Spelling suggestions: "subject:"canning tunneling"" "subject:"8canning tunneling""
311 |
Propriétés Structurales et Électroniques du Graphène Épitaxié sur Carbure de Silicium / Structural and Electronic Properties of Epitaxial Graphene on Silicon CarbideRidene, Mohamed 17 October 2013 (has links)
La synthèse du graphène par traitement thermique d’un substrat de carbure de silicium (SiC) est une technique prometteuse pour l’intégration de ce nouveau matériau dans l’industrie, notamment dans les dispositifs électroniques. L’avantage de cette méthode réside dans la croissance de films minces de graphène de taille macroscopique directement sur substrat isolant. Toutefois, avant d’intégrer ce matériau, il convient d’en contrôler la synthèse et d’en moduler les propriétés. Dans ce travail de thèse, nous étudions les propriétés structurales et électroniques du graphène obtenu par la graphitisation des polytypes 3C-, 4H- et 6H-SiC. A partir de diverses méthodes de caractérisation, telles que la diffraction des électrons lents (LEED) ou la microscopie et spectroscopie à effet tunnel (STM/STS), nous avons vérifié, dans un premier temps, que le caractère discontinu du graphène sur les bords de marches peut introduire un confinement latéral supplémentaire des électrons dans le graphène. Dans un second temps, l’observation des singularités de Van Hove nous a permis de démontrer l’effet de confinement unidimensionnel dans les régions d’accumulations de marches du SiC. Enfin, l’introduction de désordre dans nos couches de graphène induit une réduction de la densité de porteurs de charges dans les couches. De même, ce désordre conduit à une transition de phase quantique entre le régime localisé et le régime d’effet Hall quantique. / The synthesis of graphene by thermal decomposition of silicon carbide (SiC) is a promising technique for the integration of this new material in the industry, especially in electronic devices. The advantage of this method lies in the growth of macroscopic graphene films directly on an insulator substrate. However, before using this material in electronic devices, it is advisable to control its synthesis and modulate its properties. In this thesis, we present the structural and electronic properties of graphene obtained by graphitization of 3C- , 4H - and 6H- SiC polytypes. Various characterization methods were used, including low energy electron diffraction (LEED) and microscopy and scanning tunneling spectroscopy (STM / STS). Based on STM / STS measurements, we show that the discontinuity of epitaxial graphene at the step edges may introduce an additional lateral confinement of electrons in graphene. The observation of Van Hove singularities in the STS spectra confirmed the one dimensional confinement of graphene in step bunching regions of SiC.Finally, we show that when disorder is introduced on our graphene samples, the charge carrier density is reduced. This disorder lead to the observation of a quantum phase transition from a localized regime to a quantum Hall effect regime.
|
312 |
Condutividade de películas finas de PEDOT:PSS. / On the conductivity of PEDOT:PSS thin films.Nardes, Alexandre Mantovani 18 December 2007 (has links)
As interessantes propriedades eletrônicas, mecânicas e óticas dos materiais orgânicos conjugados fizeram emergir diversas aplicações tecnológicas e comerciais em dispositivos baseados nesses materiais, tais como sensores, memórias, células solares e diodos emissores de luz poliméricos (LEDs). Neste sentido, o tema central desta tese é o estudo das propriedades elétricas e morfológicas e os mecanismos de transporte eletrônico de cargas no PEDOT:PSS, uma blenda polimérica que consiste de um policátion condutivo, o poli(3,4- etilenodioxitiofeno) (PEDOT) e do poliânion poli(estirenosulfonado) (PSS). PEDOT:PSS é amplamente usado como material de eletrodo em aplicações na área de eletrônica plástica, como mencionado anteriormente. Apesar da condutividade elétrica dos filmes finos de PEDOT:PSS possa variar várias ordens de grandeza, dependendo do método pela qual é processado e transformado em filme fino, as razões para este comportamento é essencialmente desconhecido. Esta tese descreve um estudo detalhado do transporte eletrônico de cargas anisotrópico e sua correlação com a morfologia, as condições e as dimensões da separação de fase entre os dois materiais, PEDOT e PSS. Antes de abordar as propriedades do PEDOT:PSS, uma camada de filme fino inorgânica usada para aumentar o tempo de vida de dispositivos orgânicos é descrita no Capítulo 2. Um importante mecanismo de degradação em LEDs poliméricos é a fotooxidação da camada ativa. Assim, isolar a camada ativa da água, oxigênio e luz, torna-se crucial para o aumento do tempo de vida. Um sistema de deposição química a partir da fase de vapor estimulada por plasma (PECVD) é usado para depositar filmes finos de nitreto de carbono em baixas temperaturas, menores que 100 °C, sobre PLEDs com a intenção de aumentar o tempo de vida destes dipositivos e diminuir a fotodegradação do poli[2-metoxi-5- (2-etil-hexiloxi)-p-fenileno vinileno] (MEH-PPV) em ambiente atmosférico. O filme fino de nitreto de carbono possui as características de um material que pode bloquear a umidade e que tem espessura e flexibilidade adequados para a nova geração de PLEDs flexíveis. As características dos filmes finos de nitreto de carbono e MEH-PPV foram investigadas usando-se técnicas de espectroscopia ótica, com particular ênfase no