• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 24
  • 19
  • 12
  • 12
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 352
  • 352
  • 315
  • 93
  • 79
  • 76
  • 65
  • 58
  • 53
  • 47
  • 47
  • 47
  • 45
  • 41
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Electronic and magnetic properties of hybrid interfaces : from single molecules to ultra-thin molecular films on metallic substrates / Propriétés électroniques et magnétiques d'interfaces hybrides : des molécules isolées aux films moléculaires ultra-minces sur des substrats métalliques

Gruber, Manuel 28 November 2014 (has links)
Comprendre les propriétés des interfaces molécules/métaux est d’une importance capitale pour la spintronique organique. La première partie porte sur l’étude des propriétés magnétiques de molécules de phtalocyanine de manganèse. Nous avons montré que les premières couches moléculaires forment des colonnes avec un arrangement antiferromagnétique sur la surface de Co(100). Ces dernières mènent à de l’anisotropie d’échange. La seconde partie porte sur l’étude d’une molécule à transition de spin, la Fe(phen)2(NCS)2, sublimée sur différentes surfaces. Nous avons identifié les états de spin d’une molécule unique sur du Cu(100). De plus, nous avons commuté l’état de spin d’une molécule unique pourvu qu’elle soit suffisamment découplée du substrat. / Understanding the properties of molecules at the interface with metals is a fundamental issue for organic spintronics. The first part is devoted to the study of magnetic properties of planar manganese-phthalocyanine molecules and Co films. We evidenced that the first molecular layers form vertical columns with antiferromagnetic ordering on the Co(100) surface. In turn, these molecular columns lead to exchange bias. The second part is focused on the study of a spin-crossover complex, Fe(phen)2(NCS)2 sublimed on different metallic surfaces. We identified the two spin states of a single molecules on Cu(100). By applying voltages pulses, we switched the spin state of a single molecule provided that it is sufficiently decoupled from the substrate.
322

Influence de la liaison chimique sur la structure des surfaces d'alliages métalliques complexes / Influence of chemical bonding on surface structures of complex metallic alloys

Meier, Matthias 09 December 2015 (has links)
Un alliage métallique complexe est un intermétallique dont la maille est constituée d'un nombre important d'atomes et dont la structure peut être souvent décrite comme un empilement de motifs d'atomes reliés par des liaisons de type covalent. Al5Co2 est l'un de ces composés et est un catalyseur potentiel pour la semi-hydrogénation d'acétylène. L'influence de la structure tridimensionnelle sur les surfaces bidimensionnelles et donc la réactivité est étudiée. Pour se faire, le système massif est analysé en utilisant la DFT afin d'éclaircir ses propriétés thermodynamiques, électroniques et vibrationnelles. Les valeurs calculées, expérimentales et celles de la littérature sont en bon accord. La structure des surfaces de bas indice, (001), (100) et (2-10) est étudiée. Une combinaison de techniques d'analyse de surface sous ultra-vide - LEED, STM - et de DFT est utilisée pour les déterminations structurales. Les résultats indiquent que: (i) la structure des surfaces dépend des conditions de préparation, comme la température de recuit, (ii) la structure des surfaces peut être interprétée comme étant constituée de motifs tronqués où certaines liaisons de type covalent sont brisées. Les sites et les énergies d'adsorption des molécules impliquées dans la réaction de semi-hydrogénation sont calculés pour les trois surfaces. Pour les sites favorables, des distances spécifiques entre atomes d'hydrogène adsorbés et atomes de Co de surface et de sous-surface peuvent être observées. Les atomes de Co de sous-surface ont un caractère donneur d'électrons, stabilisant les atomes adsorbés en surface. En se basant sur des calculs NEB, de possibles chemins réactionnels sur la surface (2-10) sont proposés. L'activité calculée est similaire à celle obtenue pour la surface d'Al13Co4, qui est considérée comme un bon catalyseur. La sélectivité - la compétition entre la désorption d'éthylène et son hydrogénation en éthyle - est discutée. / A complex metallic alloy is an intermetallic with a large unit cell and whose structure can often be seen as a stacking of motifs of strongly covalent-like bonded atoms. Al5Co2 is such a compound and is a potential catalyst for the semi-hydrogenation of acetylene. The influence of the 3-dimensional structure on 2-dimensional surfaces is investigated. Therefore, the bulk system is analysed using DFT to gain insight in the thermodynamic, electronic and vibrational properties. Good agreements between calculated results, experimental ones and results found in the literature are obtained. The low index (001), (100) and (2-10) surfaces are investigated. A combination of surface analysis techniques under ultra high vacuum - LEED, STM - and DFT calculations is used for the structural investigations. The results show that: (i) the surface structure depends on the preparation conditions, such as the annealing temperature, (ii) the surface structure can be interpreted as truncated motif parts, where the covalent-like bonds are broken. Adsorption sites and energies of molecules involved in the semi-hydrogenation reaction are calculated for all three surfaces. For favourable adsorption sites, specific distances of adsorbed H atoms with Co surface and subsurface atoms are observed. These Co subsurface atoms have an electron donor character, stabilising the adsorbed atoms at the surface. Based on NEB calculations, possible reaction paths on the (2-10) surface are proposed. The calculated activity is similar to the one obtained for the Al13Co4 surface, which is considered a good catalyst. The selectivity - the competition between desorption of ethylene and its further hydrogenation - is discussed.
323

