the brick house speaks its longevity, durability, moisture resistance and good opportunity for reuse of the bricks.
216

Future sludge management from a sustainability perspective / Framtida slamhantering från ett hållbarhetsperspektiv

Simensen, Ebba January 2023 (has links)
Syftet med projektet är att undersöka effekten av att leda över vattenverksslam från Norrvattens vattenverk, Görvälnverket, till Käppalaverkets reningsverk som ett steg i en mer hållbar slamhantering. Detta slamhanterings alternativ jämförs med en framtida lokal slamhantering vid Görvälnverket. Studien undersöker möjligheten att leda vattenverksslam över till Käppalaverket utifrån fyra huvudaspekter, vattenrening, drift, kostnad och miljöpåverkan. En litteraturstudie genomfördes med syfte att utvärdera hur vattenverksslammet kan påverka reningsprocesserna vid Käppalaverket. En Livscykelanalys genomfördes med syfte att utvärdera miljöpåverkan av att leda över vattenverksslam till Käppalaverket. Genomförbarheten utvärderades med hjälp av en multikriterieanalys, där tekniska, miljömässiga och ekonomiska aspekter utvärderades.  Resultat från studien visade att den framtida lokala slamhanteringen är mer fördelaktig från ett tekniskt och ekonomiskt perspektiv, än överledning av vattenverksslammet till Käppalaverket. En nackdel med överledning av vattenverksslam till Käppalaverket är att vattenverksslammet sannolikt kommer påverka avvattningen av avloppsslammet, vilket resulterar i en högre polymerförbrukning och en ökad hydraulisk belastning på centrifuger och rötkammare. Överledningen av vattenverksslam antas däremot inte ha en negativ påverka på kvaliteten av reningen vid Käppalaverket. Att leda vattenverksslam över till Käppalaverket ger en lägre miljöpåverkan med avseende på kemikalieutsläpp till vattenmiljön men en högre miljöpåverkan med avseende på transporter och energiförbrukning.  Överledning av vattenverksslam till Käppalaverket bedöms som genomförbart, men denna studie visar att den framtida lokala slamhanteringen på Görvälnverket är ett mer fördelaktigt alternativ. Om överledning av vattenverksslam till Käppalaverket fortsatt är ett aktuellt alternativ rekommenderas det att en mer djupgående studie utförs, där vattenverksslammet tillsätts till Käppalaverket för att utvärdera dess påverkan. / The aim with this project is to investigate the impact of leading the produced waterworks sludge (WWS) from Norrvattens drinking water treatment plant (DWTP), Görvälnverket, over to Käppalaverkets wastewater treatment plant (WWTP) as a step in a more sustainable sludge management. This alternative is compared to a future sludge management at Görvälnverket. The study, investigating the feasibility of leading the WWS over to Käppalaverket, is based on four main aspects, water treatment, operation, cost, and environmental impact. A literature study was performed to evaluate the effect of WWS on Käppalaverket. A life cycle assessment (LCA) analysis was performed to evaluate the environmental impact of leading the WWS over to Käppalaverket. The feasibility was evaluated using a multi-criteria decision analysis (MCDA), where technical, environmental, and economic aspects were considered. The study shows that the future sludge management is more favourable than leading the WWS over to Käppalaverket from a technical and economic aspect. The main drawback with leading the WWS over to Käppalaverket is that the WWS will likely impact the dewatering of the sewage sludge, resulting in a higher polymer consumption and an increased hydraulic load on centrifuges and digesters. However, the addition of WWS at Käppalaverket is not assumed to negatively impact the quality of the treatment at Käppalaverket. Leading the WWS over to Käppalaverket results in a lower environmental impact regarding chemical emissions but results in a higher environmental impact regarding transportation and energy consumption. Leading the WWS over to Käppalaverket was found to be feasible, although the future sludge management at Görvälnverket was found to be more favourably in this study. A more in depth study on the feasibility of leading the WWS over to Käppalaverkets is required to fully assess this aspect. A trial where the WWS is added to Käppalaverket is recommended to further evaluate the impact of the WWS.
217

Skillnaden i koldioxidutsläpp mellan limträ och stål : En studie som jämför två olika stommaterial / A study that compares two different frame materials