processo de degradação do MEHPPV sob iluminação. Os resultados mostraram que o filme fino de nitreto de carbono protege o filme polimérico e diminui consideravelmente a fotooxidação. Para avaliar o efeito do encapsulamento em dispositivos reais, LEDs poliméricos foram fabricados e pelas curvas de corrente-tensão um aumento no tempo de vida é confirmado quando a camada de nitreto de carbono é presente. O tempo de vida desejado, maior que 10.000 horas, para aplicações comerciais não foi atingido, entretanto, o encapsulamento pode ser melhorado otimizando as propriedades da camada de nitreto de carbono e combinando-as com camadas de outros materiais orgânicos e inorgânicos. Os capítulos seguintes deste trabalho aborda os estudos realizados com o PEDOT:PSS, uma vez que é amplamente usado em eletrônica orgânica, mas relativamente tem recebido pouca atenção com respeito ao transporte eletrônico de cargas, bem como sua correlação com a morfologia. No Capítulo 3, experimentos com microscopia de varredura por sonda (SPM, Scanning Probe Microscopy) e medidas de condutividade macroscópica são utilizados para estudar e obter um modelo 3D morfológico completo que explica, qualitativamente, a condutividade anisotrópica observada nos filmes finos de PEDOT:PSS depositados pela técnica de spin coating. Imagens topográficas de microscopia de varredura por tunelamento (STM) e imagens da seção transversal observadas com o microscópio de forca atômica (X-AFM) revelaram que o filme fino polimérico é organizado em camadas horizontais de partículas planas ricas em PEDOT, separadas por lamelas quasi-contínuas de PSS. Na direção vertical, lamelas horizontais do isolante PSS reduzem a condutividade e impõe o transporte eletrônico a ser realizado por saltos em sítios vizinhos próximos (nn-H, nearest-neighbor hopping) nas lamellas de PSS. Na direção lateral, o transporte eletrônico via saltos 3D em sítios a longas distâncias (3D-VRH, variable range hopping) ocorre entre as ilhas ricas em PEDOT que são separadas por barreiras muito mais finas de PSS, causando um aumento da condutividade nesta direção. Esta discussão é estendida ao Capítulo 4 com uma descrição quantitativa do transporte eletrônico de cargas predominantes. Particularmente, é demonstrado que o transporte de cargas via saltos 3D em sítios a longas distâncias ocorre entre ilhas ricas em PEDOT e não entre segmentos isolados de PEDOT ou dopantes na direção lateral, enquanto que na direção vertical o transporte de cargas via saltos em sítios vizinhos próximos ocorre dentro das lamelas do quasi-isolante PSS. Em algumas aplicações, faz-se necessário usar PEDOT:PSS com alta condutividade elétrica. Isso pode ser feito adicionando-se sorbitol à solução aquosa de PEDOT:PSS. Após um tratamento térmico, e dependendo da quantidade de sorbitol adicionado, a condutividade aumenta várias ordens de grandeza e as causas e consequências de tal comportamento foram investigadas neste trabalho. O Capítulo 5 investiga as várias propriedades tecnológicas do PEDOT:PSS altamente condutivo tratado com sorbitol, tais como a própria condutividade, os efeitos dos tratamentos térmicos e exposição à umidade. É observado que o aumento da condutividade elétrica, devido à adição de sorbitol na solução aquosa, é acompanhado por uma melhoria na estabilidade da condutividade elétrica em condições atmosféricas. Surpreendentemente, a condutividade elétrica do PEDOT:PSS, sem tratamento com sorbitol (~ 10-3 S/cm), aumenta mais de uma ordem de grandeza sob ambiente úmido de 30-35 % umidade relativa. Este efeito é atribuido a uma contribuição iônica à condutividade total. Análise Temogravimetrica (TGA), espectrometria de massa com sonda de inserção direta (DIP-MS) e análise calorimétrica diferencialmodulada (MDSC) foram usadas como técnicas adicionais para o entendimento dos estudos deste Capítulo. No Capítulo 6, microscopia de varredura por sonda-Kelvin (SKPM) foi empregada para medir o potencial de superfície dos filmes finos de PEDOT:PSS tratados com diferentes concentrações de sorbitol. Mostra-se que a mudança no potencial de superfície é consistente com uma redução de PSS na superfície do filme fino. Para estudar o transporte eletrônico nos filmes finos de PEDOT:PSS altamente condutivos tratados com sorbitol, o Capítulo 7 usa medidas de temperatura e campo elétrico em função da conduvitidade correlacionados com analises morfológicas realizadas por STM. É observado que o transporte eletrônico por saltos, na direção lateral, muda de 3D-VRH para 1D-VRH quando o PEDOT:PSS é tratado com sorbitol. Esta transição é explicada por uma auto-organização das ilhas ricas em PEDOT em agregados 1D, devido ao tratamento com sorbitol, tornando-se alinhadas em domínios micrométricos, como observado pelas imagens de STM. / Employing the unique mechanical, electronic, and optical properties of the conjugated organic and polymer materials several technological and commercial applications have been developed, such as sensors, memories, solar cells and light-emitting diodes (LEDs). In this respect, the central theme of this thesis is the electrical conductivity and mechanisms of charge transport in PEDOT:PSS, a polymer blend that consists of a conducting poly(3,4-ethylenedioxythiophene) polycation (PEDOT) and a poly(styrenesulfonate) polyanion (PSS). PEDOT:PSS is omnipresent as electrode material in plastic electronics applications mentioned above. Although the conductivity of PEDOT:PSS can vary by several orders of