On-surface synthesis of acenes – / Oberflächensynthese von Acenen – organische nanoelektronische Materialien als Einzelmoleküle untersucht

Krüger, Justus 09 January 2018 (has links) (PDF)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
324

Étude par ARPES et STS des propriétés éléctroniques de réseaux métalliques et organiques nanostructurés / Electronic properties of nanostructured metallic and organic interfaces studied by ARPES and STS

Vasseur, Guillaume 13 November 2014 (has links)
Dans ce travail nous démontrons, au travers de deux études, l'intérêt fondamental du couplage des techniques de photoémission résolue en angle (ARPES) et de spectroscopie tunnel (STS) dans l'analyse des propriétés électroniques d'interfaces nanostructurées. Dans la première partie, nous présentons une méthodologie permettant de déduire le potentiel de surface induit par la reconstruction triangulaire d'une monocouche d'Ag/Cu(111). Cette méthode est basée sur la mesure des gaps caractérisant la structure de bande de l'état de Shockley du système aux points de haute symétrie de la zone de Brillouin. L'évaporation d'adatomes de potassium permet d'augmenter le nombre de gaps accessibles en photoémission en décalant les bandes vers les états occupés. Dans un modèle d'électrons presque libres, leur amplitude nous donne accès aux premières composantes de Fourier du potentiel. La reconstruction de ce dernier dans l'espace direct nous permet ensuite de calculer la densité d'états locale que nous comparons aux mesures de conductance STS. La seconde partie est consacrée à l'étude de la croissance et des propriétés électroniques des molécules de 1,4-dibromobenzène (DBB) et 1,4-diiodobenzène (DIB) évaporées sur Cu(110). Leur dépôt à température ambiante sur la surface entraîne la déshalogénation des molécules et la formation de phases organométalliques. A 200°C, le système polymérise pour former des chaînes unidimensionnelles de poly(p-phénylène) parfaitement alignées. Les mesures ARPES révèlent l'existence d'une bande pi unidimensionnelle d'états HOMOs dispersant sous le niveau de Fermi. En STS, nous observons également, pour des petites chaînes, le confinement des états LUMOs dans la partie inoccupée du spectre. Le déconfinement de ces états pour les grandes chaînes conduit à la formation d'une bande continue croisant le niveau de Fermi, conférant au polymère un caractère métallique 1D. Le gap HOMO-LUMO est alors mesuré à 1.15 eV / In this work, through two different studies, we demonstrate the fundamental interest in the coupling of angle resolved photoemission (ARPES) and scanning tunneling spectroscopy (STS) to investigate the electronic properties of nanostructured interfaces. In the first part we present a methodology to determine the surface potential of the triangular reconstructed one monolayer of Ag/Cu(111) interface from ARPES. This method is based on the measurement of the Shockley state band structure’s gaps at the high symmetry points of the Brillouin zone. Deposition of potassium adatoms allows us to shift the surface state towards higher binding energies in order to increase the number of accessible gaps in photoemission. From the magnitude of these gaps we deduce the two first Fourier components of the potential felt by electrons using the nearly free electron model. Then we reconstruct it and calculate the local density of states in order to compare it with the conductance maps probed by STS. In the second part we report the study of the growth and the electronic properties of the two molecules 1,4-dibromobenzene (DBB) and 1,4-diiodobenzene (DIB) evaporated on Cu(110). For room temperature deposition, we first observe their deshalogenation and the formation of an intermediate organometallic phase. Then, above 200°C, the system polymerizes into a long-range ordered array of one dimensional poly(p-phenylene) polymer. ARPES intensity maps allowed us to identify a one dimensional graphene-like strongly dispersive pi-band below the Fermi energy. By STS we also observed LUMOs confined states for small chains over the Fermi level. The loss of confinement for long chains induces the formation of a continuous dispersive band which crosses the Fermi energy, conferring a 1D metallic character to the polymer. The HOMO-LUMO gap is found to be 1.15 eV
325

