Spelling suggestions: "subject:"cocation analysis"" "subject:"borocation analysis""
11 |
Logística operacional: alocação de bases operacionais em distribuição de energia elétrica. / Operational logistics: facilities allocation in power distribution operations.Fontana, Heron 12 May 2015 (has links)
Ser eficiente é um requisito para a sustentabilidade das empresas concessionárias de distribuição de energia elétrica no Brasil. A busca pela eficiência deve estar em harmonia com a melhoria contínua da qualidade, da segurança e da satisfação dos consumidores e das partes envolvidas. O desafio de atender múltiplos objetivos requer que as empresas do setor desenvolvam soluções inovadoras, com a mudança de processos, tecnologia, estrutura e a capacitação das pessoas. Desenvolver um modelo operacional eficiente e uma gestão rigorosa dos custos são fatores-chave para o sucesso das empresas, considerando o contexto regulatório de revisão tarifária que incentiva a melhoria do desempenho. O modelo operacional é definido a partir da organização logística dos recursos para atendimento da demanda de serviços, que define também os custos fixos e variáveis de pessoal (salário, horas extras, refeições), infraestrutura (manutenção de prédios, ferramentas e equipamentos) e deslocamentos (manutenção de veículos, combustível), por exemplo. A melhor alocação e o melhor dimensionamento de bases operacionais possibilitam a redução dos custos com deslocamento e infraestrutura, favorecendo o aproveitamento da força de trabalho em campo, a melhoria do atendimento dos clientes e da segurança dos colaboradores. Este trabalho apresenta uma metodologia de otimização de custos através da alocação de bases e equipes operacionais, com o modelamento matemático dos objetivos e restrições do negócio e a aplicação de algoritmo evolutivo para busca das melhores soluções, sendo uma aplicação de Pesquisa Operacional, no campo da Localização de Instalações, em distribuição de energia elétrica. O modelo de otimização desenvolvido possibilita a busca pelo ponto de equilíbrio ótimo que minimiza o custo total formado pelos custos de infraestrutura, frota (veículos e deslocamentos) e pessoal. O algoritmo evolutivo aplicado no modelo oferece soluções otimizadas pelo melhoramento de conjuntos de variáveis binárias com base em conceitos da evolução genética. O modelo de otimização fornece o detalhamento de toda a estrutura operacional e de custos para uma determinada solução do problema, utilizando premissas de produtividade e deslocamentos (velocidades e distâncias) para definir as abrangências de atuação das bases operacionais, recursos (equipes, pessoas, veículos) necessários para atendimento da demanda de serviços, e projetar todos os custos fixos e variáveis associados. A metodologia desenvolvida neste trabalho considera também a projeção de demanda futura para a aplicação no estudo de caso, que evidenciou a efetividade da metodologia como ferramenta para a melhoria da eficiência operacional em empresas de distribuição de energia elétrica. / Being efficient is a requirement for the sustainability of electricity distribution companies in Brazil. The quest for efficiency must be in harmony with the continuous improvement of quality, safety and satisfaction of customers and all stakeholders involved. The challenge of attending multi-objectives requires companies in the sector to develop innovative solutions with the change of processes, technology, structure and enabling their professionals to drive this. Developing an efficient operational model and a strict cost management are keys for companies to achieve success, considering the regulatory context of tariff reviewing that encourages performance improvement. The operational model is defined from the logistics organization of resources to meet the demand of services, which also defines fixed and variable costs with people/teams (payments, overtime, meals), infrastructure (maintenance of building, tools and equipments) and fleet (maintenance of vehicles and fuel costs), for example. The best allocation and the best design of operational facilities (or operational bases) will reduce infrastructure costs and truck rolls, releasing workforce to attend customers and reducing displacements risks. This work presents a cost optimization methodology through the allocation of operational bases and teams, with the mathematical modelling of business objectives, constraints and using Evolutionary Algorithm to find the best solution, as an application of Operations Research in the field of Facility Location in electricity distribution. The optimization model enables the search for the optimal balance point that minimizes the total cost formed by infrastructure, fleet and people. The Evolutionary Algorithm applied in the model offers optimized solutions through the improvement of sets of binary variables based on genetic evolution concepts. The optimization model also gives detailed information about the operational structure and costs for a given allocation solution, using productivity and displacements (speed, distances) information to define the service regions for each operational base and resources (people, vehicles) needed to attend the demand of services, defining all fixed and variable costs for this. The methodology presented in this paper also considers the future demand of services (forecast), used in a case study that showed the effectives of this methodology as a tool for the improvement of operational efficiency in electricity distribution companies.