magnitude, depending on the method by which it is processed into a thin film, the reason for this behavior is essentially unknown. This thesis describes a detailed study of the anisotropic charge transport of PEDOT:PSS and its correlation with the morphology, the shape, and the dimension of the phase separation between the two components, PEDOT and PSS. Before addressing the properties of PEDOT:PSS, a new barrier layer is described in Chapter 2 that enhances the lifetime of organic devices. An important degradation mechanism in polymer LEDs is photo-oxidation of the active layer. Hence, isolating the active layer from water and oxygen is crucial to the lifetime. Plasma-enhanced chemical vapor deposition (PECVD) is used to deposit a thin layer of carbon nitride at low deposition temperatures, below 100 °C, on a polymer LED that uses poly[2-methoxy-5-(2´-ethylhexyloxy)-1,4- phenylene vinylene] (MEH-PPV) as active layer. A thin layer of carbon nitride acts as barrier for humidity, but is still sufficiently bendable to be used in flexible polymer LEDs. The characteristics of carbon nitride and MEH-PPV films have been investigated using optical spectroscopy, with particular emphasis on the degradation process of MEH-PPV under illumination. The measurements show that the carbon nitride coating indeed protects the polymer film and diminishes the photo-oxidation considerably. To study the effect of the encapsulation in real devices, polymer LEDs were made and their current-voltage characteristics confirm the enhanced lifetime in the presence of a carbon nitride barrier layer. However, the target, a lifetime of more than 10,000 hours for commercial applications, was not achieved. The remaining chapters of this thesis describe the investigations of PEDOT:PSS. PEDOT:PSS is widely used in organic electronics. So far, relatively little attention has, been paid to the mechanisms of charge transport in this material and the correlation of those properties to the morphology. In Chapter 3, scanning probe microscopy (SPM) and macroscopic conductivity measurements are used to obtain a full 3D morphological model that explains, qualitatively, the observed anisotropic conductivity of spin coated PEDOT:PSS thin films. Topographic scanning probe microscopy (STM) and cross-sectional atomic force microscopy images (X-AFM) reveal that the thin film is organized in horizontal layers of flattened PEDOT-rich particles that are separated by quasi-continuous PSS lamella. In the vertical direction, the horizontal PSS insulator lamellas lead to a reduced conductivity and impose nearest-neighbor hopping (nn-H) transport. In the lateral direction, 3D variable-range hopping (3D-VRH) transport takes place between PEDOT-rich clusters which are separated by much thinner barriers, leading to an enhanced conductivity in this direction. This discussion is extended in Chapter 4, where a quantitative description of the length scales of the predominant transport is obtained. Particularly, it is demonstrated that the hopping process takes place between PEDOT-rich islands and not between single PEDOT segments or dopants in the lateral direction, whilst in the vertical direction the current limiting hopping transport occurs between dilute states inside the quasi-insulating PSS lamellas. By a post-treatment it is possible to modify PEDOT:PSS to raise its conductivity, by orders of magnitude. Typically, the addition of sorbitol to the aqueous dispersion of PEDOT:PSS that is used to deposit thin films via spin coating leads to an enhancement of the conductivity after thermal annealing. The causes and consequences of such behavior were investigated in detail. Chapter 5 describes the various properties of the highly conductive sorbitol-treated PEDOT:PSS, such as the conductivity itself, and the effects of thermal annealing and exposure to moisture. It is found that the conductivity enhancement upon addition of sorbitol is accompanied by a better environmental stability. Surprisingly, the electrical conductivity of PEDOT:PSS thin films without sorbitol treatment is increased by more than one order of magnitude in an environment with more than 30-35 % relative humidity. This effect is attributed to an ionic contribution to the overall conductivity. Thermal gravimetric analysis (TGA), direct insert probe-mass spectrometry (DIP-MS) and modulation differential scanning calorimetry (MDSC) were used as additional tools to demonstrate that, after thermal treatment, the concentration of sorbitol in the final PEDOT:PSS layer is negligibly small. In Chapter 6, scanning Kelvin probe microscopy (SKPM) is employed to measure the surface potential and work function of this PEDOT:PSS films that were deposited from water with different sorbitol concentrations. It is shown that work function of PEDOT:PSS is reduced with increasing sorbitol concentration. This shift can be explained by and is in agreement with- a reduction in the surface enrichment with PSS of the film. To study the charge transport properties of the highly conductive sorbitoltreated PEDOT:PSS films, temperature dependent and electric field dependent measurements are correlated with morphological analysis by STM in Chapter 7. It is found that by sorbitol treatment the hopping transport changes from 3DVRH to 1D-VRH. This transition is explained by a sorbitol-induced selforganization of the PEDOT-rich grains into 1D aggregates that are aligned within micrometer sized domains, as observed in STM images.