Investigation of the supramolecular self-assembly, electronic properties, and on-surface reactions of porphyrin and phthalocyanine molecules / Untersuchung der supramolekularen Selbstorganisation, elektronischer Eigenschaften, und Reaktionen auf Oberflächen von Porphyrin- und Phthalocyaninmolekülen

Smykalla, Lars 18 January 2017 (has links) (PDF)
Das grundlegende Verständnis der Adsorption, der Eigenschaften, und der Wechselwirkungen von komplexen organischen Molekülen auf Festkörperoberflächen ist für die Entwicklung neuer Anwendungen in der Nanotechnologie von entscheidender Bedeutung. Die in dieser Arbeit untersuchten funktionellen Bausteine gehören zu den Porphyrinen und Phthalocyaninen. Deren Adsorption, elektronische Struktur, und Reaktionen der Moleküle auf Edelmetalloberflächen wurden mit mehreren Methoden charakterisiert, insbesondere der Rastertunnelmikroskopie, Rastertunnelspektroskopie, Röntgen-Nahkanten-Absorptions-Spektroskopie und Photoelektronenspektroskopie, welche zudem durch theoretische Simulationen unter Verwendung der Dichtefunktionaltheorie ergänzt wurden. Tetra(p-hydroxyphenyl)porphyrin Moleküle ordnen sich durch Selbstorganisation zu verschiedenen, durch Wasserstoffbrückenbindungen stabilisierten Nanostrukturen an, welche in Abhängigkeit von dem Substratoberflächengitter untersucht wurden um das komplizierte Zusammenspiel von Molekül−Molekül und Molekül−Substrat-Wechselwirkungen bei der Selbstorganisation zu verstehen. Erhitzen der Adsorbatschichten dieses Moleküls führt zu einer schrittweisen Deprotonierung, und außerdem konnte auch ein Schalten der Leitfähigkeit einzelner Porphyrin-Moleküle durch lokale Deprotonierung mittels Spannungspulsen demonstriert werden. Eine Polymerisationsreaktion, welche auf der Ullmann-Reaktion basiert, aber direkt auf einer Oberfläche stattfindet, wurde für Kupfer-octabromotetraphenylporphyrin Moleküle, die auf Au(111) adsorbiert sind, gefunden. Nach einer thermischen Abspaltung der Bromatome von den Molekülen reagieren dabei die Radikalmoleküle bei hohen Temperaturen miteinander und bilden geordnete, kovalent gebundene Netzwerke aus. Die Bromabspaltung und die nachfolgenden Reaktionen und Veränderungen der elektronischen Struktur der Moleküle wurden ausführlich für die Substratoberflächen Au(111) sowie Ag(110) untersucht. Weiterhin, wird die Adsorption und Selbstorganisation von metall-freien Phthalocyanin-Molekülen auf einer Ag(110)-Oberfläche, und deren Selbstmetallierungsreaktion mit Silberatomen des Substrats umfassend und verständlich beschrieben. Zuletzt wurden organische Hybrid-Grenzflächen zwischen verschiedenen Metall-Phthalocyaninen untersucht, wobei ein Ladungstransfer zwischen Kobalt- und Platin-Phthalocyanin-Molekülen gefunden wurde. Dotierung gemischter Metall-Phthalocyanin-Filme durch Einlagerung von Kaliumatomen und deren selektive Adsorption im Molekülgitter führt zu einer deutlichen Veränderung der elektronischen Eigenschaften, aufgrund einer Ladungsübertragung an die Kobalt-Phthalocyanin Moleküle.
326

Syntéza π-elektronových systémů vhodných pro přenos a retenci náboje / The synthesis of π-electron systems suitable for transfer and retention of charges