Dicksen, Jesper January 2021 (has links)
Idag görs livscykelanalyser (LCA) för att identifiera de byggkomponenter somorsakar stora koldioxidutsläpp i byggbranschen.Syftet med denna studie är att med hjälp av livscykelanalysverktyget One ClickLCA jämföra hur stora koldioxidutsläpp som bildas av materialen i enlimträstomme, som tillhör en inomhusarena jämfört med materialen i en fiktivstålstomme, som är dimensionerad för att klara samma laster och funktion somlimträstommen. Detta görs i syfte att lyfta fram skillnaderna mellankoldioxidutsläppen i produktskedet (A1-A3) mellan en limträstomme och enstålstomme.En konstruktör har konstruerat stålstommen för jämförelsen. Konstruktören togfram dimensionerna och byggmaterialen, men stålstommen blev inte tillräckligtgenomarbetad och projekterad för att jämförelsen skulle kunna göras direkt.I One Click LCA behövs mängderna och byggkomponenterna för båda stommarnaför att kunna göra fullständiga livscykelanalyser. Med mängder menas volymeroch vikter för byggkomponenterna. I studien saknades från början mängder förvissa av byggkomponenterna och en del av syftet blev därför att ta fram allamängder för stommarna. För att få rätt mängder i studien användes bland annat tvåprogram, Bluebeam och Excel. Med dessa program togs längdmåtten för olikabyggkomponenter från ritningar. Tillsammans med de övriga uppgifterna ombyggkomponenterna kunde mängderna sedan tas fram.I One Click LCA behöver resurser väljas. Dessa kan vara kopplade till specifikabyggkomponenter och innehåller data om hur stora koldioxidutsläpp sombyggkomponenter orsakar. Med byggkomponenter och mängder som grund valdessedan resurser i One Click LCA. När resurser väljs räknar programmet ut hur storakoldioxidutsläpp som bildas i produktskedet (A1-A3) för byggkomponenterna.Med mängder och resurser kunde två resultat erhållas i programvaran. Resultatetvisar att 55 ton koldioxid bildas av limträstommen och 779,9 ton koldioxid bildasav stålstommen. I stålstommen är det fackverken som orsakar mestkoldioxidutsläpp och i limträstommen är balkarna i högdelen av inomhusarenansom orsakar mest koldioxidutsläpp. / Today, life-cycle assessment (LCA) are performed to identify the buildingcomponents that cause large carbon dioxide emissions in the construction industry.The purpose of this study is to use the life-cycle assessment tool One Click LCA tocompare how large carbon dioxide emissions are formed by the materials in aglulam frame, which belongs to an indoor arena compared to the materials in afictitious steel frame, which is dimensioned to withstand the same loads andfunction as the glulam frame. This is done in order to highlight the differencesbetween the carbon dioxide emissions in the product phase (A1-A3) between aglulam frame and a steel frame.A designer has designed the steel frame for comparison. The designer producedthe dimensions and building materials, but the steel frame was not sufficientlyworked out and projected for the comparison to be made directly.In One Click LCA, the quantities and building components for both frames areneeded to be able to make complete life-cycle assessment. By quantities is meantvolumes and weights for the building components. The study initially lackedquantities for some of the building components and part of the purpose wastherefore to produce all quantities for the frames. To get the right amounts in thestudy, two programs were used, Bluebeam and Excel. With these programs, thelength measurements for different building components were taken from drawings.Together with the other information about the building components, the quantitiescould then be produced.In One Click LCA, resources need to be selected. These can be linked to specificbuilding components and contain data on how large carbon dioxide emissions thatbuilding components cause. Based on building components and quantities,resources were then selected in One Click LCA. When resources are selected, theprogram calculates how large carbon dioxide emissions are formed in the productphase (A1-A3) for the building components. With quantities and resources, tworesults could be obtained in the software. The results show that 55 tonnes ofcarbon dioxide are formed by the glulam frame and 779.9 tonnes of carbon dioxideare formed by the steel frame. In the steel frame, it is the trusses that cause themost carbon dioxide emissions and in the glulam frame, the beams in the upperpart of the indoor arena cause the most carbon dioxide emissions.
218

FRAMTIDENS BETONG.- Blir det bättre än trä? / HE FUTURE OF CONCRETE - Will it surpass wood?