|
313 |
Manipulations électroniquement induites de molécules individuelles à la surface de semiconducteurs : vers les dispositifs bi-moléculaires / Electronically induced manipulation of single molecules adsorbed on semiconductor surfaces : towards bi-molecular devicesLabidi, Hatem 26 October 2012 (has links)
L’objectif de cette thèse est d’explorer le contrôle de processus électroniquement induits dans diverses molécules fonctionnalisées adsorbées sur la surface du Si(100). Ce travail s’inscrit dans le contexte des nanosciences moléculaires et a été réalisé à l’aide d’un microscope à effet tunnel (STM) à basse température (9K). Nous avons utilisé une approche combinant étude statistique et modélisation théorique afin de pouvoir explorer la physique des divers processus observés. Cette thèse débute par l’étude de la molécule d’hexaphényle benzène (HPB) dont les phényles latéraux permettent un découplage électronique entre la molécule et la surface du silicium. Grâce à cet effet, nous avons pu contrôler la diffusion directive et réversible de la molécule d’HPB physisorbée le long des marches de type SA à la surface du Si(100)−2×1 à travers un processus combinant l’action des électrons tunnels et celle du champ électrostatique induit par la pointe du STM. Ces premiers résultats ont permis d’envisager l’étude d’un couple de molécules de tétraphényles porphyrines métalliques adsorbées à la surface du Si(100)−2×1. Il s’agit de NiTPP et de CuTPP qui, comme pour l’HPB, possèdent des cycles phényles latéraux. Plusieurs conformations d’adsorption de ces deux molécules ont été caractérisées et leurs réponses à des excitations électroniques étudiées. Ceci nous a permis, pour la molécule de NiTPP, d’aboutir au contrôle de l’activation réversible d’un bistable intra-moléculaire en dépit de la chimisorption partielle de la molécule sur le silicium. L’étude de la molécule de CuTPP, quant à elle, montre des courbes de conductance I(V) en forme d’hystérésis associées à des changements réversibles de conformations réalisant ainsi une fonction mémoire. Dès lors, nous avons pu étudier la co-adsorption des molécules de NiTPP et de CuTPP sur le Si(100) afin de réaliser un binôme moléculaire. Divers couples de molécules ont pu être étudiés. Sur l’un d’entre eux, nous avons pu activer des processus d’excitations inter-moléculaires en excitant électroniquement l’une des molécules afin d’observer un changement de conformation de la seconde molécule du binôme. Ce résultat réalise ainsi le contrôle électronique d’un dispositif bi-moléculaire en s’affranchissant des processus électroniques induits via le substrat. Enfin, à titre de perspective, ce travail de thèse présente un procédé novateur permettant le contrôle local de l’hydrogénation de la surface de Si(100). Ceci est réalisé grâce à la passivation de la pointe du STM par l’hydrogène moléculaire à 9K. Les électrons tunnels sont ensuite utilisés pour induire la dissociation intra-dimer des molécules d’H2 sur la surface du Si(100). Cette technique peut être envisagée pour la passivation du Si(100) ou pour agir localement sur des circuits moléculaires. / The objective of this thesis is to explore the control of electronically induced processes in various functionalized molecules adsorbed on the surface of silicon (100). In the context of molecular nanoscience, this work has been carried out using a scanning tunneling microscope operating at low temperature (9K). We used an approach combining statistical study and theoretical modelling in order to explore the physics of the various observed processes. This thesis begins with the study of the Hexaphenylbenzene (HPB) molecule for which the lateral phenyl rings enable the molecule-silicon surface electronic decoupling. Thanks to this effect, we could achieve a directive and reversible diffusion control of physisorbed HPB molecules along the SA silicon step edge through a process combining the joint actions of tunnel electrons and the local STM tip induced electrostatic field. These first results allowed considering the study of a couple of metaltetraphenyl porphyrin molecules adsorbed on the Si(100)-2x1 surface. Similarly to the HPB molecules, the two chosen metalloporphyrins: NiTPP and CuTPP, have lateral phenyl rings. Several adsorption conformations for these molecules were characterized and their response to electronic excitation has been studied. In the case of NiTPP, this led to the control of the reversible activation of an intra-molecular bistable despite the partial chemisorption of the molecule on the silicon surface. As for CuTPP molecule, our study revealed hysteresis behavior on the I(V) conduction curves associated with reversible conformation changes which represents the realization of a memory function. Following the study of each molecule apart, we performed the co-adsorption of the two molecules on the Si(100) surface to study molecular pairs. Various pairs of molecules have been studied. On one of them, we were able to activate an inter-molecular excitation transfer process by locally exciting one molecule and observing a conformation change of the second molecule of the pair. This result thus shows the electronic control of a bi-molecular device getting rid of substrate mediated electronic process. Finally, as a perspective, this thesis presents a novel technique allowing the controlled local hydrogenation of the Si(100) surface. This is achieved thanks to the passivation of the STM tip by molecular hydrogen at 9K. The tunnel electrons are then used to induce the intra-dimer dissociative adsorption of H2 molecules on the Si(100) surface. This technique could be considered for the passivation of Si(100) or to locally modify molecular circuits.