Nejedlý, Jindřich January 2021 (has links)
The aim of my Thesis was to develop a general synthetic methodology for the preparation of long helicenes equipped with suitable functional groups that control their solubility or serve as anchoring groups for attachment to metallic surfaces, especially gold. The well-established transition metal catalyzed [2+2+2] cyclotrimerization of triynes was selected as the key scaffold-forming transformation in the synthesis of long helicenes because of its high regioselectivity, atom efficiency, functional group tolerance and general robustness. A modular approach was used for the preparation of the starting oligoynes, thus enabling a high level of their structural diversity. Individual resorcinol- based aromatic building blocks were interconnected by Sonogashira cross-coupling reactions, providing complex cyclization precursors encompassing up to twelve alkyne units pre-arranged for the multiple [2+2+2] cycloisomerization to produce three six- membered rings from each set of three neighboring alkyne units. Thus, a small series of long helicenes with up to 19 rings constituting the helical scaffold was synthesized. The quadruple cyclization leading to the longest oxahelicene prepared to date was performed in a high-temperature-high-pressure flow reactor at 250 řC in the presence of CpCo(CO)2. The set of...
327

On-surface synthesis of acenes –: organic nanoelectronic materials explored at a single-molecule level

Krüger, Justus 05 December 2017 (has links)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
328

Atomistic simulations of competing influences on electron transport across metal nanocontacts

Dednam, Wynand 14 June 2019 (has links)
In our pursuit of ever smaller transistors, with greater computational throughput, many questions arise about how material properties change with size, and how these properties may be modelled more accurately. Metallic nanocontacts, especially those for which magnetic properties are important, are of great interest due to their potential spintronic applications. Yet, serious challenges remain from the standpoint of theoretical and computational modelling, particularly with respect to the coupling of the spin and lattice degrees of freedom in ferromagnetic nanocontacts in emerging spintronic technologies. In this thesis, an extended method is developed, and applied for the first time, to model the interplay between magnetism and atomic structure in transition metal nanocontacts. The dynamic evolution of the model contacts emulates the experimental approaches used in scanning tunnelling microscopy and mechanically controllable break junctions, and is realised in this work by classical molecular dynamics and, for the first time, spin-lattice dynamics. The electronic structure of the model contacts is calculated via plane-wave and local-atomic orbital density functional theory, at the scalar- and vector-relativistic level of sophistication. The effects of scalar-relativistic and/or spin-orbit coupling on a number of emergent properties exhibited by transition metal nanocontacts, in experimental measurements of conductance, are elucidated by non-equilibrium Green’s Function quantum transport calculations. The impact of relativistic effects during contact formation in non-magnetic gold is quantified, and it is found that scalar-relativistic effects enhance the force of attraction between gold atoms much more than between between atoms which do not have significant relativistic effects, such as silver atoms. The role of non-collinear magnetism in the electronic transport of iron and nickel nanocontacts is clarified, and it is found that the most-likely conductance values reported for these metals, at first- and lastcontact, are determined by geometrical factors, such as the degree of covalent bonding in iron, and the preference of a certain crystallographic orientation in nickel. / Physics / Ph. D. (Physics)
329