|
12 |
Logística operacional: alocação de bases operacionais em distribuição de energia elétrica. / Operational logistics: facilities allocation in power distribution operations.Heron Fontana 12 May 2015 (has links)
Ser eficiente é um requisito para a sustentabilidade das empresas concessionárias de distribuição de energia elétrica no Brasil. A busca pela eficiência deve estar em harmonia com a melhoria contínua da qualidade, da segurança e da satisfação dos consumidores e das partes envolvidas. O desafio de atender múltiplos objetivos requer que as empresas do setor desenvolvam soluções inovadoras, com a mudança de processos, tecnologia, estrutura e a capacitação das pessoas. Desenvolver um modelo operacional eficiente e uma gestão rigorosa dos custos são fatores-chave para o sucesso das empresas, considerando o contexto regulatório de revisão tarifária que incentiva a melhoria do desempenho. O modelo operacional é definido a partir da organização logística dos recursos para atendimento da demanda de serviços, que define também os custos fixos e variáveis de pessoal (salário, horas extras, refeições), infraestrutura (manutenção de prédios, ferramentas e equipamentos) e deslocamentos (manutenção de veículos, combustível), por exemplo. A melhor alocação e o melhor dimensionamento de bases operacionais possibilitam a redução dos custos com deslocamento e infraestrutura, favorecendo o aproveitamento da força de trabalho em campo, a melhoria do atendimento dos clientes e da segurança dos colaboradores. Este trabalho apresenta uma metodologia de otimização de custos através da alocação de bases e equipes operacionais, com o modelamento matemático dos objetivos e restrições do negócio e a aplicação de algoritmo evolutivo para busca das melhores soluções, sendo uma aplicação de Pesquisa Operacional, no campo da Localização de Instalações, em distribuição de energia elétrica. O modelo de otimização desenvolvido possibilita a busca pelo ponto de equilíbrio ótimo que minimiza o custo total formado pelos custos de infraestrutura, frota (veículos e deslocamentos) e pessoal. O algoritmo evolutivo aplicado no modelo oferece soluções otimizadas pelo melhoramento de conjuntos de variáveis binárias com base em conceitos da evolução genética. O modelo de otimização fornece o detalhamento de toda a estrutura operacional e de custos para uma determinada solução do problema, utilizando premissas de produtividade e deslocamentos (velocidades e distâncias) para definir as abrangências de atuação das bases operacionais, recursos (equipes, pessoas, veículos) necessários para atendimento da demanda de serviços, e projetar todos os custos fixos e variáveis associados. A metodologia desenvolvida neste trabalho considera também a projeção de demanda futura para a aplicação no estudo de caso, que evidenciou a efetividade da metodologia como ferramenta para a melhoria da eficiência operacional em empresas de distribuição de energia elétrica. / Being efficient is a requirement for the sustainability of electricity distribution companies in Brazil. The quest for efficiency must be in harmony with the continuous improvement of quality, safety and satisfaction of customers and all stakeholders involved. The challenge of attending multi-objectives requires companies in the sector to develop innovative solutions with the change of processes, technology, structure and enabling their professionals to drive this. Developing an efficient operational model and a strict cost management are keys for companies to achieve success, considering the regulatory context of tariff reviewing that encourages performance improvement. The operational model is defined from the logistics organization of resources to meet the demand of services, which also defines fixed and variable costs with people/teams (payments, overtime, meals), infrastructure (maintenance of building, tools and equipments) and fleet (maintenance of vehicles and fuel costs), for example. The best allocation and the best design of operational facilities (or operational bases) will reduce infrastructure costs and truck rolls, releasing workforce to attend customers and reducing displacements risks. This work presents a cost optimization methodology through the allocation of operational bases and teams, with the mathematical modelling of business objectives, constraints and using Evolutionary Algorithm to find the best solution, as an application of Operations Research in the field of Facility Location in electricity distribution. The optimization model enables the search for the optimal balance point that minimizes the total cost formed by infrastructure, fleet and people. The Evolutionary Algorithm applied in the model offers optimized solutions through the improvement of sets of binary variables based on genetic evolution concepts. The optimization model also gives detailed information about the operational structure and costs for a given allocation solution, using productivity and displacements (speed, distances) information to define the service regions for each operational base and resources (people, vehicles) needed to attend the demand of services, defining all fixed and variable costs for this. The methodology presented in this paper also considers the future demand of services (forecast), used in a case study that showed the effectives of this methodology as a tool for the improvement of operational efficiency in electricity distribution companies.