|
314 |
Electronic Coupling Effects and Charge Transfer between Organic Molecules and Metal Surfaces / Elektronische Kopplungseffekte und Ladungstransfer zwischen organischen Molekülen und MetalloberflächenForker, Roman 28 January 2010 (has links) (PDF)
We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. / Zur Analyse der Struktur-Eigenschafts-Beziehungen dünner, epitaktischer Molekülfilme wird in situ differentielle Reflexionsspektroskopie (DRS) als Variante der optischen Absorptionsspektroskopie verwendet. Klare Zusammenhänge zwischen den Spektren und der unterschiedlich starken Kopplung zum jeweiligen Substrat werden gefunden. Während man breite und beinahe unstrukturierte Spektren für eine Quaterrylen (QT) Monolage auf Au(111) erhält, ist die spektrale Form von auf Graphit abgeschiedenem QT ähnlich der isolierter Moleküle. Durch Einfügen einer atomar dünnen organischen Zwischenschicht bestehend aus Hexa-peri-hexabenzocoronen (HBC) mit einem deutlich unterschiedlichen elektronischen Verhalten gelingt sogar eine effiziente elektronische Entkopplung vom darunter liegenden Au(111). Diese Ergebnisse werden durch systematische Variation der Metallsubstrate (Au, Ag und Al), welche von inert bis sehr reaktiv reichen, untermauert. Zu diesem Zweck wird 3,4,9,10-Perylentetracarbonsäuredianhydrid (PTCDA) gewählt, um Vergleichbarkeit der molekularen Filmstrukturen zu gewährleisten, und weil dessen elektronische Anordnung auf verschiedenen Metalloberflächen bereits eingehend untersucht worden ist. Wir weisen ionisiertes PTCDA an einigen dieser Grenzflächen nach und schlagen vor, dass der Ladungsübergang mit der elektronischen Niveauanpassung zusammenhängt, welche mit der Ausbildung von Grenzflächendipolen auf den entsprechenden Metallen einhergeht.
|
315 |
Atomic Scale Images of Acceptors in III-V Semiconductors / Band Bending, Tunneling Paths and Wave FunctionsLoth, Sebastian 26 October 2007 (has links)
No description available.
|
316 |
Untersuchung der elektrischen Phasenseparation in dünnen Manganatschichten mit Rastersondenspektroskopie / Intrinsic phase separation in manganite thin films investigated with scanning tunneling spectroscopyBecker, Thomas 08 June 2004 (has links)
No description available.
|
317 |
Das elektrochemische Potential auf der atomaren Skala: Untersuchung des Ladungstransports eines stromtragenden zweidimensionalen Elektronengases mit Hilfe der Raster-Tunnel-Potentiometrie / The electrochemical potential on atomic scale: Investigation of the charge transport of a current-carrying two-dimensional electron gas by means of Scanning Tunneling PotentiometryHomoth, Jan 03 July 2008 (has links)
No description available.
|
318 |
Phthalocyanines on Surfaces : Monolayers, Films and Alkali Modified StructuresNilson, Katharina January 2007 (has links)
The Phthalocyanines (Pc’s) are a group of macro-cyclic molecules, widely investigated due to the possibility to use them in a variety of applications. Electronic and geometrical structure investigations of molecular model systems of Pc’s adsorbed on surfaces are important for a deeper understanding of the functionality of different Pc-based devices. Here, Pc’s monolayers and films, deposited on different surfaces, were investigated by X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Spectroscopy (XAS) and Scanning Tunneling Microscopy (STM). In addition Density Functional Theory (DFT) simulations were performed. For molecular films of Metal-free (H2Pc) and Iron (FePc) Pc’s, on surfaces, it is found that the intermolecular interaction is weak and the molecules arrange with their molecular plane mainly perpendicular to the surface. Several monolayer systems were characterized, namely H2Pc and FePc adsorbed on Graphite, ZnPc on InSb(001)-c(8x2), H2Pc on Al(110) and on Au(111). For all the studied monolayers it was found that the molecules are oriented with their molecular plane parallel to the surface. The electronic structure of the molecules is differently influenced by interaction with the surfaces. For H2Pc adsorbed on Graphite the nearly negligible effect of the surface on the molecular electronic structure allowed STM characterization of different molecular orbitals. A strong interaction is instead found in the case of H2Pc on Al(110) resulting in molecules strongly adsorbed, and partly dissociated. Modifications of the electronic and geometrical structure induced by alkali doping of H2Pc films and monolayers were characterized. It is found both for the H2Pc film on Al(110) and monolayer adsorbed on Au(111), that the molecular arrangement is changed upon doping by Potassium and Rubidium, respectively. Potassium doping of the H2Pc films results in a filling of previously empty molecular orbitals by a charge transfer from the alkali to the molecule, with significant modification of the molecular electronic structure.