STM investigation of model systems for atomic and molecular scale electronics

Eisenhut, Frank 09 August 2019 (has links)
In this thesis, I explore model systems for planar atomic and molecular scale electronics on surfaces. The nanoscale systems are experimentally investigated by combining scanning tunneling microscopy (STM) with atomic and molecular manipulation. Furthermore, the on-surface chemical synthesis of molecules, as well as the construction of atomic wires on selected surfaces is applied. Polycyclic aromatic hydrocarbon (PAH) molecules play a key role in this work, as they can provide the functionality of the molecular scale devices. In the first part of this work, I investigate different PAH´s on the Au(111) surface. The precursor molecules form supramolecular assemblies and the on-surface synthesis approach to obtain the desired molecular products is used. In particular, bisanthene molecules via a cyclodehydrogenation reaction and the non-alternant polyaromatic hydrocarbon diindenopyrene after a thermally induced debromination followed by selective ring-closure to form a five-membered ring are obtained. An interesting surface for future applications is the passivated silicon Si(001)-(2x1):H. I prepare this surface and characterize the substrate. The surface has a band gap and molecules are electronically decoupled from the semiconducting substrate due to the passivation layer. Furthermore, atomic defects on this substrate, so called dangling bonds (DB´s), have defined electronic states. I show that it is possible to produce DB defects controllably by applying voltage pulses using the tip of the STM and achieve with this method atomic wires with DB´s. The third part of this thesis deals with the investigation of molecular structures on Si(001)-(2x1):H. I present the generation of hexacene by a surface assisted reduction. This result can be generalized for the generation of PAH´s after deoxygenation on passivated silicon and can open new routes to design functional molecules on this substrate. Secondly, one-dimensional chains of acetylbiphenyl (ABP) molecules are explored. They interact via its pi-stacked phenyl rings that are considered as conducting channel. Finally, I demonstrate that a single ABP molecule acts as a switch, as one can reversibly passivate and depassivate a single DB by a hydrogen transfer. In the last part of this work, I test the new low-temperature four-probe STM located at CEMES-CNRS in Toulouse. This machine is constructed for the development of molecular scale devices. For this purposes an atomic precision is needed for all the different tips at the same time and a high stability of this scanning probe microscope must be achieved. I perform a manipulation experiment of molecules to test the necessary submolecular precision. For that reason, supramolecular assemblies of ABP molecules on Au(111) are imaged and manipulated by any of the four tips using the lateral manipulation mode as well as by voltage pulses. The stability of the system is shown, as all tips of the four-probe STM work independently in parallel.:1 Introduction 2 Fundamentals of scanning tunneling microscopy 2.1 The working principle 2.2 Scanning tunneling spectroscopy 2.3 Manipulation modes 2.4 Modeling 3 Experimental setup, materials and methods 3.1 The scanning tunneling microscope 3.2 The Au(111) surface 3.3 Further experimental details 4 On-surface synthesis of molecules 4.1 Introduction 4.2 Generation of a periacene 4.3 Investigating a non-alternant PAH 4.4 Conclusion 5 The passivated silicon surface 5.1 Introduction 5.2 Preparation of passivated silicon 5.3 Characterization of Si(001)-(2x1):H 5.4 Tip-induced formation of dangling bonds 5.5 Conclusion 6 Organic molecules on passivated silicon 6.1 Introduction 6.2 Hexacene generated on passivated silicon 6.3 Acetylbiphenyl on passivated silicon 6.4 Conclusion 7 Testing a low temperature four-probe STM 7.1 Introduction 7.2 The four-probe STM 7.3 Performance test of the four-probe STM on Au(111) 7.4 Manipulation of ABP assemblies 7.5 Conclusion 8 Summary and outlook 9 Appendix 9.1 Dibromo-dimethyl-naphtalene on Au(111) 9.2 Epiminotetracene on Au(111) Bibliography Curriculum vitae Scientific contributions Acknowledgement Statement of authorship / In dieser Arbeit untersuche ich Modellsysteme für planare atomare und molekulare Elektronik auf Oberflächen. Die Systeme auf der Nanoskala werden experimentell durch die Kombination aus Rastertunnelmikroskopie (RTM) und atomarer sowie molekularer Manipulation untersucht. Moleküle werden durch die oberflächenchemische Synthese generiert und atomare Drähte auf ausgewählten Oberflächen hergestellt. Polyzyklisch aromatische Kohlenwasserstoff (PAK) Moleküle spielen bei dieser Arbeit eine Schlüsselrolle, da sie die passiven und aktiven Elemente auf molekularem Maßstab darstellen können. Im ersten Teil dieser Arbeit