Ward, Martin, Markström, Liv January 2022 (has links)
Idag är det viktigare än någonsin att koldioxidutsläppen börjar minska. Över hela världens sätts idag visioner, mål och regleringar som ska motverka de enorma klimatutsläppen som utges varje år. Byggbranschen är en stor bov och i Sverige står dem för nästan en femtedel av utsläppen. I EU står cementtillverkningen för nästan 3 procent av alla koldioxidutsläpp.  Cementa, Sveriges största cementtillverkare, har jobbat hårt sedan 2020 med att lägga upp en plan – Nollvision 2030. Med hjälp av CCS-tekniken kommer Cementas koldioxidutsläpp inte ta sig ut i atmosfären och därför bli noll. Utsläppen kommer istället lagras och förvaras under havsbotten och därför inte bidra till klimatförändringarna negativt. Denna CCS-fabrik kommer utvecklas på Slite, Gotland, under Cementas redan befintliga cementfabrik.  I detta arbete kommer utsläppen från dagens betong och framtidens betong presenteras samt jämföras. Med hjälp av Cementa och flera andra aktörer har data samlats in som lagt grunden till en livscykelanalys (LCA). En livscykelanalys är ett verktyg som visar hur stor klimatpåverkan en produkt har under sin livstid. I detta arbete har en helt ny LCA gjorts för framtidens betong där värdena jämförs med en LCA för dagens betong. Med hjälp av denna jämförelse går det att se hur positivt Slite kommer påverka klimatmålen för framtiden. Ett tidigare examensarbete har använts för att hitta en LCA för ett betonghus och trähus. Där framkom data för ett trähus som också kommer användas vid ena frågeställningen. Där är målet att se ifall framtidens betonghus skulle kunna släppa ut mindre koldioxid än trähus, vilket det sedan framkommer att det gör. När LCA:erna var färdiga och redo att jämföras framkom det tydligt att framtidens betong har betydligt lägre utsläpp än dagens betong. Utsläppen från framtidens betong var även mindre än trähus om jämförelsen gjordes från vagga till grav. Jämförelserna har gjorts i kg koldioxidekvivalent/m2 tempererad area. / Today, it is more important than ever that carbon dioxide emissions begin to decrease. Visions, goals, and regulations are being set all over the world today to counteract the enormous climate emissions that are released every year. The construction industry is a big culprit and in Sweden, they account for almost a fifth of emissions. Of these carbon dioxide emissions, cement production accounts for almost 8%, with the worst emissions occurring during the production state. Cementa, Sweden's largest cement manufacturer, has worked hard since 2020 to set up a plan - Agenda 2030. With the help of CCS technologies, Cementa's carbon dioxide emissions will not be released into the atmosphere and therefore have zero emissions. The emissions will instead be compressed and stored under the seabed and therefore not contribute to climate change negatively. This CCS manufactory will be developed on Slite, Gotland, under Cementa's already existing cement factory.In this rapport, the emissions from today's concrete and the concrete of the future will be presented and compared. With the help of Cementa and several other contributors, data has been collected that laid the foundation for a life cycle assessment (LCA). A life cycle assessment is a tool that shows how much of a climate impact a product has during its lifetime. In this work, a completely new LCA has been made for the concrete of the future where the values have been compared with an LCA for today's concrete. With this comparison, it is possible to see how positively Slite will affect the climate goals in the future.  A previous degree project has been used to find an LCA for a concrete house and a wood house. There was data for a wooden house that will also be used for one issue. The goal here is to see if the concrete houses of the future could emit less carbon dioxide than wooden houses, which will then be proven to be true.  When the LCAs were done and ready to be compared, it became clear that the concrete of the future will have a significantly lower emission value than today's concrete. The emissions from the concrete of the future were also lower than wooden houses, if the comparison was made from cradle to grave. The comparisons have been made in kg carbon dioxide equivalent/m2 temperate area.
219

Comparative Life Cycle Assessment of Sludge Treatment Systems : Is recycling aluminium based coagulant from chemical sludge the way of the future? / Jämförande livscykelanalys av slamhanteringssystem : Är återvinning av aluminiumbaserad koagulant från kemslam framtidsvägen?

Henriksson, Patrick January 2017 (has links)
Chemical coagulation is a widely used wastewater treatment method around the world to reduce impurities from the process water in various industries. However, the large amounts of coagulation chemicals that are required for the removal of dissolved particles create a chemical sludge which poses a great environmental problem. Purac AB, a Swedish wastewater treatment company attempts to solve this problem with a new technology called the ReAl process. The ReAl process can recycle the aluminium ions from the commonly used coagulant aluminium sulfate, which reduces the amount of chemical sludge and the amount of aluminium sulfate needed in the coagulation process. In this study, a comparative life cycle assessment was conducted with a cradle-to-grave approach and mostly in accordance with the ISO-14040 series with the only deviation of not including resource-based impact categories. The goal was to evaluate the environmental impact of two sludge treatment systems – a conventional system (system 1) and a system which includes the ReAl process (system 2). Furthermore, the environmental performance of two dewatering equipment’s, a decanter centrifuge and a filter press, were examined in system 1, while in system 2, the exclusion of sludge drying was investigated. The scope of the study did not include the infrastructure of the sludge treatment systems and the ReAl process since previous studies have shown that, the environmental impact from the infrastructure in the wastewater treatment industry is relatively small compared to other factors, such as the energy and coagulation chemical used in these systems. The characterization results showed that system 2 had the lowest environmental impact on all the evaluated impact categories. The results also revealed that system 1 would have a slightly lower environmental impact if the chemical sludge was dewatered with a decanter centrifuge instead of a filter press. Similarly, system 2 would have a slightly lower environmental impact if sludge drying was excluded from the system. However, the environmental performance gain from selecting the best dewatering and drying equipment is limited and considered within the margin of error. Thus, this thesis suggests selecting the sludge treatment equipment based on their economic and technical factors before their environmental performance. The largest environmental impact in system 1 derived from the use of the coagulation chemical aluminium sulfate, while in system 2, sulfuric acid used in the ReAl process contributed the most to its environmental impact. The sensitivity analysis showed that a “clean” electricity mix is essential for system 2 and the ReAl process overall impact on the environment compared to system 1.
220