|
319 |
Étude de l’effet Kondo au sein d’auto-assemblages de phtalocyanines par spectroscopie tunnel et photoémission / Molecular Kondo effect in phthalocyanine-based supramolecular lattices investigated by scanning tunneling spectroscopy and photoemissionGranet, Julien 23 March 2018 (has links)
Au cours de cette thèse, nous nous sommes intéressés à l'effet Kondo moléculaire au sein de réseaux supramoléculaires bidimensionnels en contact avec des surfaces métalliques monocristallines. Les techniques mises en oeuvre sont la diffraction d'électrons lents (LEED) et la microscopie à effet tunnel (STM) pour l'étude de la croissance ainsi que la spectroscopie à effet tunnel (STS) et la photoémission pour l'étude des propriétés électroniques. Les molécules employées dans le cadre de ce travail sont composées de macrocycles de phtalocyanine et tétraphénylporphyrine. Elles ont été choisies sur la base de l'orbitale contenant le spin moléculaire. Dans un premier cas, une phtalocyanine non métallée 2HPc a été déposée sur une surface monocristalline d'Ag(111). Un transfert de charge du métal vers la molécule conduit à l'apparition d'un effet Kondo à base température observé par STS sur des molécules individuelles ainsi que sur des auto-assemblages. Dans le deuxième cas, nous avons choisi un composé hôte à double plateaux contenant un ion cérium de type 4f. Nous avons mis en évidence l'influence du substrat sur l'effet Kondo. En effet, tandis que nous observons par STS, l'apparition d'une résonance Kondo lorsque la molécule est auto-assemblée sur Ag(111), aucun effet n'est observé sur Cu(111). Les résultats sont discutés en terme d'interactions molécule-molécule et molécule-substrat / In this work, we investigated molecular Kondo effect in two-dimensional supramolecular lattices adsorbed on metallic single crystalline surfaces by means of low-energy electron diffraction (LEED), scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission (PES). The molecular compounds used in this PhD thesis have been chosen in regards to their spin orbital. The first molecule under investigation is a metal free phthalocyanine adsorbed on Ag(111). A Kondo effect has been evidenced by STS for single molecules as well as for self-assembly up to one monolayer coverage at low temperature. In that case, the spin originates from charge transfer from the Ag surface to the molecule. The second molecular compound is a double-decker molecule hosting a cerium 4f-ion. In that case, a Kondo resonance is evidenced by STS when it is self-assembled on Ag(111) whereas it is absent on Cu(111). These results are discussed in terms of intermolecular and molecule-metal interactions
|
320 |
Condutividade de películas finas de PEDOT:PSS. / On the conductivity of PEDOT:PSS thin films.Alexandre Mantovani Nardes 18 December 2007 (has links)
As interessantes propriedades eletrônicas, mecânicas e óticas dos materiais orgânicos conjugados fizeram emergir diversas aplicações tecnológicas e comerciais em dispositivos baseados nesses materiais, tais como sensores, memórias, células solares e diodos emissores de luz poliméricos (LEDs). Neste sentido, o tema central desta tese é o estudo das propriedades elétricas e morfológicas e os mecanismos de transporte eletrônico de cargas no PEDOT:PSS, uma blenda polimérica que consiste de um policátion condutivo, o poli(3,4- etilenodioxitiofeno) (PEDOT) e do poliânion poli(estirenosulfonado) (PSS). PEDOT:PSS é amplamente usado como material de eletrodo em aplicações na área de eletrônica plástica, como mencionado anteriormente. Apesar da condutividade elétrica dos filmes finos de PEDOT:PSS possa variar várias ordens de grandeza, dependendo do método pela qual é processado e transformado em filme fino, as razões para este comportamento é essencialmente desconhecido. Esta tese descreve um estudo detalhado do transporte eletrônico de cargas anisotrópico e sua correlação com a morfologia, as condições e as dimensões da separação de fase entre os dois materiais, PEDOT e PSS. Antes de abordar as propriedades do PEDOT:PSS, uma camada de filme fino inorgânica usada para aumentar o tempo de vida de dispositivos orgânicos é descrita no Capítulo 2. Um importante mecanismo de degradação em LEDs poliméricos é a fotooxidação da camada ativa. Assim, isolar a camada ativa da água, oxigênio e luz, torna-se crucial para o aumento do tempo de vida. Um sistema de deposição química a partir da fase de vapor estimulada por plasma (PECVD) é usado para depositar filmes finos de nitreto de carbono em baixas temperaturas, menores que 100 °C, sobre PLEDs com a intenção de aumentar o tempo de vida destes dipositivos e diminuir a fotodegradação do poli[2-metoxi-5- (2-etil-hexiloxi)-p-fenileno vinileno] (MEH-PPV) em ambiente atmosférico. O filme fino de nitreto de carbono possui as características de um material que pode bloquear a umidade e que tem espessura e flexibilidade adequados para a nova geração de PLEDs flexíveis. As características dos filmes finos de nitreto de carbono e MEH-PPV foram investigadas usando-se técnicas de espectroscopia ótica, com particular ênfase no processo de degradação do MEHPPV sob iluminação. Os resultados mostraram que o filme fino de nitreto de carbono protege o filme polimérico e diminui consideravelmente a fotooxidação. Para avaliar o efeito do encapsulamento em dispositivos reais, LEDs poliméricos