|
13 |
Μέθοδοι εισαγωγής και επίδραση των νέων τεχνολογιών και της πληροφορικής σε μονάδες υγείαςΚωστάκη, Χαρά 31 October 2007 (has links)
Η διατριβή αναφέρεται στην ανάπτυξη μίας Μεθοδολογίας Ενοποίησης Εργαλείων Διοίκησης (Μ.Ε.Δ.Δ.) για την επίλυση προβλημάτων που παρουσιάζονται στον τομέα της υγείας, τα οποία αναφέρονται αφενός στη χωροθέτηση μονάδων υγείας και αφετέρου στην οργάνωση και διαχείρισή τους. Η καινοτομία της διατριβής αυτής είναι ότι αντιμετωπίζει τα προβλήματα αυτά σαν προβλήματα της μορφής ‘αιτία-κατάσταση-αντιμετώπιση’, δηλαδή προτείνει την ανάλυση των αιτιών (για παράδειγμα ανάλυση παραγόντων κινδύνου για τη δημιουργία Οξέος Στεφανιαίου Συνδρόμου) που οδηγούν σε μία κατάσταση (Οξύ Στεφανιαίο Σύνδρομο) και μετά χρησιμοποιεί αυτή την ανάλυση για την αντιμετώπιση των καταστάσεων (χωροθέτηση, οργάνωση και διαχείριση μονάδων καρδιαγγειακών νοσημάτων).
Η Μ.Ε.Ε.Δ. βασίζεται στην ενοποίηση μεθόδων από τα πεδία της Επιχειρηματικής Νοημοσύνης (Business Intelligence), της Επιχειρησιακής Έρευνας και της Κοστολόγησης, με σκοπό αρχικά την εξαγωγή κανόνων για την εύρεση αιτιών που δημιουργούν μία κατάσταση, στη συνέχεια την αντιμετώπιση αυτής της κατάστασης με βάση τους εξορυγχθέντες κανόνες και τέλος την οργάνωση των λειτουργικών μονάδων που δημιουργήθηκαν για την αντιμετώπιση της κατάστασης.
Αρχικά, χρησιμοποιούνται τρεις μέθοδοι του επιστημονικού πεδίου Εξόρυξης από Δεδομένα (data mining): οι κανόνες συσχέτισης (association rules), ταξινόμησης (classification rules) και ομαδοποίησης (clustering rules) ως τεχνικές εύρεσης ισχυρών κανόνων, δηλαδή αιτιών που δημιουργούν την κατάσταση. Στη συνέχεια, χρησιμοποιείται η ανάλυση χωροθέτησης (location analysis) από το πεδίο της επιχειρησιακής έρευνας, προκειμένου να χωροθετηθούν λειτουργικές μονάδες. Η τεχνική της προσομοίωσης (simulation) εφαρμόζεται, προκειμένου να εξετάσει σενάρια σχετικά με τη δομή και τους απαιτούμενους πόρους των μονάδων. Κατόπιν, η τεχνική της κοστολόγησης με βάση τις δραστηριότητες (Activity-based costing) χρησιμοποιείται για την κοστολόγηση των υπηρεσιών της μονάδας, ενώ η μέθοδος OLAP (On-line analytical processing) εφαρμόζεται για την παρακολούθηση της λειτουργίας της μονάδας και για τη λήψη στρατηγικών αποφάσεων και διορθωτικών μέτρων.