Feasibility of Life Cycle Assessment for Complex Medical Devices / Genomförbarhet av livscykelanalys för komplexa medicintekniska produkter

Svensson, Sofia January 2017 (has links)
The interest in environmental issues is increasing and for this reason, assessing the potential environmental impacts of a product or system is of interest. A methodology developed for this particular purpose is the life cycle assessment, also known as LCA. It is not purely of interest these aspects are investigated though, as increasing requirements on organizations also matter. The purpose of this thesis was to investigate the feasibility to implement the methodology of LCA in the aspect of complex medical devices. To do this, the framework for the methodology has been reviewed and a case study performed. The case study comprised of conducting an LCA study on the radiosurgery device Leksell Gamma Knife® IconTM.  The outcome of the investigation showed that conducting an LCA study means a wide range of aspects need to be considered and specified to a high degree. A particular issue was the data requirements, as obtaining data meeting several objectives was challenging. The modeling was also identified as a difficulty. Tools such as software and databases with predefined processes were used, though as complex medical devices can use materials not common in other fields, a lack of appropriate predefined processes hinders the feasibility. The conducted case study was able to attain valuable insights even though the study did not comply with the standards providing the framework, the ISO 14040 series. To conduct a compliant LCA study for complex medical devices, extensive resources would be required as well as the involvement of relevant parties along the supply chain. It is seen improbable to achieve a compliant study the first time a particular type of complex medical device is investigated. However, it is believed the feasibility would increase as studies are repeated, as the data quality is likely to increase. Advancements of the tools, as well as ongoing research on the environmental impacts of more materials, are other factors thought to increase the feasibility of conducting LCA studies on complex medical devices in the future. / Intresset för miljöfrågor ökar och därav finns det ett intresse att undersöka vad den potentiella miljöpåverkan är för en produkt eller ett system. En metodologi utvecklad för detta specifika syfte är livscykelanalys som även kallas LCA. Det är inte enbart utav intresse som aspekterna utreds, de ökande krav som ställs på olika aktörer spelar också roll. Syftet med detta examensarbete var att undersöka genomförbarheten av livscykelanalyser med avseende på komplexa medicintekniska produkter. Detta gjordes genom att granska regelverken för LCA samt genomförandet av en fallstudie, vilken utgjordes av en livscykelanalys på strålkniven Leksell Gamma Knife® IconTM. Resultaten av undersökningen visade att genomförandet av en livscykelanalys innebär att ett stort spann av aspekter måste beaktas och specificeras i hög grad. Ett särskilt problem var kraven på data då det var utmanande att samla in data som skulle möta flera behov. En annan identifierad svårighet var modelleringen. Verktyg användes i form av mjukvara och databaser med fördefinierade processer men då komplexa medicintekniska produkter kan bestå av material som inte är vanliga inom andra områden, var bristen på passande fördefinierade processer ett hinder för genomförbarheten. Den genomförda fallstudien gav värdefulla resultat trots att den inte var utförd helt enligt standarderna i ISO 14040 serien. För att en LCA studie för komplexa medicintekniska produkter skall möta dessa krav krävs omfattande resurser och att flera berörda parter längs försörjningskedjan involveras. Det ses därför som osannolikt att en studie som genomförs för första gången på en viss typ av komplex medicinteknisk produkt kan leva upp till regelverket. Dock så förmodas genomförbarheten öka i takt med att studier upprepas, då kvaliteten på data tros öka. Utveckling av verktygen samt pågående forskning om miljöpåverkan från olika material är andra faktorer som anses öka genomförbarheten av livscykelanalyser på komplexa medicintekniska produkter i framtiden.

Page generated in 0.0896 seconds