untersuche ich verschiedene PAK´s auf der Au(111)-Oberfläche. Die Präkursoren bilden dabei supramolekulare Anordnungen und ich nutze die Oberflächensynthese, um die gewünschten molekulare Produkte zu erhalten. Im Speziellen habe ich Bisanthen-Moleküle über eine Zyklodehydrogenationsreaktion und das nicht-alternierende PAK Diindenopyren erzeugt. Dieses entsteht nach einer thermisch-induzierten Debromierung gefolgt von selektivem Ringschluss, sodass ein fünfgliedriger Ring gebildet wird. Eine interessante Oberfläche für zukünftige Anwendungen ist das passivierte Silizium Si(001)-(2x1):H. Ich habe diese Oberfläche erfolgreich präpariert und das Substrat charakterisiert. Die Oberfläche hat eine Bandlücke und Moleküle sind elektronisch von dem halbleitenden Substrat durch die Passivierungsschicht entkoppelt. Desweiteren haben atomare Defekte dieser Oberfläche, sogenannte Dangling-Bond´s (DB’s), definierte elektronische Zustände innerhalb der Bandlücke. Ich habe DB´s kontrolliert durch Spannungspulse mithilfe der Spitze des RTM erzeugt und stelle so atomare Drähte mit DB Defekten her. Der dritte Teil dieser Arbeit befasst sich mit der Untersuchung molekularer Strukturen auf Si(001)-(2x1):H. Die Erzeugung von Hexacen auf passivierten Silizium durch eine oberflächenunterstützte Reduktion wird gezeigt. Dieses Ergebnis ist eine neue Strategie für die Herstellung von PAK´s nach der Deoxygenierung und eröffnet neue Wege um funktionelle Moleküle auf diesem Substrat zu entwerfen. Zweitens zeige ich, dass Acetylbiphenyl (ABP) Moleküle eindimensionale Ketten auf dieser Oberfläche bilden. Diese interagieren über ihre Phenylringe, welche als leitender Kanal gesehen werden können. Zudem kann ein einzelnes ABP Molekül wie ein Schalter genutzt werden, da es reversibel einzelne DB´s durch Wasserstoffübertragung passivieren und depassivieren kann. Im letzten Teil dieser Arbeit wird das neue Tieftemperatur Vier-Sonden RTM, welches sich in CEMES-CNRS in Toulouse befindet, getestet. Diese Maschine ist für die Herstellung und Untersuchung von Geräten im molekularem Maßstab konstruiert worden. Zu diesem Zweck ist eine atomare Präzision für die verschiedenen Spitzen zur gleichen Zeit erforderlich und eine hohe Stabilität des Rastersondenmikroskops muss gewährleistet sein. Ich führe ein Manipulationsversuch an Molekülen durch, um die notwendige submolekulare Präzision zu testen. Dafür werden supramolekulare Anordnungen von ABP-Molekülen auf Au(111) abgebildet und die Strukturen mit jeder der vier Spitzen im lateralen Manipulationsmodus und durch Spannungpulse bewegt. Damit habe ich die Stabilität des Systems getestet und konnte zeigen, dass alle Spitzen des Systems unabhängig voneinander parallel arbeiten.:1 Introduction 2 Fundamentals of scanning tunneling microscopy 2.1 The working principle 2.2 Scanning tunneling spectroscopy 2.3 Manipulation modes 2.4 Modeling 3 Experimental setup, materials and methods 3.1 The scanning tunneling microscope 3.2 The Au(111) surface 3.3 Further experimental details 4 On-surface synthesis of molecules 4.1 Introduction 4.2 Generation of a periacene 4.3 Investigating a non-alternant PAH 4.4 Conclusion 5 The passivated silicon surface 5.1 Introduction 5.2 Preparation of passivated silicon 5.3 Characterization of Si(001)-(2x1):H 5.4 Tip-induced formation of dangling bonds 5.5 Conclusion 6 Organic molecules on passivated silicon 6.1 Introduction 6.2 Hexacene generated on passivated silicon 6.3 Acetylbiphenyl on passivated silicon 6.4 Conclusion 7 Testing a low temperature four-probe STM 7.1 Introduction 7.2 The four-probe STM 7.3 Performance test of the four-probe STM on Au(111) 7.4 Manipulation of ABP assemblies 7.5 Conclusion 8 Summary and outlook 9 Appendix 9.1 Dibromo-dimethyl-naphtalene on Au(111) 9.2 Epiminotetracene on Au(111) Bibliography Curriculum vitae Scientific contributions Acknowledgement Statement of authorship
330

Structure and morphology of ultrathin iron and iron oxide films on Ag(001)

Bruns, Daniel 21 November 2012 (has links)
This work investigates the initial growth of iron and iron oxides on Ag(001). Surface structure and morphology of both post deposition annealed Fe films (in UHV and O2 atmosphere) as well as reactive grown iron oxide films will be analyzed in detail by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The stoichiometry at the surface of the iron oxide films will be determined by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The main focus of this work is to shed light on the question whether the growth of iron oxide films on Ag(001) is accompanied by the formation of strain reducing dislocation networks, or superstructures as found for other metal substrates in former studies. Here, we will distinguish between Fe films which were post deposition annealed in a thin O2 atmosphere and reactively grown iron oxide films.

Page generated in 0.0909 seconds