Η εργασία αυτή προτείνει την οργάνωση των μεθόδων που αναφέρθηκαν με μία συγκεκριμένη ροή, ώστε κανείς να οδηγείται σε μία ολοκληρωμένη λύση τέτοιων πολύπλοκων προβλημάτων. / The thesis is concerned with the development of a methodology for solving a variety of problems in healthcare management, which refer to the location of health units, as well as their organization and management. The proposed methodology deals with these kinds of problems as problems of the form ‘cause-state-treatment’, which means that it proposes the analysis of the causes (for example risk factors associated with cardiovascular disease) which result in a state (cardiovascular disease) and then it uses this analysis to deal (treat) with the state (situation) (location, organization and management of Heart Disease Centers).
The proposed methodology is based on the integration of various methods and techniques from the fields of Business Intelligence, Data Mining, Operational Research and Costing. Initially, the methodology extracts rules, which represent the causes that create a state, then it tackles the state (situation) based on the extracted rules, and finally it organizes the operational units, which are developed in order to deal with the state (situation).
Thus, at the fist stage three data mining techniques are used: association rule mining, classification rules and clustering, as techniques for discovering strong rules in databases, that is, causes that lead to a state. Following, location analysis is used, intending to locate operational units, based on the quantitative results of the first stage. Simulation is used with the aim to examine alternative scenarios regarding the structure and the required resources (human resources as well as technology requirements) of the units. Then, activity-based costing is used to assess the efficiency of the health care technology. Finally, OLAP (On-line analytical processing) is applied in order for the health care managers to monitor the operations of the unit, as well as undertake corrective measures and finally aid decision making.
The thesis proposes the organization of the aforementioned methods with a particular flow, so as the decision maker is led to an integrated solution of such complex health care management problems.
|
14 |
Räumliches Einkaufsverhalten und Standortpolitik im Einzelhandel unter Berücksichtigung von Agglomerationseffekten / Theoretische Erklärungsansätze, modellanalytische Zugänge und eine empirisch-ökonometrische Marktgebietsanalyse anhand eines Fallbeispiels aus dem ländlichen Raum Ostwestfalens/Südniedersachsens / Spatial shopping behavior and retail location strategies in consideration of agglomeration effects / Theoretical explanations, modeling approaches and an empirical econometric market area analysis by an example from a rural region in East Westphalia/South Lower SaxonyWieland, Thomas 15 October 2014 (has links)
Die vorliegende Dissertationsschrift beschäftigt sich mit dem räumlichen Einkaufsverhalten im Einzelhandel im Zusammenhang mit Einzelhandelsagglomerationen; genauer gesagt werden nachfrageseitige positive Agglomerationseffekte im Einzelhandel untersucht, d.h. Urbanisierungs- und Lokalisierungsvorteile, die auf dem Kundenverhalten basieren. Ausgehend von sehr heterogenen theoretischen Arbeiten v.a. aus dem Bereich der Raumwirtschaftstheorien, der Mikroökonomie und der verhaltenswissenschaftlichen Marketing-Forschung werden die verschiedenen Einkaufsstrategien abgeleitet, die in einer kundenseitigen Bevorzugung von agglomerierten Angebotsstandorten resultieren. Neben den bereits in älteren Raumwirtschaftstheorien behandelten Kopplungskäufen sind dies vor allem verschiedene Typen von Vergleichskäufen, die sich auf (mitunter strategische) Agglomerationen eigentlich konkurrierender Einzelhandelsanbieter beziehen. Die gebildeten Hypothesen zur (positiven) Wirkung von Einzelhandelsagglomerationen bzw. der räumlichen Konzentration mit andersartigen bzw. eigentlich konkurrierenden Anbietern werden anhand des ökonometrischen MCI-Modells (Multiplicative Competitive Interaction Model) überprüft. Auf diesem Wege wird zugleich ein Marktgebietsmodell auf der Basis des häufig angewendeten Huff-Modells formuliert, mit dem es möglich ist, Kundenströme unter Berücksichtigung von Agglomerationseffekten zu schätzen. Die Modellparametrisierung erfolgt anhand der realen Marktgebiete von Lebensmittelmärkten sowie Elektronik- und Baumärkten, die anhand einer Haushaltsbefragung ermittelt wurden. Insgesamt zeigen die Analyseergebnisse in den meisten Fällen, dass die Einkaufsstättenwahl bzw. der lokale Marktanteil einzelner Anbieter positiv vom vorhandenen Potenzial für Kopplungs- und Vergleichskäufe beeinflusst wird. Die Untersuchung zeigt die Relevanz von Agglomerationseffekten im Einzelhandel auf, wobei ein Modell formuliert wird, mit dem es möglich ist, diese Effekte zu analysieren. Konkrete Anwendungen hierfür finden sich in der betrieblichen Standortanalyse und insbesondere in der raumordnerischen und städtebaulichen Verträglichkeitsbeurteilung von Einzelhandelsansiedlungen.