foram fabricados e pelas curvas de corrente-tensão um aumento no tempo de vida é confirmado quando a camada de nitreto de carbono é presente. O tempo de vida desejado, maior que 10.000 horas, para aplicações comerciais não foi atingido, entretanto, o encapsulamento pode ser melhorado otimizando as propriedades da camada de nitreto de carbono e combinando-as com camadas de outros materiais orgânicos e inorgânicos. Os capítulos seguintes deste trabalho aborda os estudos realizados com o PEDOT:PSS, uma vez que é amplamente usado em eletrônica orgânica, mas relativamente tem recebido pouca atenção com respeito ao transporte eletrônico de cargas, bem como sua correlação com a morfologia. No Capítulo 3, experimentos com microscopia de varredura por sonda (SPM, Scanning Probe Microscopy) e medidas de condutividade macroscópica são utilizados para estudar e obter um modelo 3D morfológico completo que explica, qualitativamente, a condutividade anisotrópica observada nos filmes finos de PEDOT:PSS depositados pela técnica de spin coating. Imagens topográficas de microscopia de varredura por tunelamento (STM) e imagens da seção transversal observadas com o microscópio de forca atômica (X-AFM) revelaram que o filme fino polimérico é organizado em camadas horizontais de partículas planas ricas em PEDOT, separadas por lamelas quasi-contínuas de PSS. Na direção vertical, lamelas horizontais do isolante PSS reduzem a condutividade e impõe o transporte eletrônico a ser realizado por saltos em sítios vizinhos próximos (nn-H, nearest-neighbor hopping) nas lamellas de PSS. Na direção lateral, o transporte eletrônico via saltos 3D em sítios a longas distâncias (3D-VRH, variable range hopping) ocorre entre as ilhas ricas em PEDOT que são separadas por barreiras muito mais finas de PSS, causando um aumento da condutividade nesta direção. Esta discussão é estendida ao Capítulo 4 com uma descrição quantitativa do transporte eletrônico de cargas predominantes. Particularmente, é demonstrado que o transporte de cargas via saltos 3D em sítios a longas distâncias ocorre entre ilhas ricas em PEDOT e não entre segmentos isolados de PEDOT ou dopantes na direção lateral, enquanto que na direção vertical o transporte de cargas via saltos em sítios vizinhos próximos ocorre dentro das lamelas do quasi-isolante PSS. Em algumas aplicações, faz-se necessário usar PEDOT:PSS com alta condutividade elétrica. Isso pode ser feito adicionando-se sorbitol à solução aquosa de PEDOT:PSS. Após um tratamento térmico, e dependendo da quantidade de sorbitol adicionado, a condutividade aumenta várias ordens de grandeza e as causas e consequências de tal comportamento foram investigadas neste trabalho. O Capítulo 5 investiga as várias propriedades tecnológicas do PEDOT:PSS altamente condutivo tratado com sorbitol, tais como a própria condutividade, os efeitos dos tratamentos térmicos e exposição à umidade. É observado que o aumento da condutividade elétrica, devido à adição de sorbitol na solução aquosa, é acompanhado por uma melhoria na estabilidade da condutividade elétrica em condições atmosféricas. Surpreendentemente, a condutividade elétrica do PEDOT:PSS, sem tratamento com sorbitol (~ 10-3 S/cm), aumenta mais de uma ordem de grandeza sob ambiente úmido de 30-35 % umidade relativa. Este efeito é atribuido a uma contribuição iônica à condutividade total. Análise Temogravimetrica (TGA), espectrometria de massa com sonda de inserção direta (DIP-MS) e análise calorimétrica diferencialmodulada (MDSC) foram usadas como técnicas adicionais para o entendimento dos estudos deste Capítulo. No Capítulo 6, microscopia de varredura por sonda-Kelvin (SKPM) foi empregada para medir o potencial de superfície dos filmes finos de PEDOT:PSS tratados com diferentes concentrações de sorbitol. Mostra-se que a mudança no potencial de superfície é consistente com uma redução de PSS na superfície do filme fino. Para estudar o transporte eletrônico nos filmes finos de PEDOT:PSS altamente condutivos tratados com sorbitol, o Capítulo 7 usa medidas de temperatura e campo elétrico em função da conduvitidade correlacionados com analises morfológicas realizadas por STM. É observado que o transporte eletrônico por saltos, na direção lateral, muda de 3D-VRH para 1D-VRH quando o PEDOT:PSS é tratado com sorbitol. Esta transição é explicada por uma auto-organização das ilhas ricas em PEDOT em agregados 1D, devido ao tratamento com sorbitol, tornando-se alinhadas em domínios micrométricos, como observado pelas imagens de STM. / Employing the unique mechanical, electronic, and optical properties of the conjugated organic and polymer materials several technological and commercial applications have been developed, such as sensors, memories, solar cells and light-emitting diodes (LEDs). In this respect, the central theme of this thesis is the electrical conductivity and mechanisms of charge transport in PEDOT:PSS, a polymer blend that consists of a conducting poly(3,4-ethylenedioxythiophene) polycation (PEDOT) and a poly(styrenesulfonate) polyanion (PSS). PEDOT:PSS is omnipresent as electrode material in plastic electronics applications mentioned above. Although the conductivity of PEDOT:PSS can vary by several orders of magnitude, depending on the method by which it is processed into a thin film, the reason for this behavior is essentially unknown. This thesis describes