|
15 |
Analyzing the Need for Nonprofits in the Housing Sector: A Predictive Model Based on LocationOerther, Catie 03 August 2023 (has links)
No description available.
|
16 |
Eine deutschlandweite Potenzialanalyse für die Onshore-Windenergie mittels GIS einschließlich der Bewertung von SiedlungsdistanzenänderungenMasurowski, Frank 11 July 2016 (has links)
Die Windenergie an Land (Onshore-Windenergie) ist neben der Photovoltaik eine der tragenden Säulen der Energiewende in Deutschland. Wie schon in der Vergangenheit
wird auch zukünftig der Ausbau der Onshore-Windenergie, mit dem Ziel eine umweltgerechte
und sichere Energieversorgung für zukünftige Generationen aufzubauen, durch die Politik massiv vorangetrieben. Für eine planvolle Umsetzung der Energiewende, insbesondere im Bereich der Windenergie, müssen Kenntnisse über den zur Verfügung stehenden Raum und der Wirkungsweise standortspezifischer Faktoren auf planungsrechtlicher Ebene vorhanden sein. In der vorliegenden Arbeit wurde die Region Deutschland auf das für dieWindenergie an Land nutzbare Flächenpotenzial analysiert, von diesem allgemein gültige Energiepotenziale abgeleitet und in einer Sensitivitätsanalyse die Einflüsse verschiedener Abstände zwischen den Windenergieanlagen und Siedlungsstrukturen auf das ermittelte Energiepotenzial untersucht. Des
Weiteren wurden für die beobachteten Zusammenhänge zwischen den Distanz- und
Energiepotenzialänderungen mathematische Formeln erstellt, mit deren Hilfe eine Energiepotenzialänderung in Abhängigkeit von spezifischen Siedlungsdistanzänderungen vorhersagbar sind. Die Analyse des Untersuchungsgebiets (USG) hinsichtlich des zur Verfügung stehenden Flächenpotenzials wurde anhand eines theoretischen Modells, welches die reale Landschaft mit ihren unterschiedlichen Landschaftstypen und Infrastrukturen widerspiegelt, umgesetzt. Auf Basis dieses Modells wurden so genannte „Basisflächen“ sowie für die Onshore-Windenergie nicht nutzbare Flächen (Tabu- oder Ausschlussflächen) identifiziert und mittels einer GIS-Software (Geographisches Informationssystem) verschnitten.
Die Identifizierung der Ausschlussflächen erfolgte über regionalisierte beziehungsweise
im gesamten USG geltende multifaktorielle Bestimmungen für die Platzierung von Windenergieanlagen (WEA). Zur Gewährleistung einer einheitlichen Konsistenz wurden die verschiedenen Regelungen, welche aus den unterschiedlichsten Quellen stammen, vereinheitlicht, vereinfacht und in einem so genannten „Regelkatalog“ festgeschrieben. Die Berechnung des im USG maximal möglichen Energiepotenzials erfolgte durch eine Referenzanlage, welche im USG räumlich verteilt platziert wurde. Die Energiepotenziale (Leistungs- und Ertragspotenzial) leiten sich dabei aus der Kombination der räumlichen Lage der WEA, den technischen Leistungsspezifikationen der Referenzanlage und dem regionalem Windangebot ab. Eine wesentliche Grundvoraussetzung für die Berechnung der Energiepotenziale lag in der im Vorfeld durchzuführenden Windenergieanlagenallokation auf den Potenzialflächen begründet. Zu diesem Zweck wurde die integrierte Systemlösung „MAXPLACE“ entwickelt. Mit dieser ist es möglich, WEA unter Berücksichtigung von anlagenspezifischen, wirtschaftlichen und sicherheitstechnischen Aspekten in einzelnen oder zusammenhängenden Untersuchungsregionen zu platzieren. Im Gegensatz zu bereits bestehenden Systemlösungen (Allokationsalgorithmen) aus anderen Windenergie-Potenzialanalysen zeichnet sich die integrierte Systemlösung „MAXPLACE“ durch eine sehr gute Effizienz, ein breites Anwendungsspektrum sowie eine einfache Handhabung aus.
Der Mindestabstand zwischen den WEA und den Siedlungsstrukturen stellt den größten Restriktionsfaktor für das ermittelte Energiepotenzial dar. Zur Bestimmung der Einflussnahme von Siedlungsdistanzänderungen auf das Energiepotenzial wurde mit Hilfe des erstellten Landschaftsmodells eine Sensitivitätsanalyse durchgeführt. In dieser wurden die vorherrschenden Landschafts- und Infrastrukturen analysiert und daraus standortbeschreibende Parameter abgeleitet. Neben der konkreten Benennung der Energiepotenzialänderungen, wurden für das gesamte USG mathematische Abstraktionen der beobachteten Zusammenhänge in Form von Regressionsformeln ermittelt. Diese Formeln ermöglichen es, ohne die in dieser Arbeit beschriebene aufwendige Methodik nachzuvollziehen, mit nur wenigen Parametern die Auswirkungen einer Siedlungsdistanzänderung auf das Energiepotenzial innerhalb des Untersuchungsgebiets zu berechnen.
|
17 |
GIS-based Episode Reconstruction Using GPS Data for Activity Analysis and Route Choice Modeling / GIS-based Episode Reconstruction Using GPS DataDalumpines, Ron 26 September 2014 (has links)
Most transportation problems arise from individual travel decisions. In response, transportation researchers had been studying individual travel behavior – a growing trend that requires activity data at individual level. Global positioning systems (GPS) and geographical information systems (GIS) have been used to capture and process individual activity data, from determining activity locations to mapping routes to these locations. Potential applications of GPS data seem limitless but our tools and methods to make these data usable lags behind. In response to this need, this dissertation presents a GIS-based toolkit to automatically extract activity episodes from GPS data and derive information related to these episodes from additional data (e.g., road network, land use).
The major emphasis of this dissertation is the development of a toolkit for extracting information associated with movements of individuals from GPS data. To be effective, the toolkit has been developed around three design principles: transferability, modularity, and scalability. Two substantive chapters focus on selected components of the toolkit (map-matching, mode detection); another for the entire toolkit. Final substantive chapter demonstrates the toolkit’s potential by comparing route choice models of work and shop trips using inputs generated by the toolkit.
There are several tools and methods that capitalize on GPS data, developed within different problem domains. This dissertation contributes to that repository of tools and methods by presenting a suite of tools that can extract all possible information that can be derived from GPS data. Unlike existing tools cited in the transportation literature, the toolkit has been designed to be complete (covers preprocessing up to extracting route attributes), and can work with GPS data alone or in combination with additional data. Moreover, this dissertation contributes to our understanding of route choice decisions for work and shop trips by looking into the combined effects of route attributes and individual characteristics. / Dissertation / Doctor of Philosophy (PhD)
|
Page generated in 0.0833 seconds