a detailed study of the anisotropic charge transport of PEDOT:PSS and its correlation with the morphology, the shape, and the dimension of the phase separation between the two components, PEDOT and PSS. Before addressing the properties of PEDOT:PSS, a new barrier layer is described in Chapter 2 that enhances the lifetime of organic devices. An important degradation mechanism in polymer LEDs is photo-oxidation of the active layer. Hence, isolating the active layer from water and oxygen is crucial to the lifetime. Plasma-enhanced chemical vapor deposition (PECVD) is used to deposit a thin layer of carbon nitride at low deposition temperatures, below 100 °C, on a polymer LED that uses poly[2-methoxy-5-(2´-ethylhexyloxy)-1,4- phenylene vinylene] (MEH-PPV) as active layer. A thin layer of carbon nitride acts as barrier for humidity, but is still sufficiently bendable to be used in flexible polymer LEDs. The characteristics of carbon nitride and MEH-PPV films have been investigated using optical spectroscopy, with particular emphasis on the degradation process of MEH-PPV under illumination. The measurements show that the carbon nitride coating indeed protects the polymer film and diminishes the photo-oxidation considerably. To study the effect of the encapsulation in real devices, polymer LEDs were made and their current-voltage characteristics confirm the enhanced lifetime in the presence of a carbon nitride barrier layer. However, the target, a lifetime of more than 10,000 hours for commercial applications, was not achieved. The remaining chapters of this thesis describe the investigations of PEDOT:PSS. PEDOT:PSS is widely used in organic electronics. So far, relatively little attention has, been paid to the mechanisms of charge transport in this material and the correlation of those properties to the morphology. In Chapter 3, scanning probe microscopy (SPM) and macroscopic conductivity measurements are used to obtain a full 3D morphological model that explains, qualitatively, the observed anisotropic conductivity of spin coated PEDOT:PSS thin films. Topographic scanning probe microscopy (STM) and cross-sectional atomic force microscopy images (X-AFM) reveal that the thin film is organized in horizontal layers of flattened PEDOT-rich particles that are separated by quasi-continuous PSS lamella. In the vertical direction, the horizontal PSS insulator lamellas lead to a reduced conductivity and impose nearest-neighbor hopping (nn-H) transport. In the lateral direction, 3D variable-range hopping (3D-VRH) transport takes place between PEDOT-rich clusters which are separated by much thinner barriers, leading to an enhanced conductivity in this direction. This discussion is extended in Chapter 4, where a quantitative description of the length scales of the predominant transport is obtained. Particularly, it is demonstrated that the hopping process takes place between PEDOT-rich islands and not between single PEDOT segments or dopants in the lateral direction, whilst in the vertical direction the current limiting hopping transport occurs between dilute states inside the quasi-insulating PSS lamellas. By a post-treatment it is possible to modify PEDOT:PSS to raise its conductivity, by orders of magnitude. Typically, the addition of sorbitol to the aqueous dispersion of PEDOT:PSS that is used to deposit thin films via spin coating leads to an enhancement of the conductivity after thermal annealing. The causes and consequences of such behavior were investigated in detail. Chapter 5 describes the various properties of the highly conductive sorbitol-treated PEDOT:PSS, such as the conductivity itself, and the effects of thermal annealing and exposure to moisture. It is found that the conductivity enhancement upon addition of sorbitol is accompanied by a better environmental stability. Surprisingly, the electrical conductivity of PEDOT:PSS thin films without sorbitol treatment is increased by more than one order of magnitude in an environment with more than 30-35 % relative humidity. This effect is attributed to an ionic contribution to the overall conductivity. Thermal gravimetric analysis (TGA), direct insert probe-mass spectrometry (DIP-MS) and modulation differential scanning calorimetry (MDSC) were used as additional tools to demonstrate that, after thermal treatment, the concentration of sorbitol in the final PEDOT:PSS layer is negligibly small. In Chapter 6, scanning Kelvin probe microscopy (SKPM) is employed to measure the surface potential and work function of this PEDOT:PSS films that were deposited from water with different sorbitol concentrations. It is shown that work function of PEDOT:PSS is reduced with increasing sorbitol concentration. This shift can be explained by and is in agreement with- a reduction in the surface enrichment with PSS of the film. To study the charge transport properties of the highly conductive sorbitoltreated PEDOT:PSS films, temperature dependent and electric field dependent measurements are correlated with morphological analysis by STM in Chapter 7. It is found that by sorbitol treatment the hopping transport changes from 3DVRH to 1D-VRH. This transition is explained by a sorbitol-induced selforganization of the PEDOT-rich grains into 1D aggregates that are aligned within micrometer sized domains, as observed in STM images.
|
Page generated in 0.1272 seconds